A Hash Function Family *Luffa*

@The First SHA3 Candidate Conference
25th February 2009

Dai Watanabe
Hisayoshi Sato
Systems
Development
Laboratory,
Hitachi, Ltd.

Christophe De Cannièré
ESAT-COSIC,
Katholieke Universiteit
Leuven

Outline

- Specification
 - Chaining
 - Non-linear components
- Security status
 - Generic attack
 - Differential based attack
- Implementations
 - Software
 - Hardware
Introduction to *Luffa* (spec.)

Cryptographic sponge function

- Newer coming construction of a hash function from a random permutation
- It is indifferentiable from a RO
Chaining of *Luffa*

- **Luffa** is a variant of sponge
 - But, fixed length permutations for all hash length
 - The number of Qj increases if the hash length gets long ($w=3, 4, 5$ for hash_len=256, 384, 512)
 - Insert message and mix the state by the linear map MI
 - A blank round
 - The hash value is the sum of the outputs of Qj

Non-linear permutation Q

- **Input/Output**
 - 256 bits
 - (8 32-bit words)

- **Functions**
 - tweak
 - Applied before step functions
 - Step functions
 - 8 steps
 - 8 steps

Step function

4-bit Sbox (bit slice)

32 bits

Feistel ladder of 4 rounds

Constant addition (1-bit / Sbox)

Security status
Summary of security status

- **Sponge function features**
 - Not based on CR compression function
 - Finding inner collision is the best attack

- **Current security status of **\textit{Luffa}**
 - No security proof for the chaining (yet)
 - Several generic attacks concerned, none of them are serious
 - Differential based attack
 - Seems secure under a reasonable assumption

Long message attack

- **Sponge’s case**
 - Finding a message s.t. $S^{(i)} = S^{(N)}$
 - Prob. of the event
 - capacity: $c = \text{len}(S) - \text{len}(M)$
 - $\text{prob} = 2^{-c/2}$
 - Complexity
 - Queries to the permutation: $2^{c/2}$
 - Num. of nodes: $2^{c/2}$
Long message attack (conti.)

- Luffa’s case
 - 1/w of input bits to each Qj is controllable by message injection
- Complexity
 - Queries to Qj
 - $2^{(w-1)/w} \times 2^{56}$
 - Num. of nodes
 - $2^{(w-1)/2} \times 2^{56}$
 - Calc. Complexity
 - MA: $2^{(w-1)/2} \times 2^{56}$
 - MI calls: $2^{(w-1)/2} \times 2^{56}$

Differential characteristics of Qj

- 4 steps (half-block)
 - Approach: exhaustive truncated path search
 - Possible min. num. of active Sbox: 31
 - MDCP $\leq 2^{-62}$
- 8 steps (full)
 - Approach: Leon’s algorithm to find the lowest code word
 - Min. active Sbox = 112
 - DCP = 2^{-224} ($>2^{-256}$)
 - Not useful to find an inner collision
Differential based attack scenario

- (Seems) the best scenario
 - 2 rounds attack to find an inner collision
- Limitation of modification technique
 - Assumption
 - 1 bit modification doubles the diff. prob.
 - Message block $M^{(i)}$
 - Any, up to 256 bits
 - State $H^{(i)}$
 - Assumed random, up to $(w-1)/2 \times 256$ bits
- (Our) conclusion
 - Luffa is secure against this attack if $\text{MDCP}(Q_j) < 2^{-171}$

Implementation aspects
Software implementations

<table>
<thead>
<tr>
<th>hash length</th>
<th>ANSI C (cycle/byte)</th>
<th>assembly with SSE2 (cycle/byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32-bit</td>
<td>64-bit</td>
</tr>
<tr>
<td>224</td>
<td>33.9</td>
<td>32.0</td>
</tr>
<tr>
<td>256</td>
<td>33.4</td>
<td>32.0</td>
</tr>
<tr>
<td>384</td>
<td>45.2</td>
<td>39.0</td>
</tr>
<tr>
<td>512</td>
<td>59.7</td>
<td>50.3</td>
</tr>
</tbody>
</table>

- **Evaluation environment**
 - CPU: Intel Core2Duo E6600 (2.4GHz)
 - Memory: 2GB
 - ANSI-C: Windows Vista + Visual Studio 2005
 - Assembly: Ubuntu Linux 8.04 + gas

Hardware implementations (ASIC)

<table>
<thead>
<tr>
<th>Hash length (bit)</th>
<th>Opt.</th>
<th>Gate count (gate)</th>
<th>Frequency (MHz)</th>
<th>Cycles</th>
<th>Throughput (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>256/224</td>
<td>size</td>
<td>10,157</td>
<td>100</td>
<td>891</td>
<td>28.7</td>
</tr>
<tr>
<td>256/224</td>
<td>speed</td>
<td>26,849</td>
<td>444</td>
<td>9</td>
<td>12,642</td>
</tr>
<tr>
<td>384</td>
<td>speed</td>
<td>34,985</td>
<td>444</td>
<td>9</td>
<td>12,642</td>
</tr>
<tr>
<td>512</td>
<td>speed</td>
<td>44,163</td>
<td>444</td>
<td>9</td>
<td>12,642</td>
</tr>
</tbody>
</table>

- **Evaluation environment**
 - 0.13μm CMOS standard cell library
- **Optimization**
 - Small gate size: with 1 Sbox and 1 MixWord
 - Speed: 3 step functions in parallel