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Abstract. Luffa is a family of cryptographic hash functions that has been selected as a second
round SHA-3 candidate. This paper presents the first collision finding analysis of Luffa-256 v2
which is the 256-bit hash function in the Luffa family. We show that collisions for 4 out of 8 steps
of Luffa can be found with complexity 290 using sophisticated message modification techniques.
Furthermore, we present a security analysis which shows how difficult it is to apply the same
approach to Luffa-256 v2 reduced to 5 steps: the resulting attack would require a complexity of
2224. This analysis can be seen as an indication that the full 8 steps of the Luffa-256 v2 hash
function has a large security margin against differential collision search with message modification
technique.
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1 Introduction

A cryptographic hash function is an algorithm that takes input strings of arbitrary (typically
very large) length and maps these to short fixed length output strings. A secure cryptographic
hash function has to satisfy the following requirements:

– preimage resistance: it is computationally infeasible to find any input which hashes to
any pre-specified output.

– second preimage resistance: it is computationally infeasible to find any second input
which has the same output as any specified input.

– collision resistance: it is computationally infeasible to find a collision, i.e. two distinct
inputs that hash to the same result.

For an ideal hash function with an n-bit output, finding a preimage or a second preimage
requires about 2n operations and the fastest way to find a collision is the birthday attack which
needs approximately 2n/2 operations.

Recent cryptanalytic results focus on the collision resistance of hash functions. Collision
attacks [15] have been shown for many commonly used hash functions, such as MD5 [13] and
SHA-1 [11]. In response, NIST launched the SHA-3 competition [12] which aims to find an
alternative hash function to the SHA-2 family. NIST received more than 60 candidate hash
functions and it currently focuses on the 14 second round candidates. Therefore, the cryptanalysis
of these hash function designs is of great interest.

Luffa is a family of cryptographic hash functions that has been selected as a second round
SHA-3 candidate. The hash function Luffa adopts the structure of a sponge function and a
wide-pipe strategy. Furthermore, the design of Luffa shows a distinct feature that the internal
round function consists of parallel applications of permutations. The four proposed variants of
Luffa compute a 224-bit, 256-bit, 384-bit, and 512-bit hash value respectively.

In the previous results on Luffa, the building blocks have been extensively analyzed: the
designers of Luffa-256 v2 found a differential path for the internal permutation of Luffa with a
probability of 2−224 [5]. Aumasson and Meier [1] constructed an algebraic zero-sum distinguisher
for the same component with a complexity of 282. Watanabe et. al constructed a higher order
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Fig. 1. The Luffa construction

distinguisher for 7-steps out of 8 steps of the compression function of Luffa v1, requiring 2216

one-block messages. Khovratovich et. al [9] found a semi-free start collision for the 7-steps of
the compression function of Luffa-256 v2 with a complexity of 2104, which can be extended to
an 8-step distinguisher with the same complexity [9].

This article analyses the collision resistance of reduced-round versions of Luffa which is
the 256-bit hash function in the Luffa family. To the best of our knowledge, this is the first
analysis of this type, where the attacker is more restricted than in the previous analysis because
the initial vector is fixed in ours. We show how collision attacks, using sophisticated message
modification techniques, can be mounted on reduced variants of Luffa-256 v2. We show an attack
on Luffa-256 v2 reduced to from 8 to 4 steps with a complexity of 290. Furthermore, we analyze
how difficult it would be to apply the same approach to Luffa-256 v2 reduced to 5 steps, which
can be seen as an indication that the full 8 steps of the Luffa-256 v2 hash function has a high
security margin against differential collision search using message modification.

The outline of this paper is as follows. In Sect. 2, we give a short description of the hash
function Luffa-256 v2 with a focus on the relevant parts for our attacks. In Sect. 3, the results
of the collision attacks on 4-step variant of Luffa-256 v2 are presented. Section 4 analyzes the
resistance against collision attacks of a 5-step variant of Luffa-256 v2. Section 5 concludes the
paper.

2 Specification of Luffa-256 v2

In this section, we introduce a part of the specification of Luffa which is needed to describe the
attack. The reader is referred to [6] for the details of the specification.

2.1 Chaining

The chaining of Luffa is a variant of a sponge function [2, 3], that processes 256 message bits
in each iteration. The message is padded with 10...0 to ensure that the padded message has a
length divisible by 256. Figure 1 shows the basic chaining structure.

Round Function. The round function is a composition of a message injection function MI

and w permutations Qj of 256 bits input (see Fig. 1). Let the input of the i-th round be
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In the specification of Luffa, the input length of the sub-permutation Qj is fixed to nb = 256
bits, and the number of the sub-permutations w is 3, 4 and 5 for the hash lengths 256, 384 and
512 bits respectively.

The message injection functions can be represented by a matrix over the ring GF(28)32. The
map from an 8-word value (a0, . . . , a7) to an element of the ring is defined by (

∑
0≤k<8 ak,lx

k)0≤l<32.

Note that the least significant word a7 is the coefficient of the heading term x7 in the polynomial
representation.

2.2 Non-Linear Permutation

The permutation Qj is defined as the composition of an input tweak and iterations of a step
function Step. The number of iterations of a step function is 8 and the tweak is applied only
once per a permutation.

At the beginning of the step function process, the 256 bits data are stored in 8 32-bit registers

denoted by a
(r)
k for 0 ≤ k < 8. The data before applying the permutation Qj is denoted by bk

and the data after the tweak is denoted by a
(0)
k . The step function consists of the following three

functions: SubCrumb, MixWord, AddConstant. The pseudocode for Qj is given by

Permute(a[8], j){ //Permutation Q_j

Tweak(a);

for (r = 0; r < 8; r++){

SubCrumb(a[0],a[1],[2],a[3]);

SubCrumb(a[5],[6],a[7],a[4]);

for (k = 0; k < 4; k++)

MixWord(a[k],a[k+4]);

AddConstant(a, j, r);

}

}

Each function is described below in turn and the tweaks are described in Section 2.2. We omit
the description of AddConstant because it is not needed in this paper.

Substitution. SubCrumb substitutes the bits of a0, a1, a2, a3 (or a4, a5, a6, a7) by a 4-bit S-box
S defined by

S[16] = {13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4}.

Let the output of SubCrumb be x0, x1, x2, x3 (or x4, x5, x6, x7). Then the substitution by SubCrumb

is given by

x3,l||x2,l||x1,l||x0,l = S[a3,l||a2,l||a1,l||a0,l], 0 ≤ l < 32,

x4,l||x7,l||x6,l||x5,l = S[a4,l||a7,l||a6,l||a5,l], 0 ≤ l < 32.
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Fig. 2. The step function

Linear Diffusion. MixWord is a linear permutation of two words. Let the output words be yk

and yk+4 where 0 ≤ k < 4. Then MixWord is given by the following equations:

yk+4 = xk+4 ⊕ xk,

yk = xk ≪ σ1,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ2,

yk+4 = yk+4 ⊕ yk,

yk = yk ≪ σ3,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ4.

The parameters σi are given by σ1 = 2, σ2 = 14, σ3 = 10, σ4 = 1.

Tweaks. For each permutation Qj, the least significant four words of a 256-bit input are rotated
by j bits to the left in 32-bit registers. Let the j-th block, k-th word input be bj,k and the tweaked

word (namely the input to the first step function) be a
(0)
j,k , then the tweak is defined by

a
(0)
j,k,l = bj,k,l, 0 ≤ k < 4,

a
(0)
j,k,l = bj,k,(l−j mod 32), 4 ≤ k < 8.

3 The Collision Attack on 4-step Luffa-256 v2

We present a collision attack on 4-step Luffa-256 v2 using three message blocks. Our attack
constructs a differential path [4] producing a collision and then applies message modification [15]
in order to reduce the complexity. The overview of our strategy to carry out this technique is
that we give the degrees of freedom of message bundles to the active S-boxes through steps in
a way that we apply to the modification as independently as possible, which can be performed
by developing an algorithm for assigning degrees of freedom in an appropriate way and by
considering the order in which message bundles or a group of them are used.

3.1 Preliminary

In order to simplify the description of our attack, we will view the 256-bit message block as
32 8-bit bundles and consider their positions t (0 ≤ t < 32), to which we will refer as message



bundle and message bundle position respectively. Each of these bundles is obtained in a bit-slice
manner as adopted in Luffa-256 v2: one bit of a bundle is taken from one 32-bit word of in the
message block.

For the same reason, we will view the 256-bit internal state of the permutation Qj as 64 4-bit
bundles, each of which is taken as input to S-box, and consider their positions u (0 ≤ u < 64),
to which we will refer as S-box position. We call position u less than 32 higher and otherwise a
lower position.

The higher 4-bits of a message bundle of position t only affect the input to an S-box at the
higher position t at the first step in Qj while the lower 4-bits only affect the S-box at the lower
position t + 32.

3.2 The Differential Path

We construct good differential paths for the round function from good truncated differential
paths for the permutation Qj . To search for the latter paths, we consider the linear code given
by the iteration of MixWord. The reason for this is explained below. Let A be the representation
matrix of MixWord and Gn = I||A|| · · · ||An be the generator matrix of a code. Then good
truncated paths can be directly obtained from low weight code words of the linear code Gn,
under the assumption that the output differences of the S-boxes are the same at all positions.
Now our way of constructing a good differential path can be summarized as follows:

1. Construct a good truncated differential path which is the same for permutations by con-
structing a low weight code for MixWord in the way that was explained in the previous
section.

2. Convert it into (non-truncated) differential paths for the whole round function by choosing
appropriate differences of S-boxes.

We exhaustively searched for low weight code words of Gn which allow us to obtain truncated
differential paths with a small number of active S-boxes in the permutation Qi. Furthermore,
in order to bypass the effect of the Tweak function, we impose some condition on the inputs
generating the low weight code words that there are only 1’s in the higher 32-bit word and
therefore there are only 0’s in the lower 32-bit word.

Our experiments found many good truncated differential paths. The best one we found has
49 active S-boxes which is shown in Table 1.

Table 1. The truncated differential path for Qj

Step Weight 0 1 2 3 4 5 6
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123

0 07 0000000100 0100000001 0101010000 0100000000 0000000000 0000000000 0000
1 08 0100000100 0000010001 0100000101 0000000000 0000000000 0000000000 0010
2 19 0001010100 0100011100 1001000100 1100000000 0000000110 1010000000 1110
3 15 0000010000 0001010100 0101000100 0010110010 0010000000 0000000010 1010
4 (42) 0011011000 1110110001 0110011010 1111101110 1111110111 1110011110 0111

We now convert the truncated differential path to a (non-truncated) differential path for
the whole round function by choosing the input differences of the S-boxes, satisfying the above
assumption.

We firstly consider to determine an input difference in the message block. The active message
bundle positions are the same as the active S-box positions at the first step in the path shown



in Table 1. For each of active message bundles, we use the same one-byte difference which will
be determined below. Since the truncated path has active S-boxes only in higher positions, this
one-byte difference in a message bundle must be the form of 0xY0 where Y is a non-zero 4-bit
value.

After the message injection function MI, it is necessary that the active S-box positions
are the same for all of three Qjs. It follows that the above one-byte difference is now limited
to be 0x10, 0x20, or 0x30. This is because that, in the path, one message bundle position t

(0 ≤ t < 32) affects the S-boxes at two positions (t and t + 32), a wrong choice other than these
three for the one-byte difference in a message bundle at position g would cause an undesirable
situation where positions g and g +32 are active in some Qj while position g is active but g +32
is passive in the other Qj′ ’s.

Next we determine the (non-truncated) output differences for Q0, Q1, and Q2 per bundle,
which is consistent to the truncated path in Table 1. Depending on the bundle position, the
above output difference of Qj must be a form of 0xYZ or 0xY0 or 0x0Z where both of the Y and
Z are non-zero values.

Considering this and the linear condition of producing a collision after MI in the third
round function, we can determine the (non-truncated) output differences for Q0, Q1, and Q2

per bundle: (0x40, 0x10, 0xb0) or (0x04, 0x01, 0x0b) or (0x44, 0x11, 0xbb).

It follows that the output differences of S-boxes at the fourth step for Q0, Q1, and Q2 are
0x4, 0x1, and 0xb respectively. Starting from these output differences and the above three input
difference candidates, namely (0x1, 0x2, 0x4), (0x2, 0x4, 0x8), (0x3, 0x6, 0xc), for Q0, Q1, and
Q2, we searched for difference paths of the S-boxes that give the best value for the product
of differential probabilities over Qjs. This search has been performed based on the differential
profile table for the S-box shown in [5]. Among the above three input differences, two of them
give the the best value for the product of differential probabilities. In the end, we determine the
input difference to be (0x1, 0x2, 0x4) because this gives a differential path where we place S-box
input differences with a low probability in the steps with a low weight, namely step 0 and step
1 in the truncated differential path in Table 1. This is not the case for the other input difference
(0x2, 0x4, 0x8). Hence, we also determine the one-byte difference in the message bundle to be
0x1 out of three candidates. Our result is shown in Table 2 that lists the input differences of
S-boxes and the products (over Qjs) of differential probabilities of S-boxes at the same position.

Table 2. The differences and the product of differential probabilities for S-boxes at each position.

Step Q0 Q1 Q2 Product of the probabilities

0 0x1 0x2 0x4 2−7

1 0x6 0x2 0x4 2−7

2 0x4 0xd 0x4 2−6

3 0x4 0x1 0x4 2−6

0x4 0x1 0xb

In the way explained the above, we have constructed a differential path with the desired
property that the active S-box positions u (0 ≤ u < 64) at each step in each permutations Qj

are exactly the same in all of three Qjs.

3.3 The Message Modification Technique

The main technical difficulty in our collision attacks lies in applying the message modification
technique which has been used as a key tool to find differential collisions in hash functions.



For a given differential path, this technique allows to find a set of messages that give a higher
differential probability than one would expect from randomly chosen messages. More specifically,
one bit condition on an input typically increases the differential probability by a factor of two
on average.

However, there is a potential problem in the practical application of this technique: it could
be difficult to satisfy many bit-conditions because some of them are likely to conflict with the
others. Therefore, an important task for the attacker is to ensure that the message bundles are
used without encountering any contradiction over which values are set for them.

We will show that one can apply the message modification technique to 4-step Luffa-256 v2
without having the problem. Roughly speaking, this can be achieved by developing a tool for
assigning degrees of freedom in the message to the inputs of the active S-boxes, each of which
generally depends on plural message bundles, except for one in the first step where it depends
on a single message bundle.

3.4 Choosing Good Internal States with the First Message Block.

For each message bundle position g, the product of the differential probabilities for each per-
mutation Qj could vary from 2−6 to 2−18 as there are three permutations where the differential
probability for S-box lies between 2−2 and 2−3. For the first step, we could face the difficulty
of lack of degrees of freedom: we may have to satisfy an 18-bit condition, where we have only 8
bits of degrees of freedom in the message bundle.

However, we will solve it by randomly choosing the first message block M (0) to find a good
internal state H(1). We mean by good internal state that there exists a second message block
satisfying conditions imposed by the active S-boxes in the first step. We confirmed by experiment
that the probability to have one byte of a good internal state in each permutation is 2−2. Since
there are 7 active S-boxes in each permutation in the first step, the complexity required for
obtaining a good internal state H(1) is 214.

3.5 The Second Message Block of the Differential Path

Assuming that H(1) is a good internal state, we now use the second message block M (1) in order
to find right values for the differential path.

Firstly, we deal with the first step of Luffa-256 v2. As for a message bundle of position t, the
input difference is 0x10. From this input difference it follows that the S-box differential paths
at position t in the first step are 0x1 → 0x6, 0x2 → 0x2, and 0x4 → 0x4, for the permutations
Q0, Q1, Q2 respectively. Note that we have no difference in the lower S-boxes. We confirmed
by experiment that the probability for a message bundle being right for this path is 2−5. After
applying the basic message modification to 7 active S-boxes, the remaining degrees of freedom
in the second message block is 221 bits out of 256 bits. A detailed description of the remaining
degrees of freedom at each message bundle position is shown in Table 3.

Table 3. The degrees of freedom remaining after the first step.

Message bundle position 0 10 20 30

Degrees of freedom 8888888388 8388888883 8383838888 83

For the second and the third steps of Luffa-256 v2, we apply the message modification
technique to check whether there exist right values for the differential path. Our approach is to
verify that one can give the attacker enough degrees of freedom in the message bundles, that



would allow him to fulfill the conditions on the input to each active S-boxes by adjusting the
second message block M (1). Our careful choice of message bundles ensures that this modification
for the third step can be performed independently of the modification for the second step. The
approach for this can be explained in the following way: the second step modification uses 12
message bundles and it determines 10 of these bundles which will be fixed during the third-step
modification while the message bundles at positions 9 and 13 will not be fixed. From our way
of using the degrees of freedom and consideration of the effect of the MixWord linear layer, we
can verify that the inputs of active S-boxes at the third step can be modified only by using
the message bundles at positions 9 and 13, and message bundles on which the inputs of active
S-boxes at the second step do not depend. Hence, at the third step, we do not use any of the 10
message bundles which have been fixed at the second step. On the other hand, for the message
bundles at positions 9 and 13, we store values for them which give the right values to the active
S-boxes the second step and then at the third step we choose the right values from them, which
results in increasing the complexity of the third step complexity by a small factor of 25. This is
how we apply the message modification between steps and how we apply it within one step will
be later on explained in discussions on the complexity of the message modification.

The verification was performed by means of an experiment for which an algorithm is given
in 1.

Algorithm 1 An algorithm of verifying that one can give the attacker enough degrees of freedom
in the message bundles
1: for i from 0 to 63 do

2: if S-box is active at position i then

3: for j from 0 to 6 do

4: for k from 0 to 63 do

5: if S-box of ordf[i] depends on message bundle of ordl[k] then

6: if ordl[k] > 0 then

7: ordl[k]− = 1; /* use degrees of freedom */
8: break;
9: end if

10: end if

11: end for

12: end for

13: end if

14: end for

In the algorithm, ordf is an array storing the order in which degrees of freedom are assigned
for active S-boxes; ordl is an array storing the order in which message bundles are used. Before
the algorithm is carries out, sorting procedures are performed with ordf and ordl such that
the algorithm assigns the degrees of message freedom to the more restricted active S-boxes with
higher priorities. In the algorithm, the reason why j varies from 0 to 6 is that the product of
probabilities for active S-boxes for Qj at the second step is 2−7 in Table 2.

Table 4 indicates the correspondence between the active S-box positions and the message
bundle positions for the second and the third step.

In the second and the third step, the products of the differential probabilities for the S-boxes
in the same (S-box) position over Qj are 2−7 and 2−6 respectively. After applying the message
modification to 8 active S-boxes and 19 active S-boxes, the degrees of freedom in the second
message block is 165 bits (out of 256 bits) remaining after the second step and 51 bits remaining
after the third step. A detailed description of the remaining degrees of freedom in each message
bundle position is shown in Table 5. The complexity required for this procedure is negligible,
which will be explained in the next sub-section. Roughly speaking, the reason for this is that



Table 4. The correspondence between the conditions for the active S-box positions and the message bundle
positions for the second and the third step.

Step 1 S-box pos. 27 7 62 21 29 1 15 19

Message bundle pos. 7,19,21 1,19,31 15 1,15 9,23 25,27 9,27 11, 13

Step 2 S-box pos. 27 62 3 30 5 17 52 20 7 11
Message bundle pos. 2 2,13 9,24 3,24,26 26 29 29,30 3,30 10 10,12

S-box pos. 47 31 15 16 23 61 48 50 60
Message bundle pos. 5,12 3,5 28 0,28 0,4 4 6 8 14

it follows from the correspondence of the active S-boxes and the message bundles that one can
find the right values in the same method as one can solving systems of linear equations using
the substitution method.

Table 5. The degrees of freedom remaining after the second and the third steps.

Message bundle position 0 10 20 30

After step 1 8088888081 8084808880 8080808088 80
After step 2 0000052020 0000208880 8080000000 00

As for the fourth step, the product of differential probabilities for S-boxes in the same (S-
box) position over Qj is 2−6. Since there are 15 active S-boxes, too few degrees of freedom are
remaining to apply message modification. Therefore, we randomly choose the first message block
M (1) to repeat the whole attempt 290−51 = 239 times. After this procedure, we find a right input
satisfying all the conditions for the 15 active S-boxes. As a result, we expect to find a collision
for 4-step Luffa-256 v2 with a total complexity of 290

; 239(214 + 251).

On the Complexity of the Message Modification. In the previous paragraph, we showed
how we assign the degrees of message freedom to the active S-boxes. We here discuss the com-
plexity of the message modification. At the first step, it is clear how to apply the technique. The
complexity of the message modification is only 7× 28 because there are 7 active S-box positions
and we can independently modify values for each message bundles.

However, we face more difficult situations at the second and the third steps due to the effect
of the MixWord which ensures that the input to an S-box at the second step depends on multiple

message bundles and that one message bundle may affect multiple active S-boxes. Hence, the
potential problem is that even if a condition on the input of an active S-box is fulfilled by
means of a modification of some message bundle, this fulfillment can be afterwards destroyed
by means of a following modification of another message bundle which again affects the input
of this active S-box. Therefore, an appropriate order in which message modification is applied
has to be determined to reduce the complexity.

Here we investigate the case of the third step as the second step could be dealt in the same
way. From all message bundles to be modified and all the active S-boxes, we consider a group
whose element has a form of a pair of (p and (q1, q2, ...)) where p is a message bundle position
and qis are the each active S-box positions influenced by its modification. We can construct
seven groups where, for each element, at least one active S-box position is appeared in another
element. For example, 30 of (3, (20,30,31)) is appeared in (24, (3, 30)) as well.

In this way, we can apply message modification group per group. Here we take as an example
the largest group shown in Table 7 because the corresponding complexity is dominant in the
message modification.



Table 6. A Group of relations between message bundle positions and active S-box positions

message bundle position 3 5 9 10 12 24 26 29 30

active S-box position 20,30,31 31,47 31 7,11 11,47 3,30 5,30 17,52 20,52

Now our way of applying message modification to this group can be summarized in Table 7
that indicates how and in which order the message bundles are used for the corresponding the
active S-boxes at the third step, which means that the attacker firstly chooses values for message
bundles at positions 3, 9, 10, 12, 29, 30 and store the values giving a right input to the S-box
at position 52 and next the attacker chooses values for message bundles at positions 0 and 2
and store the values giving a right input to the S-box at position 17 and so on. the dominant
complexity corresponds to the first procedure in message modification of this group, which is
28×5+1 = 241 derived from the degrees of freedom described in Table 5. Putting things together,
we estimate that the time complexity for the message modification at the third step is 241, which
is not dominant in computing the total complexity because this complexity of 241 is significantly
less than the complexity of 251 corresponding to the use of the second message block.

Table 7. Message modification to the largest group, indicating how and in which order the message bundles are
used for the corresponding the active S-box at the third step.

order 1 2 3 4 5

message bundle position 3, 9, 10, 12, 29, 30 0,2 4,8 6,26 5,14,24

active S-box position 52 17 20 5 3,7,11,30,31,47

4 Security Analysis of 5-step Luffa-256 v2

We present a security analysis which shows how difficult it is to apply the same approach to
Luffa-256 v2 reduced to 5 steps, which can be seen as an indication that the full 8 steps of the
Luffa-256 v2 hash function has a large security margin against differential collision search with
message modification [15].

4.1 The Differential Path

As we performed for 4-steps of Luffa-256 v2 in section 3, our experiments found many good
truncated differential paths. The best one we found has 76 active S-boxes which is shown in
Table 8.

Table 8. The truncated differential path for Qj

Step Weight 0 1 2 3 4 5 6
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123

0 10 0000010001 1010000011 0001000100 1100000000 0000000000 0000000000 0000
1 24 0011101001 0110010100 1000000100 1000110011 0001100001 1010001000 1010
2 12 0011100000 0000010100 0001000000 0001010000 0000010000 0001010000 0001
3 16 1101100000 0000000001 1100001000 0010110010 0000000000 1101000000 0001
4 14 0000000101 1010101000 1010000010 1000000000 0001000000 0001000100 0100
5 (34) 1110010111 0110101011 1110001010 1101001110 1000011001 0011000111 0001



We now convert the truncated differential path to a (non-truncated) differential path for the
whole round function by choosing the S-box input differences in Table 9.

Table 9. The S-box input differences in Qj and the product of differential probabilities for the S-boxes in Qj .

Step Q0 Q1 Q2 Product of probability

0 0x1 0x2 0x4 2−7

1 0x8 0x2 0x4 2−6

2 0x2 0x2 0x4 2−6

3 0x2 0x2 0x4 2−6

4 0xd 0xd 0x4 2−7

0x4 0x1 0xb

4.2 The First Message Block to Choose Good Internal States.

We randomly choose a first message block M (0) to find a good internal state H(1). We confirmed
by experiment that the probability to have one byte of a good internal state in each permutation
is 2−2. Since there are 10 active S-boxes in each permutation in the first step, the complexity
required for obtaining a good internal state H(1) is 220.

4.3 The Second Message Block of the Differential Path

Assuming that H(1) is a good internal state, we now use the second message block M (1) in order
to find right values for the differential path.

We confirmed by experiment that the probability for a message bundle being right for this
path is 2−5. After applying the message modification to 10 active S-boxes with a probability
2−2, the degrees of freedom remaining in the second message block is 206 bits out of 256 bits.
Both in the second and the third steps, the products of differential probabilities for S-boxes in
the same (S-box) position over Qj are 2−6. After applying the message modification to 24 active
S-boxes and 8 active S-boxes out of 12, the degrees of freedom in the second message block are
62 bits and 14 bits out of 256 bits remaining after the second and the third steps respectively. A
detailed description of the degrees of freedom remaining after each step at each message bundle
position is shown in Table 10.

Table 10. The degrees of freedom remaining after each step.

0 1 2 3
Message bundle position 0123456789 0123456789 0123456789 01

After step 0 8888838883 3838888833 8883888388 33
After step 1 0040800580 0003802600 0080008020 00
After step 2 0000300020 0000100000 0000008000 00

As for the second and the third step of Luffa-256 v2, the conditions on the input to each of
24 active S-boxes for each permutation can be fulfilled by adjusting the second message block
M (1). Table 11 indicates the correspondence between the active S-box positions and the message
bundle positions for the second and the third step.

The complexity required for this procedure is negligible if we assume that we could perform
as we did in 3.5, which is optimistic for the attacker.



Table 11. The correspondence of the active S-boxes to the message bundles

Step 1 S-box position 15 11 6 4 20 49 30 35 39 12
Message bundle position 9,27 5,23 18,30 16 0,12 0,2 10,24 20 2,20,24 6

S-box position 43 56 27 9 38 50 52 60 62 44
Message bundle position 6,24 7,19 21 1,21 1,31 1,3 3,13 11 11,13,25 25

S-box position 2 17 3 34
Message bundle position 28 29 15,29 15,17

Step 2 S-box position 45 35 17 23 4 15 55 2
Message bundle position 2,7 7,16,17 14,17 14 13,22,28 22 4,22 8

In order to fulfill conditions for the remaining 8 active S-boxes at the third step, and the
ones at the forth and fifth steps, we randomly choose the first message block M (1) to repeat
the whole attempt 2204=((12−8)×6)+(16×6)+(14×7)−14) times. Therefore, this approach would take
a high total complexity of 2224

; 2204(220 + 214) even if the optimistic assumption on the
complexity of message modification is satisfied.

5 Conclusion

We show that collisions for 4 out of 8 steps of Luffa can be found with complexity 290 using so-
phisticated message modification techniques. Furthermore, we present a security analysis which
shows how difficult it would be to apply the same approach to Luffa-256 v2 reduced to 5 steps.
For the future work, it would be interesting to construct a differential path constructed from
differential paths for the internal permutations Qis that are different from one Qi to another.
It would be worthwhile to search for differential paths that are most suitable for message mod-
ification, even though its differential probability is not necessarily the highest one. However,
we speculate that it could be very difficult to carry out these two approaches. Based on our
results and speculation, we conclude that Luffa-256 v2 has a substantial security margin against
differential collision search with message modification.
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