
The Reasons for The Change of Luffa

Christophe De Cannière1, Hisayoshi Sato2, and Dai Watanabe2

1 ESAT-COSIC, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10 bus 2446, B-3001 Leuven-Heverlee, Belgium

2 Systems Development Laboratory, Hitachi, Ltd.,
292 Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan

dai.watanabe.td@hitachi.com

1 Introduction

The hash function Luffa submitted to NIST SHA-3 competition changes its al-
gorithm at the Round 2. The reason for the change is that the algebraic property
is not so good as expected. We changed several components of Luffa in order to
improve the property. In this document, we explain what are changed and why
they are changed. In addition, we intend to clarify the influences to the security
and the implementation by the changes. Hereafter, the first round algorithm
and the second round algorithm of Luffa are denoted by Luffa v1 and Luffa v2
respectively.

The rest of this document is organized as follows: Firstly, the higher order
differential attack on Luffa v1 is briefly introduced in Section 2. Secondly, the
changes of the algorithm and their reasons are explained in Section 3. Then the
influences of the changes to the security and to the implementation issues are
discussed in Section 4 and 5 respectively.

2 Background

2.1 Higher Order Differential Attack on Step-reduced Variant of
Luffa v1

Starting from the private communication with Yamada and Kaneko [6]1, we
developed the higher order differential attack on the step-reduced variant of
Luffa v1. The detailed attack is presented in the independent document [8].
Here we just refer the main result.

First of all, we found that the algebraic degree of the underlying non-linear
permutation Qj grows slower than an ideal case. In addition, we found that
there are very efficient distinguishers2 for the step-reduced variant of Luffa v1.
According to our theoretical estimate, we can construct distinguishers for step-
reduced variants of Luffa v1 up to 7 out of 8 steps by using a block message. The
1 The early result will be published in [7].
2 In this document, we use the terminology distinguisher for functions which detect

a kind of non-randomness property according to [1]. Note that a distinguisher is
usually a terminology for a function which distinguishes two random variables.



2

expected degrees of the distinguishers are summarized in Table 1. For 7 steps,
the algebraic degree of the distinguisher is expected 214 and the distinguisher
requires 2216 inputs.

This distinguisher can be extended to the hash function by the careful choice
of the messages without an extra cost. This attack does not threaten any security
of full-step of Luffa v1.

Table 1. The summary of the algebraic degrees

Number of steps 1 2 3 4 5 6 7 8

Distinguisher’s degree – 2 5 13 33 84 214 545

We identified that the this property is mainly caused by the following two
reasons:

– The algebraic expressions of the Sbox are poor3.
– MixWord preserves a part of this property.

In addition, no blank round for a block message enables the direct extension of
the higher order differential property of Qj to the distinguishing attack on the
hash function.

2.2 Impact of The Distinguishing Attack

Even though there is a distinguisher for 7 out of 8 steps of Luffa, we believe that
this does not affect the security of Luffa v1. There are two reasons:

– The security margin against this attack is sufficiently large.
– The attack does not make sense under any conceivable setting.

Security Margin The current distinguisher applies to 7 steps. Whereas we
expect that the data requirement of this distinguisher (2216 messages) can be
reduced using more advanced techniques, the large margin predicted by our
theoretical estimates suggests that it is rather unlikely that a similar property
could be detected for 8 steps, even if all 2256−1 available messages would be used.

Advantage of The Adversary Different from keyed cryptographic functions,
it is not immediately obvious what advantage such a distinguisher would give to
the adversary.

Let us consider two hypothetical situations: The first situation is that the
adversary is given a hash function as a black box, and is asked to determine
3 This has been pointed out in [4].



3

whether or not it is 7 steps Luffa. Clearly, the higher order differential distin-
guisher is of no use in this case, since Luffa is a white box. It suffices for the
adversary to feed a few inputs to the black box to verify that the black box is
indeed 7 steps Luffa by calculating the outputs for the same inputs by himself.

The second situation is that the adversary is given the XOR of the hash
values of a set of 2216 messages satisfying the requirements of the distinguisher,
and is asked to determine, without knowing exactly which messages were hashed,
whether 7 steps Luffa was used or not. Using the distinguisher, the adversary can
easily answer this question by verifying that this XOR contains some repeated
words.

Again, the advantage of the adversary is not clear in this situation. In the
higher order differential attack, a part of the message is fixed and the remaining
part takes all possible values so that the adversary knows that messages with
all possible values of varying part are fed to the black-box and he only does not
know what the fixed value is. Therefore only 240 bits are secret for the adversary
in this situation4.

In more abstract description, we consider the adversary who intends to distin-
guish a family of functions consisting of 240 elements from a random function.
The trivial distinguisher makes a few queries and compares the outputs with
those of the all possible 240 elements. Then the distinguisher determines whether
or not the black box is a function from the family according to the comparison
between the outputs and the possible values calculated in advance. This fact
indicates that any distinguisher which requires more queries (or computational
complexity) than the above trivial distinguisher is of no use.

Of course one could imagine even more contrived situations in which the
advantage provided by the distinguisher would be more significant, but then
again, for any given hash function, one may devise artificial protocols which
would become insecure when instantiated with this particular hash function.
Moreover, the fact that the distinguisher only applies to a very restricted class
of messages (i.e., messages of at most 255 bits), really limits the possibilities of
the adversary.

2.3 Reason for Changes

Despite the fact that we do not consider the distinguisher discussed above to
be a threat for Luffa v1, we realized that we could further increase the security
margin against this distinguisher without sacrificing any of the existing security
or efficiency properties of the hash function. In view of this, we felt that it would
make little sense not to consider this improvement.

3 The Changes and The Reasons

We changed the algorithm of Luffa at the following three points:
4 It might be pointed out that the adversary does not know which bits of the word

are fixed. In this case, we have to take in account about 217.6 additional secret bits
derived from the possibilities to choose 5 out of 32 bit positions.



4

– In the finalization process, we apply a blank round even for a block message.
– The Sbox is changed.
– The order of the inputs a[4], a[5], a[6], a[7] to SubCrumb is changed.

The details of the changes are explained below.

3.1 Finalization

We changed the finalization of Luffa as follows:

Luffa v1 A blank round is applied if the message length is not smaller than
256 bits.

Luffa v2 A blank round is always applied.

This change is intended to reinforce the security of Luffa against the attack
introduced in Section 2 and this is the most essential improvement. If a blank
round is always applied, the attacker has to construct the distinguisher for 16 step
functions to detect a kind of non-randomness so that the change is expected
to significantly increase the security margin not only against the higher order
differential attack but also against any kind of distinguishing attack.

3.2 Sbox

We changed the Sbox of Luffa as follows:

Luffa v1
S[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}.

Luffa v2
S[16] = {13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4}.

This change is intended to reinforce the security of Luffa against the attack
introduced in Section 2. Hereafter the Sbox for Luffa v1 and Luffa v2 are denoted
by S1 and S2 respectively for the convenience. The Sbox S1 has the following
properties:

– Its bit slice implementation can be executed in 6 cycles on Intel Core2 pro-
cessors 5.

– The maximum differential and linear probabilities are optimum.
– The Boolean polynomial expressions of the map are of degree 3.
– They have no fixed point.

The new Sbox S2 satisfies these properties and we chose it from ones whose
polynomial expressions have more monomials than that of S1. We had a bit of
difficulty to find such an Sbox, because the Sboxes output by our old search
program have very similar polynomial expressions. In order to fix this problem,
we relaxed the constraints for the combination of instructions. We are going to
publish our approach to find the Sboxes in the near future.
5 Intel is a registered trademark and Core is a name of products of Intel Corporation

in the U.S. and other countries.



5

3.3 SubCrumb

In addition to the change of the Sbox, we changed the function SubCrumb as
follows:

Luffa v1

SubCrumb(a[0], a[1], a[2], a[3]);
SubCrumb(a[4], a[5], a[6], a[7]);

Luffa v2

SubCrumb(a[0], a[1], a[2], a[3]);
SubCrumb(a[5], a[6], a[7], a[4]);

This change is intended to break a kind of symmetry in the non-linear per-
mutation Qj . This symmetry is considered a factor of the undesirable algebraic
property of Qj . In fact, we found that this change more strongly improves the
algebraic property of Qj than the change of the Sbox.

4 Improvements of The Security by The Changes

The additional blank round for a block message does not affect the known se-
curity evaluations except the newly reported higher order differential attack [7,
8]. If a blank round is always applied, the attacker has to construct the distin-
guisher for 16 step functions and the best known higher order differential attack
provides distinguishers up to 7 steps [8]. Therefore Luffa v2 is considered to have
sufficient resistance against the higher order differential attacks. In addition, this
change is considered to be efficient to avoid an extension of a zero-sum attack [2]
which is a variant of the higher order differential attack.

The changes in SubCrumb are subtler approaches.
The maximum differential probability and the maximum linear probability of

the Sbox S2 are the same as those of S1. The algebraic degrees of the polynomial
expression of S2 are also the same as those of S1 and they do not have a fixed
point. Therefore the change of the Sbox does not affect the known security
evaluation results. The change of the order of input words does not affect the
known security evaluation results for the same reason.

The next problem is if these changes reinforce the security of Luffa against
the higher order differential attack. Table 2 shows the theoretical estimate of the
algebraic degrees of the distinguisher for S1 and S2. The effect of the change of
the order of input words is ignored in the estimation.

The substitution of the order of input words makes the theoretical estimate
difficult because the mixing of MixWord is no more ignorable. We investigated
the effects by the experiments.

Table 3 and 4 show the higher order differential properties for the combina-
tions of the Sboxes and the order of the input words. The numeric values in the
table mean the probabilities of the distinguishing attacks being successful.



6

Table 2. The summary of the algebraic degrees

Number of steps
1 2 3 4 5 6 7 8

v1 – 2 5 13 33 84 214 545

v2 – 2 5 13 35 94 252 675

Table 3. The summary of the algebraic degrees of distinguishers

Sbox SubCrumb Order
11 12 13 14 15 16 17 18 19 20 21 22 23

v1 v1 0.90 0.97 1 1 1 1 1 1 1 1 1 1 1

v2 v1 0.78 0.90 1 1 1 1 1 1 1 1 1 1 1

v1 v2 0.55 0.85 0.99 1 1 1 1 1 1 1 1 1 1

v2 v2 0 0 0.01 0.01 0.09 0.18 0.34 0.53 0.73 0.86 0.97 0.99 1

Table 4. The summary of the algebraic degrees of distinguishers

Sbox SubCrumb Order
22 23 24 25 26 27 28 29 30 31 32

v1 v1 0.02 0.03 0.12 0.20 0.37 0.45 0.69 0.81 0.83 0.91 0.99

v2 v1 0 0 0 0 0 0.01 0 0.03 0.05 0.07 0.16

v1 v2 0 0 0 0 0 0 0 0 0 0 0

v2 v2 0 0 0 0 0 0 0 0 0 0 0

These experimental results indicate that each change of SubCrumb improves
the resistance against the higher order differential attack. Especially, the effect
by the change of the order of input words is significant.

From the Table 3, the algebraic degree of the distinguisher for 4 steps in
Luffa v2 is estimated at 23 and it is much larger than that in Luffa v1. If the
Sbox and the MixWord have ideal properties, the degree of distinguisher should
be 33 = 27. The experimental result indicates that the step function of Luffa v2
achieves a good property and the degree of the distinguisher approaches the ideal
case.

5 Influences to The Implementation Aspects

Because of an additional blank round for a short message, the processing speed
of Luffa v2 for a very short message becomes half of Luffa v1. On the other
hand, there is no influence if the message whose length is not less than 256 bits.

The influences of the changes in SubCrumb are relatively minor. The Sbox S2

is decomposed into 16 instructions and it can be executed in 6 cycles on the Intel



7

Core2 processors6. This is same as the property of S1 so that their speeds on
this platform are expected to be the same. The change of the order of the input
words has a small influence in the implementations on some embedded CPUs.
The comparison of performances of Luffa v1 and Luffa v2 on AVR ATmega85157

and Intel Core2 are shown in Table 5 and 6 respectively.

Table 5. Execution time and memory requirements on AVR ATmega8515

Execution time Memory requirements

Version

One-block msg.

(cycles/message)

Very long msg.

(cycles/byte)

Code size
+ constant data

(bytes)

RAM
(bytes)

Luffa v1 23,458 695.7 640+120 132

Luffa v2 46,627 738.1 690+120 134

Table 6. Speed of ANSI C codes on Intel Core2 Duo

32-bit 64-bit

Version

One-block msg.

(cycles/message)

Very long msg.

(cycles/byte)

One-block msg.

(cycles/message)

Very long msg.

(cycles/byte)

Luffa v1 1,303 33,4 1,211 32.0

Luffa v2 2,157 31.2 1,830 26.2

In addition, the set of instructions for S2 is identical to that for S1 except
their order. This indicates that the hardware implementation cost and the speed
of Luffa v2 are expected to be close to that of Luffa v1. Besides, an additional
blank round disables the very small implementations which process only a block
messages. The comparison of hardware performances of Luffa v1 and Luffa v2
are given in Table 7.

Table 7. Hardware performance of the Luffa-256

Optimize Version Area Frequency # of cycles Throughput [Mbps]
[GE] [MHz] per round One-block msg. Very long msg.

Area v1 10,157 100 891 28.7 28.7
v2 19,646 344 891 49.3 98.7

Throughput v1 25,833 1,149 9 32,683.0 32,683.0
v2 30,834 1,124 9 15,980.0 31,960.0

6 Intel is a registered trademark and Core is a name of the product of Intel Corporation
in the U.S. and other countries.

7 Atmel, AVR, and AVR Studio are registered trademarks of Atmel Corporation in
the United States and/or other countries.



8

References

1. J.P. Aumasson, I. Dinur, W. Meier and A. Shamir “Cube Testers and Key Recov-
ery Attacks On Reduced-Round MD6 and Trivium,” Fast Software Encryption,
FSE 2009, Lecture Notes in Computer Science, vol. 5665, Springer-Verlag, pp. 1–
22, 2009.

2. J.P. Aumasson and W. Meier, “Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi,” 2009. Available at http://www.131002.
net/data/papers/AM09.pdf.

3. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Specification,”
Submission to NIST SHA-3 Competition, 2008. Available at http://www.sdl.

hitachi.co.jp/crypto/luffa/.
4. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Supporting Docu-

ment,” Submission to NIST SHA-3 Competition, 2008. Available at http://www.

sdl.hitachi.co.jp/crypto/luffa/.
5. L. R. Knudsen, “Truncated and Higher Order Differentials,” Fast Software Encryp-

tion, FSE ’94, Lecture Note in Computer Science vol. 1008, pp. 196–211, Springer-
Verlag, 1994.

6. T. Yamada and T. Kaneko, Private communication, 2 July 2009.
7. T. Yamada, D. Watanabe, Y. Hatano, and T. Kaneko, “A Higher Order Differen-

tial Property of the Non-Linear Permutation in Hash Function Luffa,” Computer
Security Symposium 2009 (CSS2009), 26-28 October, 2009 (in Japanese).

8. D. Watanabe and Y. Hatano, “Higher Order Differential Attack on Re-
duced Round Luffa,” to be supplied with the Second Round Pack-
age. Also available at http://www.sdl.hitachi.co.jp/crypto/luffa/

HigherOrderDifferentialAttackOnLuffa_v1.pdf.


