
Hitachi Review Vol. 63 (July 2014) 304

WHITE PAPER

Compare Cost and Performance of Replication and Erasure
Coding

John D. Cook

Robert Primmer

Ab de Kwant

OVERVIEW: Data storage systems are more reliable than their individual
components. In order to build highly reliable systems out of less reliable
parts, systems introduce redundancy. In replicated systems, objects are simply
copied several times with each copy residing on a different physical device.
While such an approach is simple and direct, more elaborate approaches
such as erasure coding can achieve equivalent levels of data protection
while using less redundancy. This report examines the trade-offs in cost
and performance between replicated and erasure-encoded storage systems.

INTRODUCTION
TO protect data from device or system failures storage
systems employ mechanisms for data protection
so that data can be provided to clients in the face
of failure. While there are a variety of means for
providing data protection (DP), in this paper we will
focus on two: replication and erasure coding.

Providing data protection necessarily results in
the consumption of additional storage. The additional
storage needed to implement a given DP scheme is
referred to as storage overhead. A DP mechanism that
uses less overhead is said to be more storage efficient,
meaning it requires less storage overhead to provide
equivalent data protection.

Replication is a process where a whole object
is replicated some number of times, thus providing
protection if a copy of an object is lost or unavailable.
In the case of replicating a whole object, the overhead
would be 100% for a single replica, 150% for two
replicas and so forth. Erasure coding is a process
where data protection is provided by slicing an
individual object in such a way that data protection
can be achieved with greater storage efficiency: that
is, some value less than 100%.

Most papers on erasure coding focus on the
relative storage efficiency of erasure coding (EC)
versus replication. However, these papers often ignore
details of EC implementation that have an impact
on performance, and fail to address the issue of data
availability.

Replication is a special case of EC, using only one
data disk. The parity disks in this case are necessarily
replicas. However, EC typically refers to other
configurations, varying the number of data disks and

parity disks to achieve the same amount of protection
against data loss with fewer disks or to achieve greater
protection against data loss with the same number of
disks. However, an EC system may not provide as
much protection against data unavailability relative to
a replicated system with the same protection against
data loss. An erasure-coded system may also have
more latency than a comparable replicated system.

In this paper, we demonstrate that EC is
advantageous for “cold” data, data that is unlikely to
be accessed or for which read performance is not an
issue. We also examine how replication is superior
for “hot” data, content that is accessed frequently or
for which performance is important. This paper gives
guidance for choosing between replication and erasure
coding in the large space between “hot” and “cold”
data. In particular, the more emphasis one places on
availability and read performance, the greater the
advantage of replication; the more emphasis one
places on storage efficiency, the greater the advantage
of erasure coding.

DATA AVAILABILITY
Enterprise-class data storage systems are designed

to protect against data loss (DL) and data unavailability
(DU). Data loss refers to permanent loss, data that
cannot be retrieved by any means. Data unavailability
refers to data that is temporarily unavailable but that
can be retrieved after some undetermined delay.
Said another way, DL and DU refer to data being
permanently and temporarily inaccessible.

Cold data is often stored on tape due to the low cost
of tape as a storage medium. The downside of storing
data on tape is that it is generally less readily available

Hitachi Review Vol. 63 (July 2014) 305

compared to data stored on disk. Therefore, for cases
where availability is important the increased expense
of disk storage is justified.

For data to be highly available in a multi-data-
center environment means that the data must be
distributed amongst the various data centers (DCs) in
such a way that all data can still be read in the event
that any one DC is unavailable.

Data availability calculations are sometimes
incorrectly conflated with data loss calculations. While
the two can be identical for a single site, they diverge
when we talk about multisite. For example, assume we
have two DCs and want our data to be highly available,
what is the minimum amount of overhead required to
protect against DU? The answer is 100%, and this
answer is the same irrespective of the DP scheme
employed to protect against DL.

This answer can feel counterintuitive at first blush
as it may seem that each DC need only house 50% of
the total data. However, clients must be able to read
the data when one of the data centers is unavailable.
In such a case, all of the data must be available from
the only data center that is reachable, so the answer
makes sense. The table below illustrates how data must
be spread across DCs to provide full data availability
(that is, full data access in the event of the failure
of any one DC), independent of the data protection
scheme employed.

DCs Minimum overhead for N+1
2 100% (100/100)
3 50% (50/50/50)
4 33% (33/33/33/33)
5 25% (25/25/25/25/25)

DATA PROTECTION
Data loss can occur when either a disk has died or

when a disk is still working, but the blocks that hold
the data being read have gone bad. For our purposes,
we consider either case to have the same effect on
our system.

Let pL be the probability that a single disk is
dead, permanently unreadable. Once a disk has been
replaced, its function has been restored and we think
of the original disk coming back to life. Data loss does
not necessarily happen when disks die, but when too
many disks are in a dead state, simultaneously.

An estimate of pL depends on the mean time
between failures as well as the time required to replace
the disk. For example, suppose a disk performs reliably
on average for 1,000 days, roughly three years. If a

hot spare is available to replace the disk upon failure
and it takes one day to format the disk and copy data
to it, pL =0.001. If there is not a hot spare and it takes
a couple days to order and install a replacement disk
and a day to fill it, pL =0.003.

Similarly let pU be the probability that a disk
is unavailable. A disk may be unavailable, yet still
alive. For example, a disk may be in perfect order but
temporarily disconnected from the network. Because
disks can be temporarily unavailable without failing,
say due to a network outage, pL is always smaller
than pU.

Replication
In a replicated system with k replicas of each

object, the probability of data loss is pk
L, assuming

disk failures are independent. (We discuss this
independence assumption later.) Given a tolerable
probability of data loss ε, we can solve for the number
of disks k needed keep the probability of loss below
this level:

 k =
logε

log pL
 (1)

The same calculation applies to data unavailability
if we replace pL with pU , again assuming independence.
Some causes of unavailability may have independent
probabilities, but as we discuss in the Allocate Disks
to Data Centers section below, disks located within a
data center risk simultaneous unavailability due to the
data center going offline temporarily.

Erasure Coding
In an m + n erasure-encoded system, each object

is divided into m equal-sized fragments. In addition
n parity fragments are created, each the size of one
of the data fragments. The data can be read if any
m out of the m + n fragments are available. Stated
negatively, data will be lost if more than n fragments
are simultaneously lost. In this section we focus
on data loss. Similar considerations apply for data
unavailability, though there is an important distinction
between data loss and data unavailability that matters
more for EC than for replication.

Since we need m out of m + n disks to reconstruct
an object, the probability of data loss is the probability
of more than n disks being dead simultaneously:

m + n

i= n +1
()m + n

i
pi

L (1 − pL)m + n − iΣ (2)

WHITE PAPER 306

Define kc =(m + n)/m. This is the redundancy
factor for m + n erasure coding, analogous to k
for replication. For a fixed redundancy level, an
erasure-encoded system has at least the same level of
reliability as the corresponding replicated system. (In
general, an erasure-encoded system will have greater
reliability. However, one considers replication as a
special case of erasure coding with m = 1, in which
case the systems would have equal reliability.)
Stated another way, for a fixed level of reliability,
an erasure-encoded system requires less disk space
or can store more data with the same amount of disk
space.

Given a number of data fragments m and an
acceptable probability of unavailability ε, you can
solve for the smallest value of n such that

m + n

i= n +1

m + n
i

pi
L (1 − pL)m + n − i < ε()Σ (3)

See Appendix A for a Python script to solve for n.
For example, suppose you would like to build a

system with probability of data recovery 0.999999 (six
nines) using disks that have probability 0.995 of being
alive. Triple replication would have a probability of
DL equal to 0.0053 = 1.25 × 10−7. Suppose you want
to use erasure coding with 8 data disks. The script in
the appendix shows that an 8 + n system would require
n = 3 to keep the probability of DL below 10−6. In
fact, an 8 + 3 system has a probability of DL 1.99 ×
10−7. A 1-Gbyte video stored in the triple replicated
system would require 3 Gbyte of storage. In an 8+3,
the same object would be stored in 8 data fragments
and 3 parity fragments, each 125 Mbyte in size, for
a total of 1.375 Gbyte. In short, the erasure-coded
system would use about half as much disk space and
offer the same level of data protection.

(The number of parity disks n is best calculated
numerically as mentioned above, though there are
(incorrect) analytical solutions in the literature.
Rodrigues and Liskov(1) give an analytical solution
for (3) by using a normal (Gaussian) approximation
to the binomial distribution Bin(m + n, p). However,
the parameters m + n and p are typically outside the
range for the normal approximation to be reliable. The
estimate for kc given in that paper has a large error.
In the example above where we concluded 3 parity
disks were needed, the approximation of Rodrigues
and Liskov says 1.054 disks are needed. Even if you
round 1.054 up to 2, this is still short of the 3 disks
necessary.)

Choose the number of data disks
Given a value of m and the individual disk

reliability, the discussion above describes how to
choose n to achieve the desired level of protection.
But how do you choose m?

Increasing n while holding m fixed increases
reliability. Increasing m while holding n fixed decreases
reliability. But in a sense, we gain more reliability by
increasing n than we lose by increasing m. We can
increase reliability by increasing m and n proportionately,
keeping the redundancy factor kc constant. See Appendix
B for a precise statement and proof.

For example, a 4 + 2 system will be more reliable
than a 2 + 1 system even though both have the same
redundancy kc =1.5. So why not make m and n larger
and larger, obtaining more and more reliability for
free? Of course the increase in m and n is not free,
though the cost is subtle.

Larger values of m and n do result in greater
data protection for a fixed level of disk reliability.
However, while larger values of m and n reduce the
chance of complete failure (irrecoverable data loss),
they increase the chance of at least one recoverable
disk failure. They potentially increase latency and
reconstruction costs.

Increasing m and n also increases the total number
of data fragments m + n to manage. In practice,
erasure-encoded systems use values of m on the order
of 10, not on the order of 100. For example, you may
see 6 + 3 systems or 12 + 4 systems, but not 100 + 50
systems. One reason is that you can obtain high levels
of data protection without resorting to large values of
m. Another is that erasure-encoded systems typically
have on the order of millions of object fragments. A
rough calculation shows why this is so. There must
be a database to keep track of each fragment. If this
database is kept in memory, it has to be on the order
of gigabytes. If each record in the database is on the
order of a kilobyte, the table can contain on the order
of a million rows, and so the number of fragments
is kept on the order of millions in order to fit the
corresponding database in memory.

Aside from the memory required to keep an
inventory of data fragments, there is also the
time required to find and assemble the fragments.
The required time depends greatly on how EC is
implemented, but is always some amount of time,
and hence an overhead associated with EC that is not
required with replication. This explains why an EC
system can be slower than a replicated system, even
when all fragments are in the same data center.

Hitachi Review Vol. 63 (July 2014) 307

Finally, we note that the more data fragments there
are to manage, the more work that is required to rebuild
the fragment inventory database when failures occur.

Allocate Disks to Data Centers
The previous sections have not considered how

disks are allocated to data centers. This allocation
impacts EC more than replication, and DU more than
DL.

It is far more likely that an entire data center would
be unavailable than that an entire data center would be
destroyed. Data centers are occasionally inaccessible
due to network outages. This causes all disks inside
to be simultaneously unavailable. However, it is very
unlikely that all disks in a data center would fail
simultaneously, barring a natural disaster or act of
war. This means that DU is more correlated than DL.

In replicated systems, it is common for one
replica of each object to reside in each data center.
If we assume network failures to data centers are
independent, then the same probability calculations
apply to data loss and data unavailability. If there are
d data centers, the probabilities of an object being lost
or unavailable are pd

L and pd
U respectively.

However, in EC systems, the number of fragments
per object is typically larger than the number of data
centers. A company often has two or three data centers;
more than four would be very unusual, especially for
a mid-sized company. And yet EC systems using a
scheme such as 8+4 are not uncommon. With fewer
than 12 data centers, some of these fragments would
have to be co-located.

If every fragment in an EC system were stored in
a separate data center, the unavailability calculations
would be analogous to the data loss calculations, as
they are for replicated systems. But because data
fragments are inevitably co-located, these fragments
have correlated probabilities of being unavailable
and so the unavailability probability for the system
goes up.

Probability Assumptions
Reliability calculations, whether for replicated

systems or erasure-encoded systems, depend critically
on the assumption of independence. Disk failures
could be correlated for any number of reasons: disks
coming from the same manufacturing lot, disks
operating in the same physical environment, and
so forth. Therefore, reliability estimates tend to be
inflated(2). Researchers from Carnegie Mellon have
shown, for example, that disk failures are correlated

in time(3). That is, if you have had more failures than
usual this week, you are likely to have more failures
than usual next week too, contrary to the assumption
of independence. To be cautious, look for ways to
improve independence and be skeptical of extremely
small probabilities calculated based on independence
assumptions.

The assumption of independence is more accurate
for disks in separate data centers. And so, for
replicated systems with each replica in a separate data
center, independence is a reasonable assumption. But
for EC systems with multiple fragments in each data
center, the assumption of independence is less justified
for data loss, and unjustified for data unavailability.

Also keep in mind that when the probability of any
cause of failure is sufficiently small, other risks come
to dominate. One could easily build an erasure-coded
system with theoretical probability of failure less than
10−12, a one in a trillion chance. But such probabilities
are meaningless because other risks are much larger.
Presumably the chance of an earthquake disabling a
data center, for example, is larger than 10−12.

EFFICIENCY CONSIDERATIONS
In a replicated system, the operating system

directly locates objects. In the event of a failure,
requests are redirected to another server, but in the
usual case objects are accessed directly.

With erasure coding, fragments of objects must
be cataloged. Since the bits necessary to reconstruct
an object exist on multiple disks, a system must keep
track of where each of these fragments are located.
When an object is requested from an m + n system, a
server looks up the location of at least m fragments.
(The details of this process are implementation
dependent. A server could, for example, randomly
choose m fragments or try to determine the m closest
fragments.) If the requests succeed, these m fragments
are transferred to a server to be re-assembled into the
requested object. Since assembly cannot begin until
the last fragment is available, the process would be
slowed down if one of the fragments were coming
from a location farther away than the others.

COSTS OF DISK FAILURES
For a fixed level of reliability, erasure coding

requires less disk space than replication. If storage
cost were the only consideration, erasure coding would
have a clear advantage over replication. However,
there are other factors to consider, and these factors
depend on usage scenarios.

WHITE PAPER 308

If p is fairly small, the terms involving higher
power of p will be negligible and the sum above will
be approximately

 (1 − p)L1 + pL2

dropping terms that involve p2 and higher powers
of p.

For example, if there is a probability of 0.001 that
an object is available at the nearest data center, and
the second data center has 100 times greater latency,
the expected latency is 10% greater (that is, pL2/L1 =
0.001 * 100 = 0.1) than if both replicas were located
in the nearest data center.

In an erasure-encoded system, fragments could be
geographically distributed in many ways. If latency
is a concern, an m + n system would store at least m
fragments in a single location so that only local reads
would be necessary under normal circumstances. If m
fragments are stored in one location, the probability
of one local disk failure is mp. This means the
probability of a single local failure, and the necessity
of transferring data from a more distant data center, is
m times greater for an erasure-coded system compared
to a replicated system. The expected latency increases
from approximately (1 − p)L1 + pL2 in a replicated
system to approximately (1 − p)L1 + mpL2 in an
erasure-encoded system.

To illustrate this, suppose in the example above
that we pick our units so that the latency of the nearer
server is L1 = 1. If m = 8, the expected latency would
be 1.099 using replication and 1.799 using erasure
coding.

For active data, objects that are accessed frequently,
latency is a major concern and the latency advantage
of replication should be considered. For inactive data,
objects are archived and seldom accessed, latency may
be less of a concern.

Reconstruction
When an object request fails, it must be determined

exactly what has failed. This is a much simpler task in
a replicated system than in an EC system.

Once the failed disk has been identified, in either a
replicated or an erasure-coded system, its data must be
copied onto a replacement disk. The cost of rebuilding
the disk depends on where the data are coming from,
whether locally within a data center or remotely from
another center.

While erasure coding can lower the probability of
a catastrophic failure, it increases the probability of a
recoverable failure. The probability that one or more
disks in a set will fail is approximately the probability
of a particular disk failing times the number of disks*1.
An example given above compared triple replication
to 8 + 3 erasure coding. Both systems had roughly
the same probability of data loss. Replication used 3
disks per object while erasure coding used 11, and so
the erasure-coded system is nearly 4 times as likely to
experience a single, recoverable disk failure.

If a disk failure is recoverable, what is its cost? The
cost is not in maintenance. The cost of replacing hard
disks is proportional to the total number of disks in
use, whether those disks contain replicated objects or
erasure-encoded object fragments. Erasure encoding
does not increase the number of disk failures. By
reducing the number of disks needed, it can reduce
the number of failures. However, erasure encoding
increases the probability that an object request is
affected by a disk failure.

Latency
If all replicas and all erasure-encoded fragments

are in the same data center, latency is not as much of
an issue as when replicas and encoded fragments are
geographically separated.

In a replicated system, requests could be routed
to the nearest available replica (nearest in terms of
latency, which usually means physically nearest
though not necessarily). If the nearest replica is not
available, the request would fail over to the next
nearest replica and so on until a replica is available or
the request fails. In an m+n erasure-encoded system,
an object request could be filled by reconstructing
the object from the m nearest fragments. Since object
requests more often encounter (recoverable) disk
failures in erasure-encoded systems, they will more
often involve an increase in latency.

Suppose a replicated system maintains k copies
of an object, each in a different data center, and that
requesting data from these centers has latency L1 <L2
< ... < Lk for a given user. Suppose each replica has a
probability p of being unavailable. With probability
1 − p the latency in the object request will be L1.
With probability p(1 − p) the latency will be L2. The
expected latency will be

k

i=1

pi− 1(1 − p)L iΣ
*1 The probability that exactly one out of a set of m disks will fail is mp if

p is the probability of an individual failure. But the probability of one
or more failures is 1−(1−p)m, which is approximately mp if p is small.

Hitachi Review Vol. 63 (July 2014) 309

active data is served by replication and inactive data
is served by erasure coding.

In the Azure implementation, the cost of encoding
fragments is not a significant concern. Because objects
are replicated immediately, encoding can be done out
of band. A system that encodes objects as they enter
might be more concerned about encoding costs.

One could also use a hybrid approach of using k
replications of m+n erasure-encoded fragments. In
such a case, k and n might be very small. For example,
n might be 1 or 2, and k = 2 or 3 might be the number
of data centers.

RECOMMENDATIONS
In summary, we recommend beginning by

estimating the reliability of individual components
and the desired reliability of the overall system. Then
use equation (1) to determine the necessary number
replicas k or use equation (3) to determine the number
of fragments in an m + n erasure-coded system.

Replicated systems are simpler to implement and
can have lower latency and reconstruction costs.
Erasure-encoded systems require less disk space and
hence have lower storage costs. A system primarily
used for serving active data as quickly as possible
would probably use replication. A system primarily
used for archiving would benefit from erasure
coding. A system with mixed use might choose a
compromise, such as erasure coding with a small
number of data fragments per object, depending on
the relative importance of latency, reconstruction
costs, and storage or maintenance costs. Or, such a
system could use both replication and erasure coding,
moving objects from the former to the latter as they
are accessed less frequently.

APPENDIX A: SOFTWARE
from math import sqrt, factorial

def binomial(a, b):

return factorial(a + b)/

(factorial(a)*factorial(b))

def prob_fail(p, m, n):

"""Probability of more than n

failures in an m+n system when

each component has probability of

failure p."""

sum =0

for i in range(n+1, m+n+1):

sum += binomial(m+n,

With replication, the content of a failed disk is
simply copied, either from within a data center or
from a remote data center, depending on how replicas
are distributed.

With m + n erasure coding, the content of m disks
must be brought to one location. Huang et al(4) give
the example of 6 + 3 encoding. If three fragments are
stored in each of three data centers and one disk fails,
the content of four disks must be transferred from a
remote data center to the site of the failed disk in order
to have enough data for reconstruction.

The authors propose local reconstruction codes(4)
as a variation on erasure codes to mitigate this
problem. With this approach, two data centers would
each contain three data disks and a local parity disk.
A third data center would contain two global parity
disks computed from all six data disks. They call this
approach 6+2+2. Any single failure could be repaired
locally. Since single failures are most likely, this
reduces the average reconstruction time. The 6 + 2 +
2 scheme offers a level of data protection intermediate
between 6 + 3 and 6 + 4 Reed-Solomon codes. The 6
+ 2 + 2 system can recover from any combination of
three-disk failures, and from 86% of four-disk failures.

The cost of reconstructing a disk is lowest
with replication, highest with traditional Reed-
Solomon erasure coding, and intermediate with local
reconstruction codes.

The time necessary for reconstruction feeds back
into the data protection calculations. If failed disks
can be reconstructed faster, availability improves,
increasing the availability of the system or possibly
enabling the system to use fewer disks.

TRADE-OFFS
In a system with a large volume of active data,

objects accessed frequently, and in which it is
important to minimize latency, replication has the
advantage. A content delivery network (CDN), for
example, would use replication over erasure coding.

On the other hand, a system with mostly inactive
data, archival objects accessed rarely, and primarily
concerned with storage costs, would be better off using
erasure coding. Such a system might also want to use
a moderately large value of m in its m + n encoding.

A hybrid approach, used by Microsoft*2 Azure(4),
is to use both replication and erasure coding. Objects
are replicated on entering the system. Later they are
erasure-encoded and the replicas are deleted. Thus,

*2 Microsoft is an either registered trademark or trademark of Microsoft
Corporation in the United States and/or other countries.

WHITE PAPER 310

For any positive k,

 Prob(X > kn) ≈ Prob(Y >kn)

and the error in the approximation decreases with k,
becoming exact in the limit. Let Z be a standard normal
random variable. Then Y has the same distribution as

 k (m + n)p(1 − p)Z + k (m + n)p√

and so we have the following.

Prob(X > kn) ≈ Prob(Y > kn)

= Prob(k (m+ n)p(1 − p)Z + k (m+ n)p > kn)

= Prob Z > √

√
k

(1 − p)n − mp
(m + n)p(1 − p)()

The assumption p < n/(m + n) implies that
(1 − p)n − mp > 0 and so

 lim
k →∞

Prob Z > √k
(1 − p) n − mp

(m + n) p (1 − p)
= 0 .()

REFERENCES
(1) Rodrigo Rodrigues and Barbara Liskov, “High Availability

in DHTs: Erasure Coding vs. Replication,”
 http://bit.ly/17VoU7M
(2) Eduardo Pinheiro, Wolf-Dietrich Weber and Luiz André

Barroso, “Failure Trends in a Large Disk Drive Population,”
http://research.google.com/pubs/pub32774.html

(3) Bianca Schroeder and Garth A. Gibson, “Disk failures in the
real world: What does an MTTF of 1,000,000 hours mean to
you?,” http://bit.ly/15Ud8bI

(4) Cheng Huang et al, “Erasure Coding in Windows Azure
Storage,” http://bit.ly/ZPISui

i)*p**i*(1-p)**(m+n-i)

return sum

def parity_disks_needed(epsilon, p, m):

"""

Solve for number of parity disks

to achieve specified reliability.

epsilon = acceptable probability

of data loss

p = probability of single disk

failure

m = number of data disks

"""

 n= 0

 while True:

 n += 1

 if prob_fail(p, m, n) < epsilon:

 return n

APPENDIX B: INCREASING m + n
INCREASES RELIABILITY

Let m and n be fixed positive integers. Let p be the
probability of a single disk being dead at any time.
Assume p < n/(m + n).

We start with an m+n EC system and increase m
and n proportionately, resulting in a km+kn system.
As we increase k, the probability of data loss, that is,
the probability of more than kn failures, goes to zero
as k increases.

To see why this is so, let X be a Binomial(km+kn, p)
random variable and let Y be a normal random variable
with mean k(m+n)p and variance k(m+n)p(1−p). As k
increases, the probability distribution of X converges
to the probability distribution of Y .

Robert Primmer
Hitachi Data Systems Corporation

John D. Cook
Singular Value Consulting

Ab de Kwant
Hitachi Data Systems Corporation

ABOUT THE AUTHORS

