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Abstract. In this paper, a higher order differential attack on the hash
function Luffa is discussed. We confirmed that the algebraic degree of
the permutation Qj which is an important non-linear component of Luffa
grows slower than an ideal case both by the theoretical estimate and the
experiments. According to our estimate, we can construct a distinguisher
for step-reduced variants of Luffa up to 7 out of 8 steps by using a block
message. The attack for 7 steps requires 2216 messages. This attack does
not pose any threat to the security of the full-step of Luffa, and this
doesn’t contradict any security claim of Luffa.
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1 Introduction

Luffa [4]1 is a family of hash functions submitted to NIST SHA-3 Competition
and was selected as one of the second round candidates. The self-security evalua-
tions are found in the supporting document [5], and they mainly discuss generic
attacks and differential cryptanalysis. Besides, analyses based on algebraic ap-
proach is not discussed seriously in the supporting document.

An application of a higher order difference to cryptanalysis is suggested by
Lai [8] and firstly applied to a block cipher by Knudsen [7]. The higher order dif-
ferential attack is a tool to analyze the algebraic property of the target function,
especially its algebraic degree. The application to the stream cipher is proposed
by Dinur and Shamir [6] and Aumasson et al. proposed cube tester [1] which
intends to detect the non-randomness of the target function. The cube tester
has been applied not only to stream ciphers, but also to several hash functions
submitted to SHA-3 Competition such as MD6 and Hamsi.

In the case of Luffa, Yamada and Kaneko pointed out that the 32-th order
difference can distinguish five step functions of Qj [9]2. Starting from their result,
we developed the higher order differential attack on step-reduced variants of
1 Throughout this document, we discuss the algorithm submitted to Round 1.
2 Their early results and a part of our discussion will be published in [10].
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Fig. 1. A generic construction of a hash function based on a permutation

Luffa. In this paper, firstly we confirm that the algebraic degree of Qj grows
slower than an ideal case both by the theoretical estimate and the experiments.
According to our estimate, we can construct a distinguisher for reduced step
Luffa up to 7 out of 8 steps by using a block message. The attack for 7 steps
requires 2216 messages. This attack does not pose any threat to the security of
the full-step of Luffa, and this doesn’t contradict any security claim of Luffa.

The rest of this paper is organized as follows: Firstly the specification of
Luffa is briefly introduced in Section 2. Secondly the definition of the higher
order difference and its basic property is introduced in Section 3. The increase
of the algebraic degree by the iteration of the step function is investigated in
Section 4. Then the higher order differential attack on step-reduced variant of
the permutation Qj and its extension to the hash function is given in Section 5.
We conclude the discussion in Section 6.

2 Specification of Luffa

In this section, we introduce a part of the specification of Luffa which is needed
to describe the attack. Please refer to [4] for the detail of the specification.

2.1 Chaining

The chaining of Luffa is a variant of a sponge function [2, 3]. Figure 1 shows the
basic structure of the chaining. The chaining of a hash function consists of the
intermediate mixing C ′ (called a round function) and the finalization C ′′.

Round Function The round function is a composition of a message injection
function MI and a permutation P of w·nb bits input. The permutation is divided
into plural sub-permutation Qj of nb bits input (See Figure 2). Let the input
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of the i-th round be (H(i−1)
0 , . . . , H

(i−1)
w−1 ), then the output of the i-th round is

given by

H
(i)
j = Qj(Xj), 0 ≤ j < w,

X0|| · · · ||Xw−1 = MI(H(i−1)
0 , . . . , H

(i−1)
w−1 ,M (i)),

where H
(0)
j = Vj .

In the specification of Luffa, the input length of the sub-permutation Qj is
fixed to nb = 256 bits, and the number of the sub-permutations w is 3, 4 and 5
for the hash length 256, 384 and 512 bits respectively.

The message injection functions can be represented by the matrix over a ring
GF(28)32. The map from an 8 words value (a0, . . . , a7) to an element of the ring
is defined by (

∑
0≤k<8 ak,lx

k)0≤l<32. Note that the least significant word a7 is
the coefficient of the heading term x7 in the polynomial expression.

PMI M ( i )
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Fig. 2. The round function (w = 3)

Finalization The finalization consists of iterations of an output function OF
and a round function with a fixed message 0x00...0. If the number of (padded)
message blocks is more than one, a blank round with a fixed message block
0x00...0 is applied at the beginning of the finalization.

The output function OF XORs all block values and outputs the resultant
256-bit value. Let the output at the i-th iteration be Zi, then the output function
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is defined by

Zi =
w−1⊕

j=0

H
(N+i′)
j ,

where i′ = i if N = 1 and i′ = i + 1 otherwise.

2.2 Non-Linear Permutation

The Luffa hash function uses a non-linear permutation Qj whose input and
output length is 256 bits. The permutation Qj is defined as a composition of an
input tweak and iterations of a step function Step. The number of iterations of
a step function is 8 and the tweak is applied only once per a permutation.

At the beginning of the step function process, the 256 bits data stored in 8
32-bit registers is denoted by a

(r)
k for 0 ≤ k < 8. The data before applying the

permutation Qj is denoted by bk and the data after the tweak is denoted by a
(0)
k .

The step function consists of the following three functions; SubCrumb, MixWord,
AddConstant. The pseudo code for Qj is given by

Permute(a[8], j){ //Permutation Q_j
Tweak(a);
for (r = 0; r < 8; r++){

SubCrumb(a[0],a[1],[2],a[3]);
SubCrumb(a[4],a[5],[6],a[7]);
for (k = 0; k < 4; k++)
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Fig. 4. The step function

MixWord(a[k],a[k+4]);
AddConstant(a, j, r);

}
}

Each function is described below in turn and the tweaks are described in Sec-
tion 2.2. We omit the description of AddConstant because it is not needed in
this paper.

SubCrumb SubCrumb substitutes l-th bits of a0, a1, a2, a3 (or a4, a5, a6, a7) by an
Sbox S defined by

S[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}.

Let the output of SubCrumb be x0, x1, x2, x3 (or x4, x5, x6, x7). Then the substi-
tution by SubCrumb is given by

x3,l||x2,l||x1,l||x0,l = S[a3,l||a2,l||a1,l||a0,l], 0 ≤ l < 32,

x7,l||x6,l||x5,l||x4,l = S[a7,l||a6,l||a5,l||a4,l], 0 ≤ l < 32.
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MixWord MixWord is a linear permutation of two words. Let the output words be
yk and yk+4 where 0 ≤ k < 4. Then MixWord is given by the following equations:

yk+4 = xk+4 ⊕ xk,

yk = xk ≪ σ1,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ2,

yk+4 = yk+4 ⊕ yk,

yk = yk ≪ σ3,

yk = yk ⊕ yk+4,

yk+4 = yk+4 ≪ σ4.

The parameters σi are given by σ1 = 2, σ2 = 14, σ3 = 10, σ4 = 1.

Tweaks For each permutation Qj , the least significant four words of a 256-bit
input are rotated by j bits to the left in 32-bit registers. Let the j-th block, k-th
word input be bj,k and the tweaked word (namely the input to the first step
function) be a

(0)
j,k, then the tweak is defined by

a
(0)
j,k,l = bj,k,l, 0 ≤ k < 4,

a
(0)
j,k,l = bj,k,(l−j mod 32), 4 ≤ k < 8.

3 Higher Order Differential Attack

3.1 Distinguishing Attack Based on A Hash Function

A hash function does not have an additional input other than a message so that it
is not a pseudorandom function. The random distribution of the output is not a
necessary condition for a collision resistance. However, non-random distribution
of the output of the hash function is considered an undesirable property for
applications such as a deterministic random bit generator.

We use the terminology distinguisher for functions which detect a kind of non-
randomness according to [1]. Note that a distinguisher is usually a terminology
for a function which distinguishes two random variables.

3.2 Higher Order Difference

Let Y = E(X; K) be a function where X ∈ GF(2)n, Y ∈ GF(2)m and K ∈
GF(2)s. Let {A1, . . . , Ai} be a set of linearly independent vectors in GF(2)n

and V (i) be the sub-space spanned by these vectors. The i-th order difference is
defined by

∆V (i)E(X;K) =
∑

A∈V (i)

E(X + A; K).
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In the following, ∆(i) denotes ∆V (i) if the choice of V (i) does not matter in the
discussion. The basic fact of the higher order difference is that ∆(D+1)E(X; K) =
0 if the algebraic degree of E with respect to X is D. Therefore the higher
order difference is used as the tool to evaluate the algebraic degree of the target
function.

4 Algebraic Degree of Non-linear Permutation Qj

It is pointed out in [5] that the Boolean polynomial expressions of the Sbox of
Luffa are sparse, especially at the highest degree. The first step of the theoretical
estimate is to observe how this property affects the growth of the algebraic degree
throughout the iterations of the step functions. In the following, the r iterations
of the step function is denoted by Q

(r)
j . The original permutation of Luffa is

given by Qj = Q
(8)
j .

4.1 Boolean Expressions of Sbox

Let the inputs and outputs of the Sbox be x0, x1, x2, x3 and y0, y1, y2, y3. Then
the polynomial expressions of the relations between the input and output bits
are given by

y0 = 1 +x2 +x0x1 +x1x3 + x2x3 + x0x1x3

y1 = 1 +x0 +x2 +x0x1 +x0x2 +x3 +x1x3 + x2x3 + x0x1x3

y2 = 1 +x1 +x1x3 + x2x3 + x0x1x3

y3 = x0 +x1 +x2 +x0x1 +x1x2 +x0x1x2 +x1x3

4.2 Basic Facts

MixWord() is the function which sums up yk,l over the subscript l. In other words,
zk,l = MixWord(yk, yk+4)k,l =

∑
l∈Ω yk,l. Therefore it preserves the algebraic

properties of the polynomial expressions of yk. AddConstant() is the function
which adds the step constants to the state, so that it also preserves the algebraic
property of the polynomial expressions of yk. These two facts make it easier to
estimate the increase of algebraic degree of Q

(r)
j . Namely, we formally have to

consider the iterations of the Sbox instead of the iterations of whole step function
in the estimate of the algebraic degree.

It is clear from the simple observation of the Boolean expressions of the
Sbox, the terms whose degrees are more than one and which has monomial x3

in y0, y1, y2 are equal. Let η · x3 be the common part in y0, y1, y2 and ξk be the
remainders. Then the multiplication of yk and y′k for k 6= k′ is given by

yk · yk′ = (ξk + ηx3)(ξk′ + ηx3) = ξkξk′ + (ξk + ξk′ + 1)ηx3. (1)

Therefore, we get deg yk ·yk′ < deg yk +deg yk′ so that the algebraic degree does
not increase ideally (namely times 3) at SubCrumb().
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4.3 Recurrence Relations about Algebraic Degree

In the following, we identify the iterations of the Sboxes as the iterations of the
step functions. Let us denote the inputs to the r-th Sbox by (x(r−1)

0 , x
(r−1)
1 , x

(r−1)
2 , x

(r−1)
3 )

and denote η, ξ by

η(r) = η(x(r)
0 , x

(r)
1 , x

(r)
2 ) = x

(r)
1 + x

(r)
2 + x

(r)
0 x

(r)
1 ,

ξ
(r)
0 = ξ0(x

(r)
0 , x

(r)
1 , x

(r)
2 ) = 1 + x

(r)
2 + x

(r)
0 x

(r)
1 ,

ξ
(r)
1 = ξ1(x

(r)
0 , x

(r)
1 , x

(r)
2 ) = 1 + x

(r)
0 + x

(r)
2 + x

(r)
0 x

(r)
1 + x

(r)
0 x

(r)
2 ,

ξ
(r)
2 = ξ2(x

(r)
0 , x

(r)
1 , x

(r)
2 ) = 1 + x

(r)
1 ,

ξ
(r)
3 = ξ3(x

(r)
0 , x

(r)
1 , x

(r)
2 ) = x

(r)
0 + x

(r)
1 + x

(r)
2 + x

(r)
0 x

(r)
1 + x

(r)
1 x

(r)
2 + x

(r)
0 x

(r)
1 x

(r)
2 .

In other words, η · x3 denotes the common terms of the polynomial expressions
and ξk denotes the different terms which do not have the variable x3. In addition,
we denote the terms of degree d in η(r), ξ

(r)
k by η

(r)
d , ξ

(r)
k,d respectively.

Now we are going to estimate the algebraic degree of x
(r)
k , η(r), ξ(r) by the

recurrence relations. We approximate the relations in order to simplify their
expressions and the relation 1 is applied once for each variable in the estimation.
Let us denote δ(r) = deg η(r−1) + deg x

(r−1)
3 , ε

(r)
k,k′ = deg ξ

(r)
k + deg ξ

(r)
k′ . Then we

have the following relations:

deg η(r) ∼ max(ε(r−1)
0,1 ,deg max(ξ(r−1)

0 , ξ
(r−1)
1 ) + δ(r−1)), (2)

deg ξ
(r)
0 ∼ deg η(r), (3)

deg ξ
(r)
1 ∼ max(deg ξ

(r−1)
1 ,deg ξ

(r−1)
2 ) + max(deg ξ

(r−1)
0 , δ(r−1)), (4)

deg ξ
(r)
2 ∼ max(deg ξ

(r−1)
1 , δ(r−1)), (5)

deg ξ3,2 = max(deg ξ
(r−1)
0 ,deg ξ

(r−1)
2 ) + max(deg ξ

(r−1)
1 , δ(r−1)), (6)

deg ξ3,3 ∼ max( deg ξ
(r−1)
0 + deg ξ

(r−1)
1 + deg ξ

(r−1)
2 ,

max(ε(r−1)
0,1 , ε

(r−1)
0,2 , ε

(r−1)
1,2 ) + δ(r−1)), (7)

deg x
(r)
0 ∼ max(ε(r−2)

0,1 , δ(r−1)), (8)

deg x
(r)
1 ∼ max(ε(r−2)

0,1 , ε
(r−2)
0,2 , δ(r−1)), (9)

deg x
(r)
2 ∼ δ(r−1), (10)

deg x
(r)
3 ∼ max( deg ξ

(r−2)
0 + deg ξ

(r−2)
1 + deg ξ

(r−2)
2 ,

max(ε(r−2)
0,1 , ε

(r−2)
0,2 , ε

(r−2)
1,2 ,deg x

(r−2)
3 ) + δ(r−2),

2 deg ξ
(r−2)
1 + deg ξ

(r−2)
3 ). (11)

The detailed calculations to get the relations is given in Appendix A.

4.4 Theoretical Estimate of Algebraic Degrees

Table 1 shows the pace of increase of algebraic degrees of variables xk, ξk, η
from the recurrent relations 2 to 11 and the initial values at r = 0, 1. The
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input/output length of the non-linear permutation Q
(r)
j is 256 bits so that the

algebraic degrees are at most 256. However we put the estimated degrees as it
is, even if it is more than 256, in order to clarify the pace of increase.

Table 1. Pace of increase of algebraic degrees

r x
(r)
0 x

(r)
1 x

(r)
2 x

(r)
3 ξ

(r)
0 ξ

(r)
1 ξ

(r)
2 ξ

(r)
3 η(r)

0 1 1 1 1 2 2 1 2 2

1 3 3 3 3 5 5 3 7 5

2 8 8 8 7 13 13 8 18 13

3 20 20 20 18 33 33 20 46 33

4 51 51 51 46 84 84 51 117 84

5 130 130 130 117 214 214 130 298 214

6 331 331 331 298 545 545 331 759 545

7 843 843 843 759 1,388 1,388 843 1,933 1,388

8 2,147 2,147 2,147 1,933 3,535 3,535 2,147 4,923 3,535

5 Higher Order Differential Attack on Luffa

If the Sbox is an ideal one, the algebraic degree of the permutation Q
(r)
j should

be about 3r. However, as shown in the previous section, the degree increases
slower than the ideal case. Especially, the high order part η(r−1) · x(r−1)

3 of the
variables x

(r)
k are common, so that it can be cancelled by the addition x

(r)
k +x

(r)
k′ .

5.1 Theoretical Estimate

We propose to use x
(r)
k +x

(r)
k′ as the distinguisher in the higher order differential

attack in order to eliminate the common part η ·x3. In this attack, the important
variable is not x

(r)
k , but ξ

(r−1)
0 , ξ

(r−1)
1 , ξ

(r−1)
2 .

In addition, there are two techniques to skip the first Sboxes. The first one
is to choose a Λ-set in which the inputs to the Sboxes are constant or active.
For example, if the Λ-set takes all values in xk,l for 0 ≤ k < 8 and 0 ≤ l < t, we
can ignore the effect of SubCrumb() at the first step. The second technique is to
move only a bit per an Sbox. This technique is applicable only if the algebraic
degree of the target function is small.

These observations indicate that the number of steps r to be attacked can
be estimated by the maximum degree of ξ

(r−2)
k . In Table 1, maxk deg ξ

(5)
k is

214 so that Q
(6)
j is distinguishable from a random permutation by calculating

214-th order difference. This distinguisher for 6 steps does not depend on the
choice of the Λ-set. In addition, Q

(7)
j is distinguishable from a random function

by choosing the Λ-set such that all possible values of xk,l for 0 ≤ k < 8 and
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0 ≤ l < 27 appears once. This attack requires 2216 messages. On the other hand,
Q

(8)
j is not expected to be distinguishable because max deg ξ

(6)
k = 545 > 256.

5.2 Experimental Inspection

Here we check the theoretical estimates by experiments. As mentioned, there are
two techniques to ignore the effect of the first step and we applied the second
one, namely “a bit per an Sbox” manner. If we apply the first technique, the
active Sboxes are relatively sparse, so that it is possible to skip the SubCrumb() in
the second step by choosing a good alignment of the active Sboxes. However, our
purpose is not to optimize the attack, but to check if the theoretical estimates
summarized in Table 1 is reliable so that this kind of “unexpected” skip is not
desired. Therefore, we applied t-th order difference by moving the most least t

bits of the variable x
(0)
0 . And we calculated each higher order difference for 100

times by generating the initial states randomly.
Table 2 summarizes the experimental results. The numerical values in the

table shows the ratio such that x0 = x1 = x2 and x4 = x5 = x6 hold. Besides,
the values in the parentheses shows the ratio such that one of the equations
x0 = x1, x0 = x2, x1 = x2, x4 = x5, x4 = x6, x5 = x6 holds. In other words,
the values in the parentheses mean the ratio of the distinguishing attack being
successful.

Table 3 shows the comparison between the theoretical estimates taken from
Table 1.

We calculated the algebraic degree of Q
(r)
j from the experimental results by

the order. Let t be the lowest number such that the t-th order differential of x
(r)
k

is equal to zero with probability one. The degree of Q
(r)
j is formally estimated at

t−1. This may cause the contradictions in Table 3 such that the degree of ξ
(r−2)
k

is larger than that of x
(r−1)
k for r = 1, 2. In other cases, the Table 3 indicates that

the theoretical estimates in Table 1 are very close to the experimental results in
Table 2.

We append a note that the t − 1-th order differentials are rarely constants,
so that it might be better to estimate the degree of Q

(r)
j by t− 1.

5.3 Higher Order Differential Attack on The Hash Function

The higher order differential attack on a hash function does not violate the cen-
tral three requirements for a hash function, namely collision resistance, second
preimage resistance, preimage resistance. On the other hand, the distinguish-
ing attacks are useful to check whether or not the target function has pseudo-
randomness which is also required to a hash function. Here we consider the
higher order differential attack on reduced step Luffa hash function.

The first point of Luffa is that there is no blank round if the message length
is less than 256 bits. In this case, the message is mixed by the message injection
function MI, permuted by non-linear permutation Qj , then the XORed 256-
bit value is output. Therefore, it might be possible to construct a distinguisher
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Table 2. Experimental results

Number of steps

Order 1 2 3 4 5

1 .28 (1.00) .00 (.39) .00 (.00) .00 (.00) .00 (.00)

2 1.00 (1.00) 1.00 (1.00) .00 (.12) .00 (.00) .00 (.00)

3 1.00 (1.00) 1.00 (1.00) .25 (.56) .00 (.00) .00 (.00)

4 1.00 (1.00) 1.00 (1.00) .60 (.93) .00 (.00) .00 (.00)

5 1.00 (1.00) 1.00 (1.00) .90 (1.00) .00 (.00) .00 (.00)

6 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .01 (.01) .00 (.00)

7 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .01 (.04) .00 (.00)

8 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .07 (.16) .00 (.00)

9 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .32 (.45) .00 (.00)

10 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .61 (.83) .00 (.00)

11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .90 (.97) .00 (.00)

12 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .97 (1.00) .00 (.00)

13 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

14 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

16 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

17 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.01)

18 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

19 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

20 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

21 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)

22 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .02 (.03)

23 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .03 (.04)

24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .12 (.13)

25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .20 (.21)

26 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .37 (.38)

27 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .45 (.46)

28 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .69 (.71)

29 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .81 (.83)

30 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .83 (.85)

31 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .91 (.93)

32 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .99 (.99)

Table 3. The summary of the algebraic degrees

Number of steps 1 2 3 4 5 6 7 8

Algebraic degree Theoretical estimate 1 3 8 20 51 130 – –

(max0≤k≤2 x
(r−1)
k ) Experimental result 1 1 7 18 – – – –

Distinguisher’s degree Theoretical estimate – 2 5 13 33 84 214 –

(max0≤k≤2 ξ
(r−2)
k ) Experimental result 2 2 6 13 – – – –
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based on a higher order difference if the algebraic degree of Qj is smaller than
256 for all j. Because Qjs are only the non-linear component in Luffa, and
they are different each other only at their tweaks and their step constants, the
interference for the attack is the influences by MI and the tweaks. In fact, it is
not difficult to ignore these two interferences.

Firstly, the message injection function MI consists of the constant multi-
plication over GF(28)32. This map stabilizes subspaces of GF(28)32 given by a
natural injection of GF(28)t where t ≤ 32. Therefore the influence of the mes-
sage injection function MI is ignorable by choosing such a subspace as a Λ-set.
Secondly, the tweaks rotate the lower 4 words a4, a5, a6, a7 by j bits to the left
in a word. Obviously, the tweaks preserve the properties active and constant.
Therefore the Λ-set which cancels the influence of the message injection function
also cancels that of tweaks.

These two facts indicate that the distinguisher for Q
(7)
j is also applicable to

the reduced step hash function as it is.

5.4 Probabilistic Distinguisher

Table 2 shows that the behavior of the distinguisher is probabilistic if the order
is less than the expected algebraic degree. Here we discuss what causes the
probabilistic behavior and whether or not this is useful to reduce the complexity
of the attack.

One possible reason is that the terms of high degree of Q
(r)
j are sparsely dis-

tributed. In the experiments, most of the input bits are fixed so that the variables
of the polynomial expressions are replaced by randomly chosen constants. This
does not matter if the there are lot of terms of high degree because some terms
consisting of variables still exist. However, all terms of high degree could include
the variables which are replaced by constants, or worse, they might vanishes if
the constant is zero.

If the target function is sufficiently random, the probability to eventually find
a local collision xk = xk′ for any k, k′ is given by 6 · 2−(32+1)/2 ∼ 2−14 and it
is small3. Therefore xk + xk′ can be used as a distinguisher even if the event is
probabilistic. For example, Table 2 shows that 3 of 100 trials successfully found
the partial collision with the 22-th order difference for 5 steps. In this case, the
computational complexity is 222×100 ∼ 228.6 and it is significantly smaller than
233, which is the complexity of the attack with the deterministic distinguisher.

So far, we have no idea to estimate the frequency of this event. And it is not
clarified yet how much the computational complexity is reduced in the case of
7 steps. In addition, the expected degree of the distinguisher for 8 steps is much
larger than 256 so that the distinguisher is expected to include many high order
terms. We expect that it is difficult to apply the probabilistic distinguisher for
8 steps.
3 In [8] Lai pointed out that Prob(∆Vif(a) = b) is either 0 or at least 2i−n where f :

GF(2n) → GF(2n). But this is not our case because the domain of our distinguisher
is larger than the range
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6 Conclusion

In this paper, a higher order differential attack on the hash function Luffa is
discussed. We confirmed that the algebraic degree of the underlying non-linear
permutation Qj grows slower than an ideal case both by the theoretical estimate
and the experiments. According to our estimate, we can construct a distinguisher
for reduced step Luffa up to 7 out of 8 steps by using a block message. The attack
for 7 steps requires 2216 messages. This attack does not pose any threat to the
security of the full-step of Luffa, and this doesn’t contradict any security claim
of Luffa.
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A Recurrence Relations

The symbol “∼” means the simplification of the expression which (is considered)
preserves the algebraic degree.

A.1 Recurrence Relation of η(r)

η(r) = x
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1 + x

(r)
2 + x

(r)
0 x

(r)
1

∼ x
(r)
0 x

(r)
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0 ξ
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A.2 Recurrence Relation of ξ
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A.3 Recurrence Relation of x
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