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OVERVIEW: Data storage systems are more reliable than their individual 
components. In order to build highly reliable systems out of less reliable 
parts, systems introduce redundancy. In replicated systems, objects are simply 
copied several times with each copy residing on a different physical device. 
While such an approach is simple and direct, more elaborate approaches 
such as erasure coding can achieve equivalent levels of data protection 
while using less redundancy. This report examines the trade-offs in cost 
and performance between replicated and erasure-encoded storage systems. 

INTRODUCTION
TO protect data from device or system failures storage 
systems employ mechanisms for data protection 
so that data can be provided to clients in the face 
of failure. While there are a variety of means for 
providing data protection (DP), in this paper we will 
focus on two: replication and erasure coding. 

Providing data protection necessarily results in 
the consumption of additional storage. The additional 
storage needed to implement a given DP scheme is 
referred to as storage overhead. A DP mechanism that 
uses less overhead is said to be more storage efficient, 
meaning it requires less storage overhead to provide 
equivalent data protection.

Replication is a process where a whole object 
is replicated some number of times, thus providing 
protection if a copy of an object is lost or unavailable. 
In the case of replicating a whole object, the overhead 
would be 100% for a single replica, 150% for two 
replicas and so forth. Erasure coding is a process 
where data protection is provided by slicing an 
individual object in such a way that data protection 
can be achieved with greater storage efficiency: that 
is, some value less than 100%.

Most papers on erasure coding focus on the 
relative storage efficiency of erasure coding (EC) 
versus replication. However, these papers often ignore 
details of EC implementation that have an impact 
on performance, and fail to address the issue of data 
availability. 

Replication is a special case of EC, using only one 
data disk. The parity disks in this case are necessarily 
replicas. However, EC typically refers to other 
configurations, varying the number of data disks and 

parity disks to achieve the same amount of protection 
against data loss with fewer disks or to achieve greater 
protection against data loss with the same number of 
disks. However, an EC system may not provide as 
much protection against data unavailability relative to 
a replicated system with the same protection against 
data loss. An erasure-coded system may also have 
more latency than a comparable replicated system. 

In this paper, we demonstrate that EC is 
advantageous for “cold” data, data that is unlikely to 
be accessed or for which read performance is not an 
issue. We also examine how replication is superior 
for “hot” data, content that is accessed frequently or 
for which performance is important. This paper gives 
guidance for choosing between replication and erasure 
coding in the large space between “hot” and “cold” 
data. In particular, the more emphasis one places on 
availability and read performance, the greater the 
advantage of replication; the more emphasis one 
places on storage efficiency, the greater the advantage 
of erasure coding. 

DATA AVAILABILITY 
Enterprise-class data storage systems are designed 

to protect against data loss (DL) and data unavailability 
(DU). Data loss refers to permanent loss, data that 
cannot be retrieved by any means. Data unavailability 
refers to data that is temporarily unavailable but that 
can be retrieved after some undetermined delay. 
Said another way, DL and DU refer to data being 
permanently and temporarily inaccessible. 

Cold data is often stored on tape due to the low cost 
of tape as a storage medium. The downside of storing 
data on tape is that it is generally less readily available 
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compared to data stored on disk. Therefore, for cases 
where availability is important the increased expense 
of disk storage is justified. 

For data to be highly available in a multi-data-
center environment means that the data must be 
distributed amongst the various data centers (DCs) in 
such a way that all data can still be read in the event 
that any one DC is unavailable.

Data availability calculations are sometimes 
incorrectly conflated with data loss calculations. While 
the two can be identical for a single site, they diverge 
when we talk about multisite. For example, assume we 
have two DCs and want our data to be highly available, 
what is the minimum amount of overhead required to 
protect against DU? The answer is 100%, and this 
answer is the same irrespective of the DP scheme 
employed to protect against DL. 

This answer can feel counterintuitive at first blush 
as it may seem that each DC need only house 50% of 
the total data. However, clients must be able to read 
the data when one of the data centers is unavailable. 
In such a case, all of the data must be available from 
the only data center that is reachable, so the answer 
makes sense. The table below illustrates how data must 
be spread across DCs to provide full data availability 
(that is, full data access in the event of the failure 
of any one DC), independent of the data protection 
scheme employed. 

DCs Minimum overhead for N+1
2 100% (100/100)
3 50% (50/50/50)
4 33% (33/33/33/33)
5 25% (25/25/25/25/25)

DATA PROTECTION
Data loss can occur when either a disk has died or 

when a disk is still working, but the blocks that hold 
the data being read have gone bad. For our purposes, 
we consider either case to have the same effect on 
our system. 

Let pL be the probability that a single disk is 
dead, permanently unreadable. Once a disk has been 
replaced, its function has been restored and we think 
of the original disk coming back to life. Data loss does 
not necessarily happen when disks die, but when too 
many disks are in a dead state, simultaneously. 

An estimate of pL depends on the mean time 
between failures as well as the time required to replace 
the disk. For example, suppose a disk performs reliably 
on average for 1,000 days, roughly three years. If a 

hot spare is available to replace the disk upon failure 
and it takes one day to format the disk and copy data 
to it, pL =0.001. If there is not a hot spare and it takes 
a couple days to order and install a replacement disk 
and a day to fill it, pL =0.003. 

Similarly let pU be the probability that a disk 
is unavailable. A disk may be unavailable, yet still 
alive. For example, a disk may be in perfect order but 
temporarily disconnected from the network. Because 
disks can be temporarily unavailable without failing, 
say due to a network outage, pL is always smaller 
than pU.

Replication
In a replicated system with k replicas of each 

object, the probability of data loss is pk
L, assuming 

disk failures are independent. (We discuss this 
independence assumption later.) Given a tolerable 
probability of data loss ε, we can solve for the number 
of disks k needed keep the probability of loss below 
this level: 

 k =
logε

log pL
 (1)

The same calculation applies to data unavailability 
if we replace pL with pU , again assuming independence. 
Some causes of unavailability may have independent 
probabilities, but as we discuss in the Allocate Disks 
to Data Centers section below, disks located within a 
data center risk simultaneous unavailability due to the 
data center going offline temporarily. 

Erasure Coding
In an m + n erasure-encoded system, each object 

is divided into m equal-sized fragments. In addition 
n parity fragments are created, each the size of one 
of the data fragments. The data can be read if any 
m out of the m + n fragments are available. Stated 
negatively, data will be lost if more than n fragments 
are simultaneously lost. In this section we focus 
on data loss. Similar considerations apply for data 
unavailability, though there is an important distinction 
between data loss and data unavailability that matters 
more for EC than for replication.

Since we need m out of m + n disks to reconstruct 
an object, the probability of data loss is the probability 
of more than n disks being dead simultaneously: 

 
m + n

i= n +1
( )m + n

i
pi

L (1 − pL )m + n − iΣ  (2)
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Define kc =(m + n)/m. This is the redundancy 
factor for m + n erasure coding, analogous to k 
for replication. For a fixed redundancy level, an 
erasure-encoded system has at least the same level of 
reliability as the corresponding replicated system. (In 
general, an erasure-encoded system will have greater 
reliability. However, one considers replication as a 
special case of erasure coding with m = 1, in which 
case the systems would have equal reliability.) 
Stated another way, for a fixed level of reliability, 
an erasure-encoded system requires less disk space 
or can store more data with the same amount of disk 
space. 

Given a number of data fragments m and an 
acceptable probability of unavailability ε, you can 
solve for the smallest value of n such that

 
m + n

i= n +1

m + n
i

pi
L (1 − pL )m + n − i < ε( )Σ  (3)

See Appendix A for a Python script to solve for n.
For example, suppose you would like to build a 

system with probability of data recovery 0.999999 (six 
nines) using disks that have probability 0.995 of being 
alive. Triple replication would have a probability of 
DL equal to 0.0053 = 1.25 × 10−7. Suppose you want 
to use erasure coding with 8 data disks. The script in 
the appendix shows that an 8 + n system would require 
n = 3 to keep the probability of DL below 10−6. In 
fact, an 8 + 3 system has a probability of DL 1.99 × 
10−7. A 1-Gbyte video stored in the triple replicated 
system would require 3 Gbyte of storage. In an 8+3, 
the same object would be stored in 8 data fragments 
and 3 parity fragments, each 125 Mbyte in size, for 
a total of 1.375 Gbyte. In short, the erasure-coded 
system would use about half as much disk space and 
offer the same level of data protection. 

(The number of parity disks n is best calculated 
numerically as mentioned above, though there are 
(incorrect) analytical solutions in the literature. 
Rodrigues and Liskov(1) give an analytical solution 
for (3) by using a normal (Gaussian) approximation 
to the binomial distribution Bin(m + n, p). However, 
the parameters m + n and p are typically outside the 
range for the normal approximation to be reliable. The 
estimate for kc given in that paper has a large error. 
In the example above where we concluded 3 parity 
disks were needed, the approximation of Rodrigues 
and Liskov says 1.054 disks are needed. Even if you 
round 1.054 up to 2, this is still short of the 3 disks 
necessary.) 

Choose the number of data disks
Given a value of m and the individual disk 

reliability, the discussion above describes how to 
choose n to achieve the desired level of protection. 
But how do you choose m? 

Increasing n while holding m fixed increases 
reliability. Increasing m while holding n fixed decreases 
reliability. But in a sense, we gain more reliability by 
increasing n than we lose by increasing m. We can 
increase reliability by increasing m and n proportionately, 
keeping the redundancy factor kc constant. See Appendix 
B for a precise statement and proof. 

For example, a 4 + 2 system will be more reliable 
than a 2 + 1 system even though both have the same 
redundancy kc =1.5. So why not make m and n larger 
and larger, obtaining more and more reliability for 
free? Of course the increase in m and n is not free, 
though the cost is subtle.

Larger values of m and n do result in greater 
data protection for a fixed level of disk reliability. 
However, while larger values of m and n reduce the 
chance of complete failure (irrecoverable data loss), 
they increase the chance of at least one recoverable 
disk failure. They potentially increase latency and 
reconstruction costs. 

Increasing m and n also increases the total number 
of data fragments m + n to manage. In practice, 
erasure-encoded systems use values of m on the order 
of 10, not on the order of 100. For example, you may 
see 6 + 3 systems or 12 + 4 systems, but not 100 + 50 
systems. One reason is that you can obtain high levels 
of data protection without resorting to large values of 
m. Another is that erasure-encoded systems typically 
have on the order of millions of object fragments. A 
rough calculation shows why this is so. There must 
be a database to keep track of each fragment. If this 
database is kept in memory, it has to be on the order 
of gigabytes. If each record in the database is on the 
order of a kilobyte, the table can contain on the order 
of a million rows, and so the number of fragments 
is kept on the order of millions in order to fit the 
corresponding database in memory. 

Aside from the memory required to keep an 
inventory of data fragments, there is also the 
time required to find and assemble the fragments. 
The required time depends greatly on how EC is 
implemented, but is always some amount of time, 
and hence an overhead associated with EC that is not 
required with replication. This explains why an EC 
system can be slower than a replicated system, even 
when all fragments are in the same data center. 
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Finally, we note that the more data fragments there 
are to manage, the more work that is required to rebuild 
the fragment inventory database when failures occur.

Allocate Disks to Data Centers
The previous sections have not considered how 

disks are allocated to data centers. This allocation 
impacts EC more than replication, and DU more than 
DL. 

It is far more likely that an entire data center would 
be unavailable than that an entire data center would be 
destroyed. Data centers are occasionally inaccessible 
due to network outages. This causes all disks inside 
to be simultaneously unavailable. However, it is very 
unlikely that all disks in a data center would fail 
simultaneously, barring a natural disaster or act of 
war. This means that DU is more correlated than DL. 

In replicated systems, it is common for one 
replica of each object to reside in each data center. 
If we assume network failures to data centers are 
independent, then the same probability calculations 
apply to data loss and data unavailability. If there are 
d data centers, the probabilities of an object being lost 
or unavailable are pd

L and pd
U respectively. 

However, in EC systems, the number of fragments 
per object is typically larger than the number of data 
centers. A company often has two or three data centers; 
more than four would be very unusual, especially for 
a mid-sized company. And yet EC systems using a 
scheme such as 8+4 are not uncommon. With fewer 
than 12 data centers, some of these fragments would 
have to be co-located. 

If every fragment in an EC system were stored in 
a separate data center, the unavailability calculations 
would be analogous to the data loss calculations, as 
they are for replicated systems. But because data 
fragments are inevitably co-located, these fragments 
have correlated probabilities of being unavailable 
and so the unavailability probability for the system 
goes up. 

Probability Assumptions
Reliability calculations, whether for replicated 

systems or erasure-encoded systems, depend critically 
on the assumption of independence. Disk failures 
could be correlated for any number of reasons: disks 
coming from the same manufacturing lot, disks 
operating in the same physical environment, and 
so forth. Therefore, reliability estimates tend to be 
inflated(2). Researchers from Carnegie Mellon have 
shown, for example, that disk failures are correlated 

in time(3). That is, if you have had more failures than 
usual this week, you are likely to have more failures 
than usual next week too, contrary to the assumption 
of independence. To be cautious, look for ways to 
improve independence and be skeptical of extremely 
small probabilities calculated based on independence 
assumptions. 

The assumption of independence is more accurate 
for disks in separate data centers. And so, for 
replicated systems with each replica in a separate data 
center, independence is a reasonable assumption. But 
for EC systems with multiple fragments in each data 
center, the assumption of independence is less justified 
for data loss, and unjustified for data unavailability. 

Also keep in mind that when the probability of any 
cause of failure is sufficiently small, other risks come 
to dominate. One could easily build an erasure-coded 
system with theoretical probability of failure less than 
10−12, a one in a trillion chance. But such probabilities 
are meaningless because other risks are much larger. 
Presumably the chance of an earthquake disabling a 
data center, for example, is larger than 10−12.

EFFICIENCY CONSIDERATIONS
In a replicated system, the operating system 

directly locates objects. In the event of a failure, 
requests are redirected to another server, but in the 
usual case objects are accessed directly. 

With erasure coding, fragments of objects must 
be cataloged. Since the bits necessary to reconstruct 
an object exist on multiple disks, a system must keep 
track of where each of these fragments are located. 
When an object is requested from an m + n system, a 
server looks up the location of at least m fragments. 
(The details of this process are implementation 
dependent. A server could, for example, randomly 
choose m fragments or try to determine the m closest 
fragments.) If the requests succeed, these m fragments 
are transferred to a server to be re-assembled into the 
requested object. Since assembly cannot begin until 
the last fragment is available, the process would be 
slowed down if one of the fragments were coming 
from a location farther away than the others. 

COSTS OF DISK FAILURES
For a fixed level of reliability, erasure coding 

requires less disk space than replication. If storage 
cost were the only consideration, erasure coding would 
have a clear advantage over replication. However, 
there are other factors to consider, and these factors 
depend on usage scenarios. 
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If p is fairly small, the terms involving higher 
power of p will be negligible and the sum above will 
be approximately 

 (1 − p)L1 + pL2 

dropping terms that involve p2 and higher powers 
of p.

For example, if there is a probability of 0.001 that 
an object is available at the nearest data center, and 
the second data center has 100 times greater latency, 
the expected latency is 10% greater (that is, pL2/L1 = 
0.001 * 100 = 0.1) than if both replicas were located 
in the nearest data center. 

In an erasure-encoded system, fragments could be 
geographically distributed in many ways. If latency 
is a concern, an m + n system would store at least m 
fragments in a single location so that only local reads 
would be necessary under normal circumstances. If m 
fragments are stored in one location, the probability 
of one local disk failure is mp. This means the 
probability of a single local failure, and the necessity 
of transferring data from a more distant data center, is 
m times greater for an erasure-coded system compared 
to a replicated system. The expected latency increases 
from approximately (1 − p)L1 + pL2 in a replicated 
system to approximately (1 − p)L1 + mpL2 in an 
erasure-encoded system. 

To illustrate this, suppose in the example above 
that we pick our units so that the latency of the nearer 
server is L1 = 1. If m = 8, the expected latency would 
be 1.099 using replication and 1.799 using erasure 
coding.

For active data, objects that are accessed frequently, 
latency is a major concern and the latency advantage 
of replication should be considered. For inactive data, 
objects are archived and seldom accessed, latency may 
be less of a concern. 

Reconstruction
When an object request fails, it must be determined 

exactly what has failed. This is a much simpler task in 
a replicated system than in an EC system. 

Once the failed disk has been identified, in either a 
replicated or an erasure-coded system, its data must be 
copied onto a replacement disk. The cost of rebuilding 
the disk depends on where the data are coming from, 
whether locally within a data center or remotely from 
another center. 

While erasure coding can lower the probability of 
a catastrophic failure, it increases the probability of a 
recoverable failure. The probability that one or more 
disks in a set will fail is approximately the probability 
of a particular disk failing times the number of disks*1. 
An example given above compared triple replication 
to 8 + 3 erasure coding. Both systems had roughly 
the same probability of data loss. Replication used 3 
disks per object while erasure coding used 11, and so 
the erasure-coded system is nearly 4 times as likely to 
experience a single, recoverable disk failure. 

If a disk failure is recoverable, what is its cost? The 
cost is not in maintenance. The cost of replacing hard 
disks is proportional to the total number of disks in 
use, whether those disks contain replicated objects or 
erasure-encoded object fragments. Erasure encoding 
does not increase the number of disk failures. By 
reducing the number of disks needed, it can reduce 
the number of failures. However, erasure encoding 
increases the probability that an object request is 
affected by a disk failure.

Latency
If all replicas and all erasure-encoded fragments 

are in the same data center, latency is not as much of 
an issue as when replicas and encoded fragments are 
geographically separated. 

In a replicated system, requests could be routed 
to the nearest available replica (nearest in terms of 
latency, which usually means physically nearest 
though not necessarily). If the nearest replica is not 
available, the request would fail over to the next 
nearest replica and so on until a replica is available or 
the request fails. In an m+n erasure-encoded system, 
an object request could be filled by reconstructing 
the object from the m nearest fragments. Since object 
requests more often encounter (recoverable) disk 
failures in erasure-encoded systems, they will more 
often involve an increase in latency. 

Suppose a replicated system maintains k copies 
of an object, each in a different data center, and that 
requesting data from these centers has latency L1 <L2 
< ... < Lk for a given user. Suppose each replica has a 
probability p of being unavailable. With probability 
1 − p the latency in the object request will be L1. 
With probability p(1 − p) the latency will be L2. The 
expected latency will be

 
k

i=1

pi− 1(1 − p)L iΣ
*1 The probability that exactly one out of a set of m disks will fail is mp if 

p is the probability of an individual failure. But the probability of one 
or more failures is 1−(1−p)m, which is approximately mp if p is small. 
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active data is served by replication and inactive data 
is served by erasure coding. 

In the Azure implementation, the cost of encoding 
fragments is not a significant concern. Because objects 
are replicated immediately, encoding can be done out 
of band. A system that encodes objects as they enter 
might be more concerned about encoding costs. 

One could also use a hybrid approach of using k 
replications of m+n erasure-encoded fragments. In 
such a case, k and n might be very small. For example, 
n might be 1 or 2, and k = 2 or 3 might be the number 
of data centers. 

RECOMMENDATIONS
In summary, we recommend beginning by 

estimating the reliability of individual components 
and the desired reliability of the overall system. Then 
use equation (1) to determine the necessary number 
replicas k or use equation (3) to determine the number 
of fragments in an m + n erasure-coded system.

Replicated systems are simpler to implement and 
can have lower latency and reconstruction costs. 
Erasure-encoded systems require less disk space and 
hence have lower storage costs. A system primarily 
used for serving active data as quickly as possible 
would probably use replication. A system primarily 
used for archiving would benefit from erasure 
coding. A system with mixed use might choose a 
compromise, such as erasure coding with a small 
number of data fragments per object, depending on 
the relative importance of latency, reconstruction 
costs, and storage or maintenance costs. Or, such a 
system could use both replication and erasure coding, 
moving objects from the former to the latter as they 
are accessed less frequently.

APPENDIX A: SOFTWARE
from math import sqrt, factorial 

def  binomial(a, b): 

return factorial(a + b)/

(factorial(a)*factorial(b)) 

def  prob_fail(p, m, n): 

"""Probability of more than n 

failures in an m+n system when 

each component has probability of 

failure p.""" 

sum =0 

for  i in range(n+1, m+n+1):  

sum += binomial(m+n, 

With replication, the content of a failed disk is 
simply copied, either from within a data center or 
from a remote data center, depending on how replicas 
are distributed. 

With m + n erasure coding, the content of m disks 
must be brought to one location. Huang et al(4) give 
the example of 6 + 3 encoding. If three fragments are 
stored in each of three data centers and one disk fails, 
the content of four disks must be transferred from a 
remote data center to the site of the failed disk in order 
to have enough data for reconstruction. 

The authors propose local reconstruction codes(4) 
as a variation on erasure codes to mitigate this 
problem. With this approach, two data centers would 
each contain three data disks and a local parity disk. 
A third data center would contain two global parity 
disks computed from all six data disks. They call this 
approach 6+2+2. Any single failure could be repaired 
locally. Since single failures are most likely, this 
reduces the average reconstruction time. The 6 + 2 + 
2 scheme offers a level of data protection intermediate 
between 6 + 3 and 6 + 4 Reed-Solomon codes. The 6 
+ 2 + 2 system can recover from any combination of 
three-disk failures, and from 86% of four-disk failures. 

The cost of reconstructing a disk is lowest 
with replication, highest with traditional Reed-
Solomon erasure coding, and intermediate with local 
reconstruction codes. 

The time necessary for reconstruction feeds back 
into the data protection calculations. If failed disks 
can be reconstructed faster, availability improves, 
increasing the availability of the system or possibly 
enabling the system to use fewer disks.

TRADE-OFFS
In a system with a large volume of active data, 

objects accessed frequently, and in which it is 
important to minimize latency, replication has the 
advantage. A content delivery network (CDN), for 
example, would use replication over erasure coding. 

On the other hand, a system with mostly inactive 
data, archival objects accessed rarely, and primarily 
concerned with storage costs, would be better off using 
erasure coding. Such a system might also want to use 
a moderately large value of m in its m + n encoding. 

A hybrid approach, used by Microsoft*2 Azure(4), 
is to use both replication and erasure coding. Objects 
are replicated on entering the system. Later they are 
erasure-encoded and the replicas are deleted. Thus, 

*2 Microsoft is an either registered trademark or trademark of Microsoft 
Corporation in the United States and/or other countries.
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For any positive k,

 Prob(X > kn) ≈ Prob(Y >kn) 

and the error in the approximation decreases with k, 
becoming exact in the limit. Let Z be a standard normal 
random variable. Then Y has the same distribution as

 k (m + n )p(1 − p)Z + k (m + n )p√

and so we have the following.

Prob(X > kn) ≈ Prob( Y > kn )

= Prob( k (m+ n )p(1 − p)Z + k (m+ n )p > kn )

= Prob Z > √

√
k

(1 − p)n − mp
(m + n )p(1 − p)( )

The assumption p < n/(m + n) implies that  
(1 − p)n − mp > 0 and so

 lim
k →∞

Prob Z > √k
(1 − p) n − mp

(m + n ) p (1 − p)
= 0 .( )
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i)*p**i*(1-p)**(m+n-i) 

return sum 

def  parity_disks_needed(epsilon, p, m): 

""" 

Solve for number of parity disks 

to achieve specified reliability. 

epsilon = acceptable probability 

of data loss 

p = probability of single disk 

failure 

m = number of data disks 

"""

 n= 0 

 while True: 

     n += 1 

     if prob_fail(p, m, n) < epsilon:

         return n

APPENDIX B: INCREASING m + n 
INCREASES RELIABILITY

Let m and n be fixed positive integers. Let p be the 
probability of a single disk being dead at any time. 
Assume p < n/(m + n). 

We start with an m+n EC system and increase m 
and n proportionately, resulting in a km+kn system. 
As we increase k, the probability of data loss, that is, 
the probability of more than kn failures, goes to zero 
as k increases.

To see why this is so, let X be a Binomial(km+kn, p) 
random variable and let Y be a normal random variable 
with mean k(m+n)p and variance k(m+n)p(1−p). As k 
increases, the probability distribution of X converges 
to the probability distribution of Y . 
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