

R&D strategy for global growth of social innovation business

14th April 2011

Shigeru Azuhata, Senior Vice President and Executive Officer, General Manager, Research & Development Group, Hitachi, Ltd.

Contents

- 1. R&D strategy for new growth
- 2. Enhancing global R&D
- 3. Reorganization of domestic R&D
- 4. Summary

Contents

- 1. R&D strategy for new growth
- 2. Enhancing global R&D
- 3. Reorganization of domestic R&D
- 4. Summary

1-1. Management strategy [2012 Mid-term Mgmt. Plan]

"Growth driven by Social Innovation business" & "Solid financial base"

Social innovation business is made up of "Fusion of societal infrastructure & IT" and "Materials & Key devices"

- 1. Leverage Hitachi's strengths to promote a global growth strategy
- Strengthen locally led project control centers; Develop detailed strategies for each region
 - 2. Focus business resources on Social Innovation business*
- Invest 1 trillion JPY in FY2010 FY12 period; Spend 600 billion JPY on R&D
- 3. Stable profit center by strengthening the management platform
- Rigorously cut cost, improve non-operating revenue, etc.; Become a global CSR leader

1-2. Management strategy [Key business areas]

Social Innovation Business

Industrial, transportation and urban development systems

- Eco-friendly city (Water treatment)
- Construction machinery

- Elevators and escalators
- Green mobility

Consulting

Cloud

- Data centers
 - Storage

Information and Telecommunication systems

- Healthcare
 - Smart grids

Energy (Thermal, nuclear, renewable)

Power systems

Materials and key devices

1-3. Group R&D strategy [Prioritizing investment]

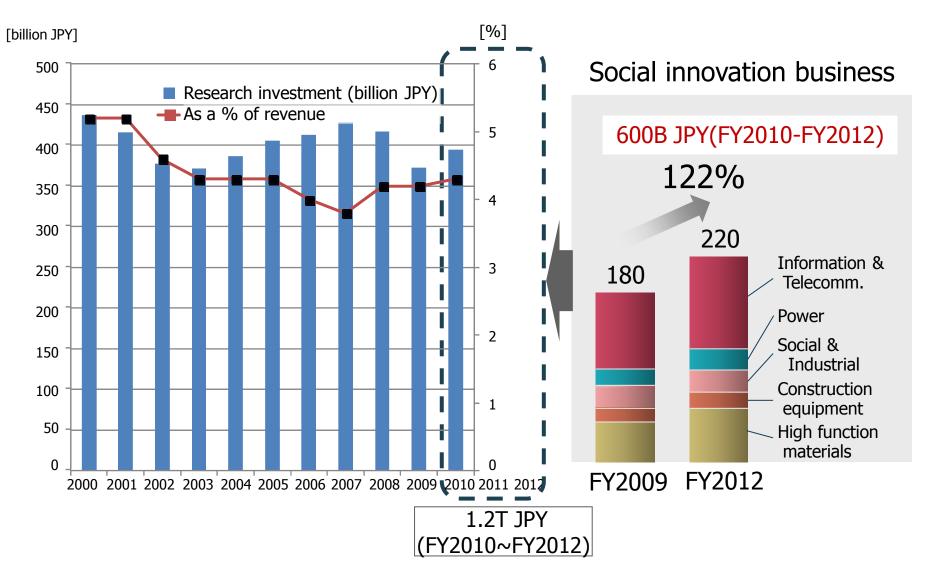
Concentrate investment on the Social Innovation Business

Global

Fusion

Environment

Strategic allocation of R&D investment


- Appropriate 50% of 1.2T JPY corporate total
 - → FY 2010-2012 Total 600B JPY*
- Major research examples: Set-up R&D structure according to region

Global	Region specific designed social innovation business	5 ,
Fusion	Information platform for societal infrastructure	Large capacity / Real-time / High reliability / Knowledge-based
Environment	New electronics research	New power devices/invertersLi-ion batteries
Basic & Platform	Efficient design using analysis technology	 Enhance supercomputing & analysis technology dramatic reduction in design time

1.4 Group R&D strategy [Focusing investment]

FY2012 R&D investment in social innovation business: 122% of FY2009*

1-5. Corporate R&D strategy [Alignment with mngt.]

New R&D structure to facilitate global growth in social innovation business

Basic strategy:

Reinforce domestic laboratories & expand locally led overseas research

Overseas research centers

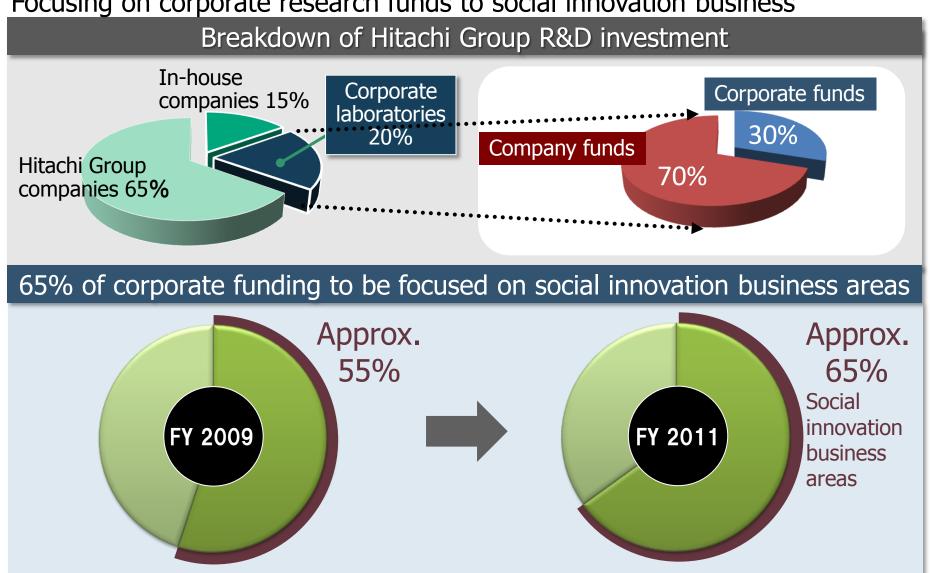
Reinforce locally-led global research

Double overseas research personnel

Domestic R&D organization

- Build-up the fundamental research organization to provide strong foundations for Hitachi one hundred years from now
- Consolidate and re-organize research into [Social infrastructure][IT• Monozukuri] to strengthen Honebuto and Fusion research

Reorganize the 6 corporate labs & 2 division labs into 3 corporate laboratories

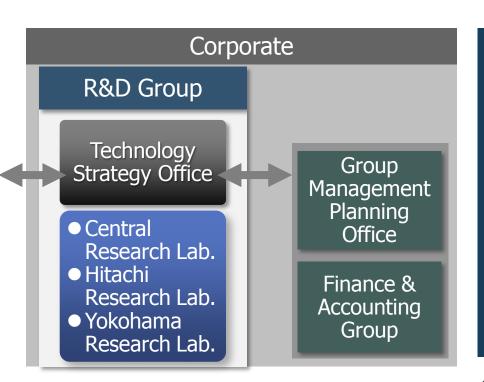


Establish a new "Technology Strategy Office"

1-6. Corporate R&D strategy [Focusing investment]

Focusing on corporate research funds to social innovation business

1-7. Corporate R&D strategy [Establish a control tower]



Technology Strategy Office To lead strategic allocation in social innovation business

Plan technology strategies to achieve Hitachi Gr. management strategies

- Propose Technology Roadmap for the Hitachi Group
- Propose trans-Group <u>strategic projects</u>

CTO Management Planning Division Group company CTO Management Planning Division Laboratory

1. Special Research Project

Future backbone technology & products

2. Strategic Business Project

Priority businesses to be set-up quickly

1-8. Corporate R&D strategy [Schemes]

FY2010 FY2015 FY2025 Business target Management Growth through social innovation business strategy Hitachi Business strategy roadmap Group Technology roadmap Research Frontier Sponsored research Adv. sponsored research & Platform research (Company funds) (Corporate funds) Development Current business / next-Generate innovative generation business expansion & disruptive technologies <Generate No. 1 business> <Shifts in paradigm>

Contents

- 1. R&D strategy for new growth
- 2. Enhancing global R&D
- 3. Reorganization of domestic R&D
- 4. Summary

Promote and expand global localization

Strengthen project control centers via local leadership

- Rigorously develop a more market-centric approach through local company leaders
- Grasp local values, standards and risks under local leadership

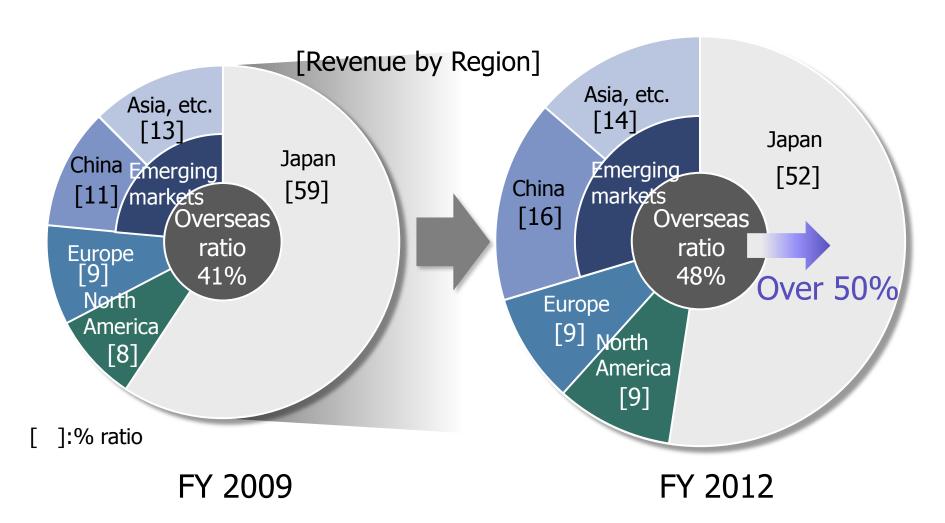
Accelerate deployment of fine-tailored strategies for each region Firmly maintain Japan as the base for business

Emerging markets

Tap into the robust demand for social infrastructure; cooperate with partners

Industrialized nations

Make environmental and integrated technology proposals to address the demand in upgrading social infrastructure


Japan

 Develop environmental and integrated services leveraging a strong business base

2-2. Global growth strategy [Overseas revenue]

Aim for an overseas revenue ratio more than 50% in FY2012*

2-3. Reinforce overseas research centers

Strategy: Promote locally-led global research at the 4 worldwide research centers

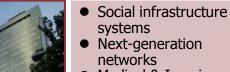
[Initiative 1]: Increase overseas personnel ...
FY2012: approx. 300 (2x)
[Initiative 2]: Foster global R&D human resources ...
FY2012: 90%+ local staff, 30%+ doctorate holders

[Initiative 3] Focus on local social innovation business themes

- Participate in national social innovation business programs
 - R&D base for local Hitachi Group companies
- Promote open innovation in cutting-edge physics
 Europe
 Accelerate developments in social innovation busines
 - Accelerate developments in social innovation business such as Rail
 Power systems
- Reinforce next-generation storage systems R&D
 - Development of environment-conscious vehicular technologies
- Asia
 Alliance with research organizations in India

2-4. Global research centers & staff increase

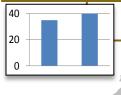
Europe (Hitachi Europe Ltd.)


ondon

- Adv. physics
- Power systems
- Rail system
- Design

Bangalore

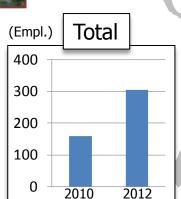
China (Hitachi China R&D Corporation)



- Medical & Imaging systems Offshore
- development

USA (Hitachi America, Ltd.)

- Storage systems
- Automotive equipment
- Wireless communication systems
- Design


Cambridge Munich

Sophia Antipolis

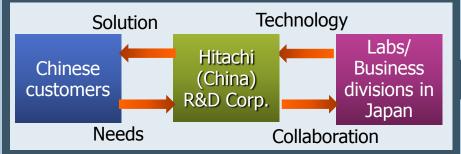
100

0

Detroit Santa Clara

Asia (Hitachi Asia Ltd.)

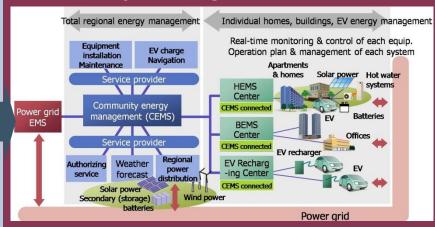
- Software
- Storage mechanics
- Network storage
- Water treatment


2-5. Global research strategy [China]

Participation in national social innovation projects

- Established Social Infrastructure System Laboratory (Oct. 2010)
 - R&D tailored for China

Collaboration with leading universities



Tsinghua - Hitachi Ubiquitous IT Joint Laboratory (Established 2001)

Tsinghua-Hitachi Comprehensive collaboration agreement (Ratified 2010)

■Contribute to China's Eco-city projects <Tienjin, Guangzhou, Dalian>

HEMS:Home Energy Management

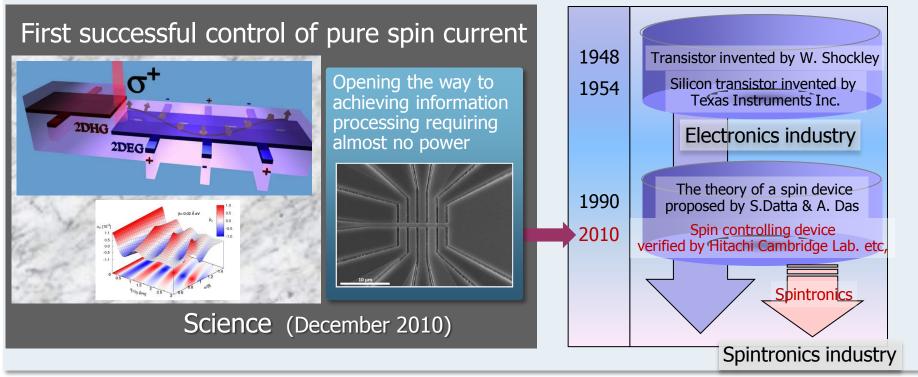
BEMS: Building Energy Management System

CEMS: Community Energy Management System

EV: Electric Vehicle

Development of the Chinese version of the Smart grid simulator (2012)

2-6. Global research strategy [Europe]



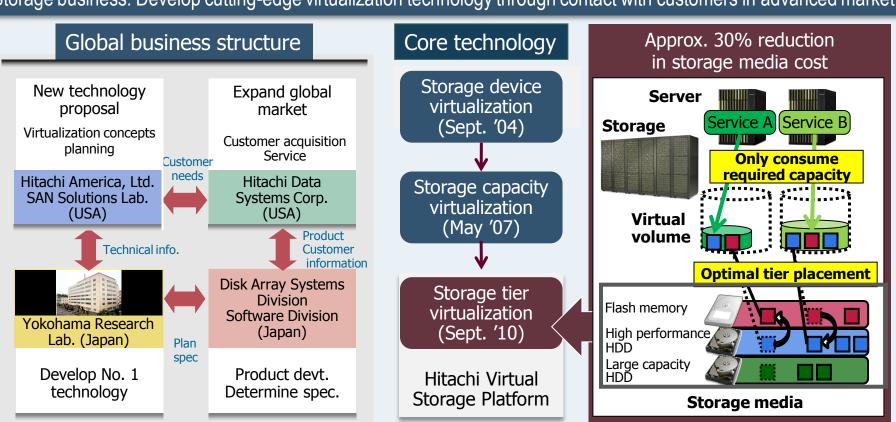
Accelerate business in social infrastructure such as rail & power systems

- Thermal power business: CCS*¹, A-USC*² with local universities
- Provide complete rail solution from manufacturing to maintenance

Promote open innovation in frontier physics

Cutting-edge fundamental physics creating a paradigm shift in industry (Hitachi Cambridge Lab.)

2-7. Global research strategy [U.S.A.]



Contribute to US business

- Reinforce R&D for next-generation storage systems
- Development of eco-friendly vehicle-related technology

Storage business: Develop cutting-edge virtualization technology through contact with customers in advanced market

2-8. Global research strategy [Asia]

Open a R&D center in India in 2011

Promote market-in style technology development for the Indian market

- Mission:
 - Open-up the way for IT business in India
- Themes being undertaken:
 - 1 IT hardware & middleware for the Indian market
 - 2 Storage applications for compilation and use of large data volumes
 - 3 Mathematical algorithms, knowledge processing and research on tool sets

Research center

@ Bangalore, India

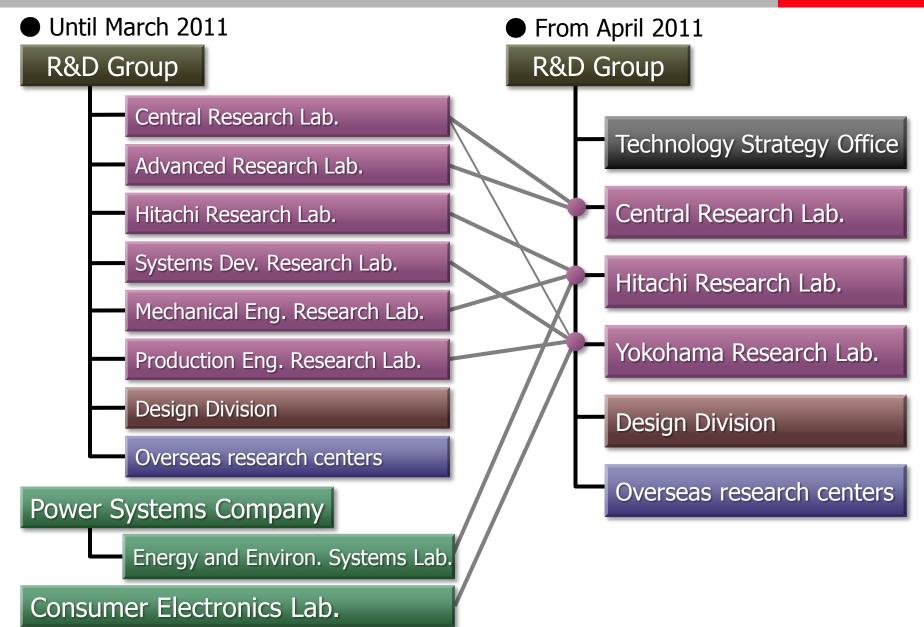
Collaboration with universities in India

Development of advanced technology in collaboration with universities

[Large volume information processing]
International Inst. of Information Technology
[Knowledge processing]
Indian Institute of Science

[Social infrastructure]

Indian Institute of Technology



Contents

- 1. R&D strategy for new growth
- 2. Enhancing global R&D
- 3. Reorganization of domestic R&D
- 4. Summary

3-1. New R&D organization

3-2. Aim of the new laboratories

Speed-up decision making & facilitate synergy

Central Research Laboratory

Promote fundamental to applied seamless R&D

Hitachi Research Laboratory

Enhance synergy through integration of social innovation

Yokohama Research Laboratory

Higher efficiency through convergence of IT research & Fusion of *Monozukuri*

3-3. Central Research Laboratory

Promote fundamental to applied seamless R&D

Towards a world industry-leading CoE • Personnel: approx. 900

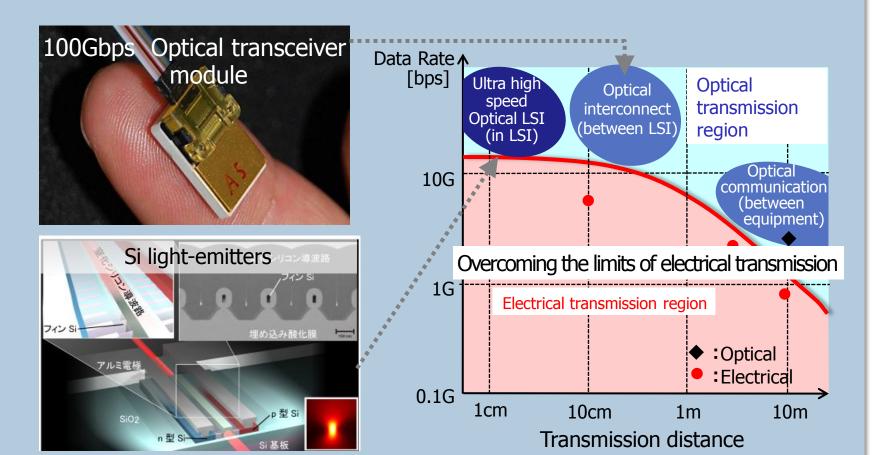
- Mission
- Technology development contributing to the expansion of the social innovation business area
- Pioneering R&D of new areas based on future social needs

Basic

Nano science

Life Sciences

Computer Science


3-4. Green IT devices

Overcome the limits in communication equip. using innovative optical technology

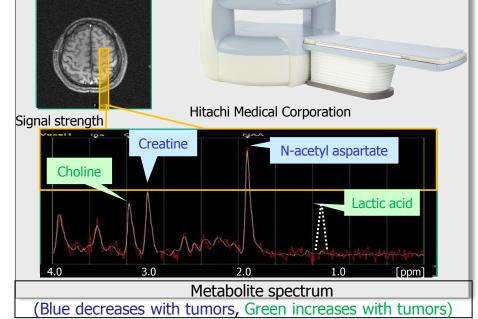
Innovative optical transmission devices & modules*

^{*}A part of this research was conducted as part of a project supported by NEDO.

A part of this research was supported by the Funding Program for World-leading Innovative R&D on Science and Technology administered by the Japan Society for the Promotion of Science.

3-5. Fusion of diagnostics & treatment

Supporting the precise diagnosis of tumors and appropriate therapy systems

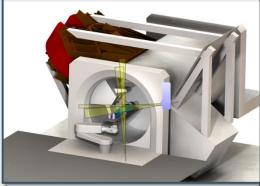

Diagnosis
Imaging, In vitro

Treatment
Radiation, Ultrasound

Open MRI

Metabolite analysis for tumor diagnosis using world's highest vertical magnetic field

Translational view of human head


Proton beam cancer therapy

Spot scanning irradiation

Proton beam Electro -magnet

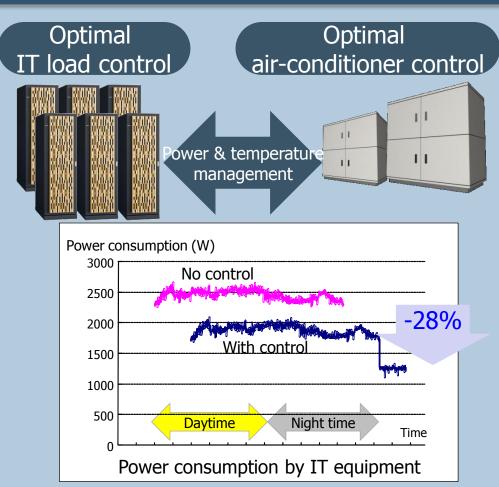
Installed in the M. D. Anderson Cancer Center (1st supply in a general hospital)

Moving tumor tracking

Combined with "Real-time moving tumor tracking" technology developed by Hokkaido University, and refined.

(Joint development with Prof. Shirato of Hokkaido Univ. under the FIRST program)

3-6. Green IT systems



Environment conscious data centers drastically reducing power consumption

Technology for collaborative control of IT and facilities

■ "No. 3 Yokohama Center" (Opened 21st July 2009) Eco-friendly technology employed

3-7. Hitachi Research Laboratory

Enhance synergy through integration of social innovation

Towards a globally top-class research center for social infrastructure

• Personnel: approx. 1,200

R&D to support social innovation business such as Social & Life infrastructures and underlying materials & key devices

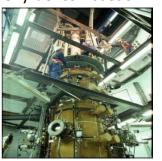
3-8. Clean energy

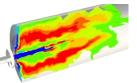
Power generation technology for a prosperous and clean future

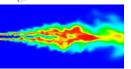
Gas turbines

<Adv. humid air turbine> <80MW-class (H-80)> Largest capacity 2-shaft gas turbine*1 3MW-class power generation systems

Thermal efficiency 38%*2

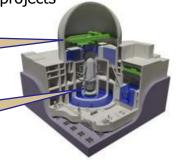

3MW-class pilot plant




- *1: Comparison of heavy duty types according to Hitachi survey as at 22nd Feb 2010
- *2: Based on lower heating value

Coal-fired thermal power

<CO₂ capture>
Oxyfuel combustion*3 burner stability tests


*3: Raising CO2 concentration using pure oxygen instead of air for combustion making it easier to capture

Nuclear power generation

Pursuing next-generation nuclear reactor development under national projects

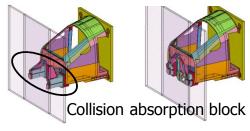
Best combination of active and passive safety systems

> High performance reactor core

Solar power generation

Development of PCS*4 with grid stability function

NEDO Mega solar verification research


3-9. Green mobility

Expanding global rail business by combining total MONOZUKURI power

Analysis-led design

simulation

Inverters & Batteries

Li-ion battery system

Supercomputer

MONOZUKURI technology

Friction Stir Welding (FSW)

Rail maintenance

UK high speed express rail cars (Class 395)

UK IEP (Intercity Express Programme)
Officially resume the negotiation of IEP (March 2011)

Image of rail car

3-10. Materials research

Lead business in high function materials through advanced materials research

Rare earth metal free magnets

Metals

<Environmental>
<Low power consuming>
 materials

- Rare earth magnets
- Amorphous

Batteries

<Eco-conscious vehicles>
<Rail>

key components

 Standard Li-ion batteries social & industrial applications

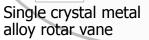
Low cost high capacity industrial Li-ion batteries

Cables with RF-ID

Cables

<Power><Rail>
<Communication> materials

 Radiation-resistant cables for nuclear plants


Materials Research

High thermal conductivity resin sheet

Material simulation

Insulating resin material for industrial equip.

High thermal conductive resin

Rare earth metal free motors

Key devices

<Low power consuming> equipment & devices

- •Inverters
- High efficiency motors
- Power devices

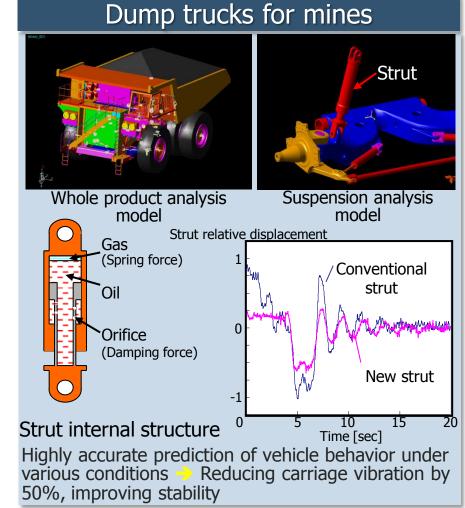
Chemicals

<Environmental><Energy>
materials

- High thermal conductivity material
- Battery anode material

Rare-metal alternative lead-free glass

3-11. Simulation technology

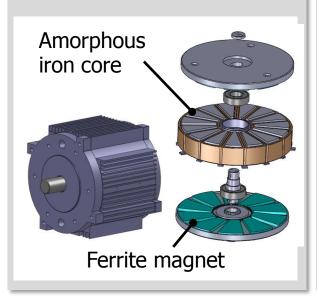


Raise product competitiveness by low costs, less design time & high performance

FY2011: Enhance supercomputers ⇒ enable prototype-less, entire system simulation

Large industrial pumps Cavitation white section) Pressure distribution on pump impeller Stress (MPa) tress fluctuation Blade joint (welding) Normal Simulation Actual stress Time [sec] (1 rotation) Stress on blade joint Prediction of hydrodynamic force based on fluid analysis -> reliability assured all steel welded pump

3-12. Reducing environmental load

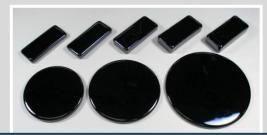


Promoting alternatives to rare metals through cutting-edge device, production technology and materials research

Rare earth metal-less motor

 Low-loss amorphous iron core + Ferrite magnet
 High-efficiency rare metalless motor (3.7 kW)

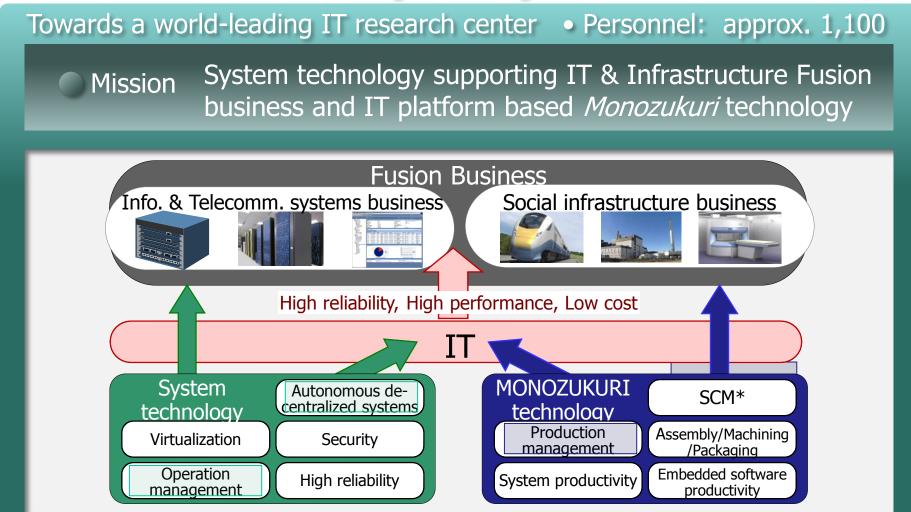
Recycling rare earth metal


- Dry-type low-environmental load recycling method
- Reclamation of rare earth metals (Neodymium (Nd), Dysprosium (Dy))

Purity ≥95%

Rare metal-alternative glass

- Eco-compliant low-melting point lead-free vanadium system glass (alternative for conventional bismuth)
- Sealed at 350~400°C


Vanadium: Plenty of deposit, Distribute number of producing countries

Main element	Reserve	Main producers
Vanadium	38M tons	South Africa, China, Russia
Bismuth	680k tons	China

3-13. Yokohama Research Laboratory

Higher efficiency in IT research & fusion of *Monozukuri* through convergence

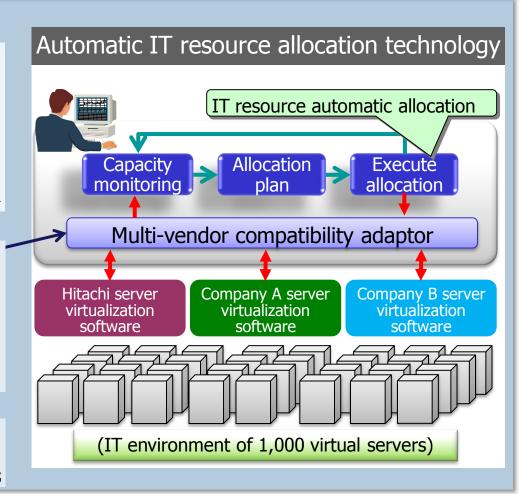
3-14. Data center operation management systems

Reducing data center operation costs by automatic IT resource allocation technology

Cloud-type data centers

[Background]

Increasing server operation costs


[Technology developed]

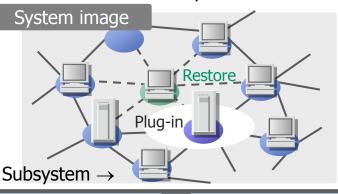
- Multi-vendor compatibility adaptor enabling administrators to operate different types of server virtualization software in unified way.
- 2 IT resource automatic allocation technology

[Benefit]

No need to separately administer individual virtualization software

→ reduce data center operation costs

3-15. Autonomous decentralized systems



Smart grid application of autonomous decentralized systems technology from rail systems

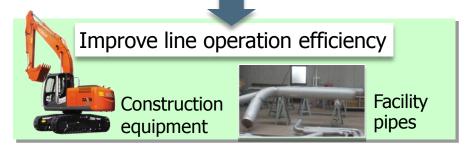
Automated metering wireless network

- Autonomous architecture
- Each subsystem can function autonomously
- Failure of an individual subsystem does not affect the entire system

Experience accumulated with rail operation systems (Transport management system applied to rail systems)

Highly reliable automatic reading & collection of groups of several thousands of meters every 30 minutes

3-16. Low cost production technology



Wide application of cutting-edge production technology using IT for cost competitiveness

Production management Production fluctuation simulation technology based on statistical analysis models <Time between instructions: reduced from 2hrs \Rightarrow 1 min> Production model ③ Production Statistical fluctuation analysis simulation Large-scale high-speed processing (4) Send-out 1 Collect optimal production conditions by results minutes Production line

Multi-site multi-indices (cost, delivery date, supply LT*, etc.) production logistics model <Recalculation time for change in plan: reduced from several hours ⇒ few seconds> ○: Supplier A: Production/Assembly Sales

Reduce number of days for inventory turnover

*LT: Lead Time

Disk array system

Contents

- 1. R&D strategy for new growth
- 2. Enhancing global R&D
- 3. Reorganization of domestic R&D
- 4. Summary

4. Summary

A new R&D structure for global growth in social innovation business

Materials, Measurement, Simulation research platforms

