Hash Function *Luffa*

Specification Ver. 2.0.1

Christophe De Cannière
ESAT-COSIC, Katholieke Universiteit Leuven

Hisayoshi Sato, Dai Watanabe
Systems Development Laboratory, Hitachi, Ltd.

2 October 2009
Contents

1 Introduction .. 4

2 Preliminary .. 5
 2.1 Notations .. 5
 2.1.1 Parameters .. 5
 2.1.2 Symbols ... 6
 2.2 Data Structure .. 6
 2.3 Iterations .. 7

3 Chaining .. 8
 3.1 Message Padding ... 8
 3.2 Round Function .. 8
 3.2.1 Message Injection Function for \(w = 3 \) 10
 3.2.2 Message Injection Function for \(w = 4 \) 11
 3.2.3 Message Injection Function for \(w = 5 \) 11
 3.3 Finalization ... 11

4 Non-Linear Permutation 12
 4.1 Outline .. 12
 4.2 SubCrumb .. 14
 4.3 MixWord .. 14
 4.4 AddConstant .. 15
 4.5 Tweaks ... 17

5 Optional Usage .. 17

A Starting Variables ... 19

B Constants ... 19
 B–1 Initial Values ... 19
 B–2 \(w = 3 \) .. 20
 B–3 \(w = 4 \) .. 21
 B–4 \(w = 5 \) .. 21

C Test Vectors .. 22
 C–1 Luffa-224 .. 22
 C–2 Luffa-256 .. 22
 C–3 Luffa-384 .. 22
 C–4 Luffa-512 .. 23

D Implementations of SubCrumb 23
 D–1 For Intel Core2 Processors 23
Implementations of Message Injection Function M_I

<table>
<thead>
<tr>
<th>E</th>
<th>Implementations of Message Injection Function M_I</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>$w = 3$</td>
<td>24</td>
</tr>
<tr>
<td>E-2</td>
<td>$w = 4$</td>
<td>25</td>
</tr>
<tr>
<td>E-3</td>
<td>$w = 5$</td>
<td>26</td>
</tr>
</tbody>
</table>
1 Introduction

This document specifies a family of cryptographic hash function algorithms \textit{Luffa}. The input and the output lengths of the algorithms are summarized in Table 1.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Message length (bits)</th>
<th>Hash length (bits)</th>
<th>Security (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Luffa}-224</td>
<td>$< 2^{64}$</td>
<td>224</td>
<td>112</td>
</tr>
<tr>
<td>\textit{Luffa}-256</td>
<td>$< 2^{64}$</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>\textit{Luffa}-384</td>
<td>$< 2^{128}$</td>
<td>384</td>
<td>192</td>
</tr>
<tr>
<td>\textit{Luffa}-512</td>
<td>$< 2^{128}$</td>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>

Firstly, the notations used in the document are defined in Section 2. The hash function \textit{Luffa} consists of the chaining and the mixing function used in each round of the chaining. The chaining and the underlying mixing function are described in Section 3 and 4 respectively. An optional usage of the hash function \textit{Luffa} is given in Section 5. In addition, some useful information to implement the hash function such as the test vectors is given in Appendices.
2 Preliminary

In this section, the basic terms and notations to describe the specification of Luffa are defined.

2.1 Notations

2.1.1 Parameters

- \(L \): The message length in bits
- \(L' \): The padded message length in bits
- \(N \): The number of message block (of 256 bits)
- \(w \): The number of sub-permutations (described in \(\text{3.2} \))
- \(n_h \): The hash length
- \(n_b \): The block length (Fixed to 256 bits in this document)
- \(V_j \): The starting variables
- \(H_j^{(i)} \): The variable which specifies the intermediate values of the state at \(i \)-th round, \(j \)-th block
- \(M_j^{(i)} \): The message block at the \(i \)-th round
- \(i \): A subscript which specifies the round
- \(j \): A subscript which specifies the sub-permutation
- \(k \): A subscript which specifies the word
- \(l \): A subscript which specifies the bit position in a word
- \(r \): A subscript which specifies the step
- \(MI \): The message injection function
- \(P \): The permutation of \(n_h w \) bits
- \(Q_j \): The permutation dealing with \(j \)-th block of \(n_b \) bits
- \(OF \): The output function
- \(b_{j,k,l}^{(i,r)} \): The variable which specifies the \(k \)-th word, \(l \)-th bit of the input of the \(j \)-th block permutation \(Q_j \)
- \(a_{j,k,l}^{(i,r)} \): The variable which specifies the \(k \)-th word, \(l \)-th bit of the input of \(i \)-th round, \(j \)-th block, \(r \)-th step function
- \(x_{j,k,l}^{(i,r)} \): The variable which specifies the \(k \)-th word, \(l \)-th bit of the output of \text{SubCrumb} at \(i \)-th round, \(j \)-th block, \(r \)-th step
- \(y_{j,k,l}^{(i,r)} \): The variable which specifies the \(k \)-th word, \(l \)-th bit of the output of \text{MixWord} at \(i \)-th round, \(j \)-th block, \(r \)-th step
Luffa Specification NIST SHA-3 Proposal (Round 2)

$c_{j,k,l}^{(r)}$: The variable which specifies the k-th word, l-th bit of the constant used in j-th block, r-th step function

2.1.2 Symbols

In this paper, the following symbols are used to identify the operations.

⊕ Bitwise XOR operation
∧ Bitwise AND operation
∥ Concatenation of two bit strings
≫ n Rotation n bits to the right (A 32-bit register is expected)
≪ n Rotation n bits to the left (A 32-bit register is expected)
0x Hexadecimal prefix

On the other hand, some pseudo codes are given in the paper. They are written in C language manner and 32-bit registers are expected. In order to remove any ambiguity, we also list up the operation used in the pseudo codes as follows:

^ XOR operation
| OR operation
>> n Shift n bits to the right
<< n Shift n bits to the left

2.2 Data Structure

The basic data size is a 32-bit and it is called a word. A 4 bytes data is stored to a word in the big endian manner. In other words, the given 4 bytes data x_0, \ldots, x_3 is stored into a word a as follows:

$$a = [\text{MSB}] x_0 || x_1 || x_2 || x_3 [\text{LSB}],$$

where $[\text{MSB}]$ (and $[\text{LSB}]$) means the most (and least) significant byte of the word.

In the specification of Luffa, a 256-bit data block is stored in 8 32-bit registers. In order to remove any ambiguity, we also define the ordering of a
32 bytes data in 8 words. A 32 bytes data $X = x_0, x_1, \ldots, x_{31}$ is stored to 8 32-bit registers a_0, \ldots, a_7 in the following manner:

$$
X = [\text{MSW}] \ a_0 || a_1 || \cdots || a_7 \ [\text{LSW}], \quad a_k = [\text{MSB}] \ x_{4k} || x_{4k+1} || x_{4k+2} || x_{4k+3} \ [\text{LSB}], \quad 0 \leq k < 8,
$$

where [MSW] (and [LSW]) means the most (and least) significant word.

A bit position in a word sequence is denoted by subscripts. Let a_0, \ldots, a_n be a word sequence. Then the l-th bit (from the least significant bit) of the k-th word is denoted by $a_{k,l}$, where the least significant bit is the 0-th bit.

In other words, the bit information of a_k is given by

$$
a_k = [\text{msb}] \ a_{k,31} || a_{k,30} || \cdots || a_{k,1} || a_{k,0} \ [\text{lsb}],
$$

where [msb] and [lsb] mean the most and the least significant bit of the word respectively.

2.3 Iterations

The message processing of Luffa is a chaining of a mixing function of a fixed length input and a fixed length output. We call the mixing function as a **round function**. The outline of the mixing function is defined in Section 3. A term round means the procedure to apply the round function.

The building block of the round function is a family of non-linear permutations defined in Section 4. It consists of iterations of a sub-function called a **step function**. A term step means the procedure to apply the step function.

In order to clarify the round, the super-script with a parenthesis is used. I.e., the input to the i-th round function is denoted by $X^{(i-1)}$. The corresponding output of the round function is denoted by $X^{(i)} = \text{Round}(X^{(i-1)})$. In the same manner, the input to the r-th step function of the i-th round is denoted by $X^{(i-1,r-1)}$. The corresponding output of the step function is denoted by $X^{(i-1,r)} = \text{Step}(X^{(i-1,r-1)})$. The round can be abbreviated if it is not necessary in the context.

The intermediate state of Luffa consists of $8w$ words, where $w \geq 3$ is a positive integer (See Table 2 for the choice of w). An 8 word data is called a **block**. The l-th bit of the input of i-th round, r-th step, j-th block, k-th word is denoted by $a_{j,k,l}^{(i-1,r-1)}$.

Copyright ©2008-2009 Hitachi, Ltd. All rights reserved.
Figure 1: A generic construction of a hash function based on a permutation

3 Chaining

The chaining of Luffa is a variant of a sponge function [1][2]. Figure 1 shows the basic structure of the chaining. The chaining of a hash function consists of the intermediate mixing C' (called a round function) and the finalization C''. In addition to above two functions, the message padding is defined in this section. The starting variables $V_0, V_1, \ldots, V_{w-1}$ used in the chaining are given in Appendix A.

3.1 Message Padding

Suppose that the length of the message M is l bits. First of all, the bit string $100\ldots0$ is appended to the end of the message. The number of zeros k should be the smallest non-negative integer which satisfies the equation $l + 1 + k \equiv 0 \bmod 256$. Therefore the length of the padded message should be a multiple of 256 bits.

3.2 Round Function

The round function is a composition of a message injection function MI and a permutation P of $w \cdot n_b$ bits input. The permutation is divided into plural sub-permutation Q_j of n_b bits input (See Figure 2). Let the input of the i-th
round be \((H_0^{(i-1)}, \ldots, H_{w-1}^{(i-1)})\), then the output of the \(i\)-th round is given by

\[
H_j^{(i)} = Q_j(X_j), \quad 0 \leq j < w,
\]

\[
X_0 || \cdots || X_{w-1} = MI(H_0^{(i-1)}, \ldots, H_{w-1}^{(i-1)}, M^{(i)}),
\]

where \(H_j^{(0)} = V_j\).

In the specification of \(Luffa\), the input length of the sub-permutation \(Q_j\) is fixed to \(n_b = 256\) bits, and the number of the sub-permutations \(w\) is defined in Table 2.

\[
\begin{array}{|c|c|}
\hline
\text{Hash length } n_b & \text{Number of permutations } w \\
\hline
224 & 3 \\
256 & 3 \\
384 & 4 \\
512 & 5 \\
\hline
\end{array}
\]

The message injection functions can be represented by the matrix over a ring \(GF(2^8)^{32}\). The definition polynomial of the field is given by \(\phi(x) = x^8 + x^4 + x^3 + x + 1\). The map from an 8 word value \((a_0, \ldots, a_7)\) to an element of the ring is defined by \((\sum_{0 \leq k < 8} a_k x^k)\). Note that the least significant word \(a_7\) is the coefficient of the heading term \(x^7\) in the polynomial representation. In order to remove any ambiguity, we also define the multiplication by \(0x02\) (equivalent to \(x\) in the polynomial representation) as the following pseudo code:

```c
int tmp = a[7];
a[7] = a[6];
a[6] = a[5];
a[5] = a[4];
a[2] = a[1];
a[1] = a[0] ^ tmp;
a[0] = tmp;
```
In the following, the matrices representing the message injection functions MI for $w = 3, 4, 5$ are defined. The way of implementing MI only with XORings and multiplications by $0x02$ is shown in Appendix E.

Figure 2: The round function (The message injection function is for $w = 3$)

3.2.1 Message Injection Function for $w = 3$

The matrix representation of the message injection function MI for $w = 3$ is defined by

$$
\begin{pmatrix}
X_0 \\
X_1 \\
X_2
\end{pmatrix} = \begin{pmatrix}
3 & 2 & 2 & 1 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 4
\end{pmatrix} \begin{pmatrix}
H_0^{(i-1)} \\
H_1^{(i-1)} \\
H_2^{(i-1)} \\
M^{(i)}
\end{pmatrix},
$$

where numerics $0x01, 0x02, 0x03, 0x04$ correspond to polynomials $1, x, x+1, x^2$ respectively. The prefix $0x$ is omitted in order to reduce the redundancy.
3.2.2 Message Injection Function for $w = 4$

The matrix representation of the message injection function MI for $w = 4$ is defined by

$$
\begin{pmatrix}
X_0 \\
X_1 \\
X_2 \\
X_3
\end{pmatrix} =
\begin{pmatrix}
4 & 6 & 6 & 7 & 1 \\
7 & 4 & 6 & 6 & 2 \\
6 & 7 & 4 & 6 & 4 \\
6 & 6 & 7 & 4 & 8
\end{pmatrix}
\begin{pmatrix}
H^{(i-1)}_0 \\
H^{(i-1)}_1 \\
H^{(i-1)}_2 \\
H^{(i-1)}_3 \\
M^{(i)}
\end{pmatrix}.
$$

3.2.3 Message Injection Function for $w = 5$

The matrix representation of the message injection function MI for $w = 5$ is defined by

$$
\begin{pmatrix}
X_0 \\
X_1 \\
X_2 \\
X_3 \\
X_4
\end{pmatrix} =
\begin{pmatrix}
0F & 08 & 0A & 0A & 08 & 01 \\
08 & 0F & 08 & 0A & 0A & 02 \\
0A & 08 & 0F & 08 & 0A & 04 \\
0A & 0A & 08 & 0F & 08 & 08 \\
08 & 0A & 0A & 08 & 0F & 10
\end{pmatrix}
\begin{pmatrix}
H^{(i-1)}_0 \\
H^{(i-1)}_1 \\
H^{(i-1)}_2 \\
H^{(i-1)}_3 \\
H^{(i-1)}_4 \\
M^{(i)}
\end{pmatrix}.
$$

3.3 Finalization

The finalization consists of iterations of an output function OF and a round function with a fixed message $0x00\ldots0$. A blank round with a fixed message block $0x00\ldots0$ is applied at the beginning of the finalization.

The output function OF XORs all block values and outputs the resultant 256-bit value. Let the output at the i-th iteration be Z_i, then the output function is defined by

$$
Z_i = \bigoplus_{j=0}^{w-1} H^{(N+i+1)}_j.
$$

The detailed output words are defined in Table 3. In fact, \textit{Luffa}-224 just truncates the last one word of the output of \textit{Luffa}-256.

Copyright ©2008-2009 Hitachi, Ltd. All rights reserved.
4 Non-Linear Permutation

In this section, the detailed specification of the permutation Q_j is given. Some subscripts such as i, j, r will be omitted in this section if it is clear in the context. For example, $a_{j,k,r}^{(i,r)}$ is denoted by $a_{k,l}$.

4.1 Outline

The $Luffa$ hash function uses a non-linear permutation Q_j whose input and output length is 256 bits. The permutation Q_j is defined as a composition of an input tweak and iterations of a step function Step. The number of iterations of a step function is 8 and the tweak is applied only once per a
permutation.

At the beginning of the step function process, the 256 bits data stored in 8 32-bit registers is denoted by $a_k^{(r)}$ for $0 \leq k < 8$. The data before applying the permutation Q_j is denoted by b_k and the data after the tweak is denoted by $a_k^{(0)}$. The step function consists of the following three functions; SubCrumb, MixWord, AddConstant. The pseudo code for Q_j is given by

```plaintext
Permute(a[8], j){ //Permutation Q_j
    Tweak(a);
    for (r = 0; r < 8; r++){
        SubCrumb(a[0],a[1],a[2],a[3]);
        SubCrumb(a[5],a[6],a[7],a[4]);
        for (k = 0; k < 4; k++)
            MixWord(a[k],a[k+4]);
        AddConstant(a, j, r);
    }
}
```

Each function is described below in turn and the tweaks are described in Section 4.5.
4.2 SubCrumb

SubCrumb substitutes \(l \)-th bits of \(a_0, a_1, a_2, a_3 \) (or \(a_4, a_5, a_6, a_7 \)) by an Sbox \(S \) defined by

\[
S[16] = \{13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4\}.
\]

Let the output of SubCrumb be \(x_0, x_1, x_2, x_3 \) (or \(x_4, x_5, x_6, x_7 \)). Then the substitution by SubCrumb is given by

\[
x_{3,l} | x_{2,l} | x_{1,l} | x_{0,l} = S[a_{3,l} | a_{2,l} | a_{1,l} | a_{0,l}], \quad 0 \leq l < 32,
\]

\[
x_{4,l} | x_{7,l} | x_{6,l} | x_{5,l} = S[a_{4,l} | a_{7,l} | a_{6,l} | a_{5,l}], \quad 0 \leq l < 32.
\]

Note that the latter four words \(a_4, a_5, a_6, a_7 \) are input to the Sboxes in different order from the first four words.

![Figure 5: The input and output bits of the Sbox](image)

Appendix D shows the optimal instruction set for Intel Core2 Duo processors.

4.3 MixWord

MixWord is a linear permutation of two words. Figure E shows the outline of MixWord. Let the output words be \(y_k \) and \(y_{k+4} \) where \(0 \leq k < 4 \). Then MixWord is given by the following equations:

\[
y_{k+4} = x_{k+4} \oplus x_k,
\]

Footnote 1: Intel is a registered trademark and Core is the name of products of Intel Corporation in the U.S. and other countries.

Copyright ©2008-2009 Hitachi, Ltd. All rights reserved.
The parameters σ_i are given by $\sigma_1 = 2, \sigma_2 = 14, \sigma_3 = 10, \sigma_4 = 1$.

4.4 AddConstant

AddConstant is given by

$$a_{j,k}^{(r)} = y_{j,k}^{(r-1)} \oplus c_{j,k}^{(r-1)}, \quad k = 0, 4.$$

Note that the step constant $c_{j,k}^{(r-1)}$ is not equal to $c_{j',k}^{(r-1)}$ if $j \neq j'$. The step constants are generated sequentially from fixed initial values $c_{j,L}^{(0)}$ and $c_{j,R}^{(0)}$.

Copyright ©2008-2009 Hitachi, Ltd. All rights reserved.
The initial values are given in Appendix B. The constant generation function generates two 32-bit constants $c_j^{(r-1)}$ and $c_j^{(r-1)}$ in the following manner:

\[
\begin{align*}
 t_L || t_R &= c_j^{(r-1)} || c_j^{(r-1)}, \\
 t_L || t_R &= f_L(t_L || t_R), \\
 c_j^{(r-1)} &= t_L, \\
 t_L || t_R &= f_L(t_R || t_L), \\
 c_j^{(r-1)} &= t_L, \\
 c_j || c_j &= t_R || t_L,
\end{align*}
\]

where the function f_L is an LFSR of Galois configuration with polynomial g given by

\[
g(x) = x^{64} + x^{63} + x^{62} + x^{58} + x^{55} + x^{54} + x^{52} + x^{50} + x^{49} + x^{46} + x^{43} + x^{40} + x^{38} + x^{37} + x^{35} + x^{34} + x^{30} + x^{28} + x^{26} + x^{24} + x^{23} + x^{22} + x^{18} + x^{17} + x^{12} + x^{11} + x^{10} + x^7 + x^3 + x^2 + 1.
\]

In order to remove any ambiguity, we also define a step of the constant generator as the following pseudo code:

\[
c = tL >> 31;
\]
4.5 Tweaks

For each permutation Q_j, the least significant four words of a 256-bit input are rotated j bits to the left in 32-bit registers. Let the j-th block, k-th word input be $b_{j,k}$ and the tweaked word (namely the input to the first step function) be $a_{j,k}^{(0)}$, then the tweak is defined by

$$a_{j,k,l}^{(0)} = b_{j,k,l}, \quad 0 \leq k < 4,$$

$$a_{j,k,l}^{(0)} = b_{j,k,(l-j \text{ mod } 32)}, \quad 4 \leq k < 8.$$

5 Optional Usage

Despite of the size of the outputs being specified in Section 3.3, the design of $Luffa$ allows to generate bit strings of arbitrary length by iterating the output function OF and the round function $Round$. This feature is useful for some applications. On the other hand, it should be pointed out that a longer output with a small w does not improve the security level.

References

A Starting Variables

The values are taken from Appendix C.1.

\[V_{0,0} = 0x6d251e69, V_{0,1} = 0x44b051e0, V_{0,2} = 0x4eaa6fb4, V_{0,3} = 0xdbf78465, \]
\[V_{0,4} = 0x6e292011, V_{0,5} = 0x90152df4, V_{0,6} = 0xee058139, V_{0,7} = 0xdef610bb, \]

\[V_{1,0} = 0xc3b44b95, V_{1,1} = 0xd9d2f256, V_{1,2} = 0x70ee9a0, V_{1,3} = 0xde099fa3, \]
\[V_{1,4} = 0x5d9b0557, V_{1,5} = 0x8fc944b3, V_{1,6} = 0xcf1ccf0e, V_{1,7} = 0x746cd581, \]

\[V_{2,0} = 0xf7efc89d, V_{2,1} = 0x5dba5781, V_{2,2} = 0x04016ce5, V_{2,3} = 0xad659c05, \]
\[V_{2,4} = 0x0306194f, V_{2,5} = 0x666d1836, V_{2,6} = 0x24aa230a, V_{2,7} = 0x8b264ae7, \]

\[V_{3,0} = 0x858075d5, V_{3,1} = 0x36d79cce, V_{3,2} = 0xe571f7d7, V_{3,3} = 0x204b1f67, \]
\[V_{3,4} = 0x35870c6a, V_{3,5} = 0x57e9e923, V_{3,6} = 0x14bcb808, V_{3,7} = 0x7cde72ce, \]

\[V_{4,0} = 0x6c68e9be, V_{4,1} = 0x5ec41e22, V_{4,2} = 0xc825b7c7, V_{4,3} = 0xaffb4363, \]
\[V_{4,4} = 0xf5df3999, V_{4,5} = 0x0fc688f1, V_{4,6} = 0xb07224cc, V_{4,7} = 0x03e86cea. \]

B Constants

B–1 Initial Values

The initial values of the constant generator for \(Q_j \) are taken from Appendix C.2.

\[c_{0,L}^{(0)} = 0x181cca53, \quad c_{0,R}^{(0)} = 0x380cde06, \]
\[c_{1,L}^{(0)} = 0x5b6f0876, \quad c_{1,R}^{(0)} = 0xf16f8594, \]
\[c_{2,L}^{(0)} = 0x7e106ce9, \quad c_{2,R}^{(0)} = 0x38979cb0, \]
\[c_{3,L}^{(0)} = 0xbb62f364, \quad c_{3,R}^{(0)} = 0x92e93c29, \]
\[c_{4,L}^{(0)} = 0x9a025047, \quad c_{4,R}^{(0)} = 0xcff2a940. \]
Luffa Specification
NIST SHA-3 Proposal (Round 2)

B–2 \(w = 3 \)

\[
\begin{align*}
 c_{0,0}^{(0)} &= 0x303994a6, & c_{0,4}^{(0)} &= 0xe0337818 \\
 c_{0,0}^{(1)} &= 0xc0e65299, & c_{0,4}^{(1)} &= 0x441ba90d \\
 c_{0,0}^{(2)} &= 0x6cc33a12, & c_{0,4}^{(2)} &= 0x7f34d442 \\
 c_{0,0}^{(3)} &= 0xdc56983e, & c_{0,4}^{(3)} &= 0x9389217f \\
 c_{0,0}^{(4)} &= 0xe0337818, & c_{0,4}^{(4)} &= 0xe5a8bce6 \\
 c_{0,0}^{(5)} &= 0x7800423d, & c_{0,4}^{(5)} &= 0x5274baf4 \\
 c_{0,0}^{(6)} &= 0xdc56983e, & c_{0,4}^{(6)} &= 0x26889ba7 \\
 c_{0,0}^{(7)} &= 0x96e1db12, & c_{0,4}^{(7)} &= 0x9a226e9d \\
 c_{1,0}^{(0)} &= 0xb6de10ed, & c_{1,4}^{(0)} &= 0x01685f3d \\
 c_{1,0}^{(1)} &= 0x70f47aae, & c_{1,4}^{(1)} &= 0x05a17cf4 \\
 c_{1,0}^{(2)} &= 0x0707a3d4, & c_{1,4}^{(2)} &= 0xbd09caca \\
 c_{1,0}^{(3)} &= 0x1c1e8f51, & c_{1,4}^{(3)} &= 0xf4272b28 \\
 c_{1,0}^{(4)} &= 0x707a3d45, & c_{1,4}^{(4)} &= 0x144ae5cc \\
 c_{1,0}^{(5)} &= 0xaeb28562, & c_{1,4}^{(5)} &= 0xfaa7ae2b \\
 c_{1,0}^{(6)} &= 0xbaca1589, & c_{1,4}^{(6)} &= 0x2e48f1c1 \\
 c_{1,0}^{(7)} &= 0x40a46f3e, & c_{1,4}^{(7)} &= 0xb923c704 \\
 c_{2,0}^{(0)} &= 0xfc20d9d2, & c_{2,4}^{(0)} &= 0xe25e72c1 \\
 c_{2,0}^{(1)} &= 0x34552e25, & c_{2,4}^{(1)} &= 0xe623bb72 \\
 c_{2,0}^{(2)} &= 0x7ad8818f, & c_{2,4}^{(2)} &= 0x5c58a4a4 \\
 c_{2,0}^{(3)} &= 0x8438764a, & c_{2,4}^{(3)} &= 0x1e38e2e7 \\
 c_{2,0}^{(4)} &= 0xbb6de032, & c_{2,4}^{(4)} &= 0x78e38b9d \\
 c_{2,0}^{(5)} &= 0xedb780c8, & c_{2,4}^{(5)} &= 0x27586719 \\
 c_{2,0}^{(6)} &= 0xd9847356, & c_{2,4}^{(6)} &= 0x36eda57f \\
 c_{2,0}^{(7)} &= 0xa2c78434, & c_{2,4}^{(7)} &= 0x703aace7
\end{align*}
\]
\textbf{Luffa Specification} \hfill NIST SHA-3 Proposal (Round 2)

B–3 \hspace{.2cm} $w = 4$

\begin{align*}
 c_{3,0}^{(0)} &= 0xb213afa5, & c_{3,4}^{(0)} &= 0xe028c9bf \\
 c_{3,0}^{(1)} &= 0xc84ebe95, & c_{3,4}^{(1)} &= 0x44756f91 \\
 c_{3,0}^{(2)} &= 0x4e608a22, & c_{3,4}^{(2)} &= 0x7e8f3ce2 \\
 c_{3,0}^{(3)} &= 0x56d858fe, & c_{3,4}^{(3)} &= 0x956548be \\
 c_{3,0}^{(4)} &= 0x343b138f, & c_{3,4}^{(4)} &= 0xe191be2 \\
 c_{3,0}^{(5)} &= 0xdae4e3d, & c_{3,4}^{(5)} &= 0x3cb226e5 \\
 c_{3,0}^{(6)} &= 0x2ceb4882, & c_{3,4}^{(6)} &= 0x5944a28e \\
 c_{3,0}^{(7)} &= 0xb3ad2208, & c_{3,4}^{(7)} &= 0xa1c4c355
\end{align*}

B–4 \hspace{.2cm} $w = 5$

\begin{align*}
 c_{4,0}^{(0)} &= 0xf0d2e9e3, & c_{4,4}^{(0)} &= 0x5090d577 \\
 c_{4,0}^{(1)} &= 0xac11d7fa, & c_{4,4}^{(1)} &= 0x2d1925ab \\
 c_{4,0}^{(2)} &= 0x1bcb66f2, & c_{4,4}^{(2)} &= 0xb46496ac \\
 c_{4,0}^{(3)} &= 0x6f2d9bc9, & c_{4,4}^{(3)} &= 0xd1925ab0 \\
 c_{4,0}^{(4)} &= 0x78602649, & c_{4,4}^{(4)} &= 0x29131ab6 \\
 c_{4,0}^{(5)} &= 0x8cdae952, & c_{4,4}^{(5)} &= 0x0f53c3 \\
 c_{4,0}^{(6)} &= 0x3b6ba548, & c_{4,4}^{(6)} &= 0x3f014f0c \\
 c_{4,0}^{(7)} &= 0xedae9520, & c_{4,4}^{(7)} &= 0xfc053c31
\end{align*}
C Test Vectors

Let the message M be the 24 bits ASCII string “abc”. Then the resultant message digest of each algorithm is as follows.

C–1 Luffa-224

The message digest of the message “abc” is

$$Z_{0,0} = 0xf29311b8, \quad Z_{0,1} = 0x7e9e40de,$$
$$Z_{0,2} = 0x7699be23, \quad Z_{0,3} = 0xfbeb5a47,$$
$$Z_{0,4} = 0xcb16ea4f, \quad Z_{0,5} = 0x5556d47c,$$
$$Z_{0,6} = 0xa40c12ad.$$

C–2 Luffa-256

The message digest of the message “abc” is

$$Z_{0,0} = 0xf29311b8, \quad Z_{0,1} = 0x7e9e40de,$$
$$Z_{0,2} = 0x7699be23, \quad Z_{0,3} = 0xfbeb5a47,$$
$$Z_{0,4} = 0xcb16ea4f, \quad Z_{0,5} = 0x5556d47c,$$
$$Z_{0,6} = 0xa40c12ad, \quad Z_{0,7} = 0x764a73bd.$$

C–3 Luffa-384

The message digest of the message “abc” is

$$Z_{0,0} = 0x9a7abb79, \quad Z_{0,1} = 0x7a840e2d,$$
$$Z_{0,2} = 0x423c34c9, \quad Z_{0,3} = 0xf559f68,$$
$$Z_{0,4} = 0xe09bdb291, \quad Z_{0,5} = 0x6fb2e9ef,$$
$$Z_{0,6} = 0xfec2fa0a, \quad Z_{0,7} = 0x7a69881b,$$
$$Z_{1,0} = 0xe9872480, \quad Z_{1,1} = 0xc635d20d,$$
$$Z_{1,2} = 0x2fd6e95d, \quad Z_{1,3} = 0x046601a7.$$
C–4 \textit{Luffa-512}

The message digest of the message “abc” is

\begin{align*}
Z_{0,0} &= 0xf4024597, \quad Z_{0,1} = 0x3e80d79d, \\
Z_{0,2} &= 0x0f4b9b20, \quad Z_{0,3} = 0x2ddd4505, \\
Z_{0,4} &= 0xb81b8830, \quad Z_{0,5} = 0x501bea31, \\
Z_{0,6} &= 0x612b5817, \quad Z_{0,7} = 0xaae38792, \\
Z_{1,0} &= 0x1dcef8d0, \quad Z_{1,1} = 0x88ca2c780, \\
Z_{1,2} &= 0x20aff593, \quad Z_{1,3} = 0x45d6f91f, \\
Z_{1,4} &= 0x0ee6b2ee, \quad Z_{1,5} = 0x1e13f0cb, \\
Z_{1,6} &= 0xcf22b643, \quad Z_{1,7} = 0x81387e8a.
\end{align*}

D Implementations of SubCrumb

D–1 For Intel Core2 Processors

The instructions are given by Table 4. At the first, the four words data

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\text{cycle} & \text{MOV r4 r0} & \text{OR r0 r1} & \text{XOR r2 r3} \\
\hline
1 & NOT r1 & XOR r0 r3 & AND r3 r4 \\
\hline
2 & XOR r1 r3 & XOR r3 r2 & AND r2 r0 \\
\hline
3 & NOT r0 & XOR r2 r1 & OR r1 r3 \\
\hline
4 & XOR r4 r1 & XOR r3 r2 & AND r2 r1 \\
\hline
5 & XOR r1 r0 & & \\
\hline
6 & & & \\
\hline
\end{tabular}
\caption{The instructions set for Intel Core2 processors}
\end{table}

\(a_0, a_1, a_2, a_3\) are loaded to the registers \(r0, r1, r2, r3\) respectively. Then the resultant registers \(r4, r1, r2, r3\) provides the outputs of \(S\)box, namely,

\(x_0 = r4, x_1 = r1, x_2 = r2, x_3 = r3.\)
Implementations of Message Injection Function MI

The message injection function MI defined in Section 3.2 can be implemented only with XORings and multiplications by a fixed constant 0x02.

$E-1 \ w=3$

The matrix representation can be transformed as follows:

$$
\begin{pmatrix}
3 & 2 & 2 & 1 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 4
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \oplus \begin{pmatrix}
2 & 2 & 2 & 0 \\
2 & 2 & 2 & 0 \\
2 & 2 & 2 & 0
\end{pmatrix} \oplus \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 4
\end{pmatrix}.
$$

In other words, the message injection function MI for $w=3$ can be also defined by the following equation:

$$
X_j = H_j^{(i-1)} \oplus \left(0x02 \cdot \bigoplus_{j'=0}^{2} H_{j'}^{(i-1)} \right) \oplus 0x02^i \cdot M^{(i)}, \quad 0 \leq j < 3,
$$

Figure 8 shows an implementation image of MI for $w=3$.

![Figure 8: The message injection function (w = 3)](image_url)
E–2 $w = 4$

The message injection function MI for $w = 4$ can be also defined by the following equations for $0 \leq j < 4$:

$$\eta_j = H_{j}^{(i-1)} \oplus \left(0x02 \cdot \bigoplus_{j' = 0}^{3} H_{j'}^{(i-1)} \right),$$

$$X_j = 0x02 \cdot \eta_j \oplus \eta_{j-1 \text{ mod } 4} \oplus 0x02^j \cdot M^{(i)}.$$

Figure 9 shows an implementation image of MI for $w = 4$.

![Figure 9](image_url)
E–3 $w = 5$

The message injection function MI for $w = 5$ can be also defined by the following equations for $0 \leq j < 5$:

$$
\eta_j = H_j^{(i-1)} \oplus \left(0x02 \cdot \bigoplus_{j' = 0}^{4} H_{j'}^{(i-1)} \right),
$$

$$
\xi_j = 0x02 \cdot \eta_j \oplus \eta_{j+1} \mod 5,
$$

$$
X_j = 0x02 \cdot \xi_j \oplus \xi_{j-1} \mod 5 \oplus 0x02^j \cdot M^{(i)}.
$$

Figure 10 shows an implementation image of MI for $w = 5$.

![Diagram of the message injection function](image-url)