

 ii

NOTE

A l l in format ion in th is manual is based on the la test product in format ion ava i lab le a t
the t ime of pr in t ing. H i tach i has rev iewed the accuracy of th is manual , but assumes
no respons ib i l i ty for any omiss ions or er rors which may appear . The des ign of the
product is under constant rev iew and, whi le every e f for t is made to keep th is manual
up to date, the r ight is reserved to change spec i f icat ions and equipment a t any t ime
wi thout pr ior not ice.

PROHIBITION

These products should not be used for medical , power supply, nuc lear , water supply,
dra inage p lants , t ra f f ic cont ro l , mi l i ta ry, space, nor d isaster prevent ion equipment .

D ivers ion and/or resa le o f these products wi thout th is manual is proh ib i ted.

Reproduct ion of the contents o f th is manual in whole or in par t , wi thout wr i t ten
permiss ion of H i tach i , is proh ib i ted.

TRADEMARKS

HITACHI-S10/2α, S10/4α and PSEα are registered trademarks of Hitachi, Ltd.

BI-KB-TN<IC-NS> (FL-MW20)

FIRST EDITION, JUNE, 1997, SAE - 3 - 122 (A) (out of print)
SECOND EDITION, OCTOBER, 2000, SAE - 3 - 122 (C)
THIRD EDITION, SEPTEMBER, 2003, SAE - 3 - 122 (D)
All Rights Reserved, Copyright © 1997, 2003, Hitachi, Ltd.

 iii

H i tach i , L td . , warrants i ts products to be manufactured in accordance wi th publ ished
spec i f ica t ions and f ree f rom defects in mater ia ls and/or workmanship .

H i tach i , L td . , warrants i ts products against defects in par ts and workmanship for one
fu l l year f rom date o f purchase.

HITACHI, LTD. , MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED EXCEPT
AS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THEREOF,
WARRANTIES AS TO MARKETABILITY FOR A PARTICULAR PURPOSE OF USE, OR
AGAINST INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL HITACHI BE
LIABLE FOR ANY DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY
NATURE, OR COSTS, CHARGES, LOSSES OR EXPENSES RESULTING FROM ANY
DEFECTIVE PRODUCT OR THE USE OF ANY PRODUCT.

LIMITED WARRANTY

 SOFTWARE UP–TO DATE POLICY

Hitachi, Ltd., constantly reviews its software so as to incorporate the latest technology. Hitachi reserves
the right to make changes to any software to improve reliability, function, or design. Hitachi cannot be
held responsible for any errors in its software.

 iv

 SAFETY PRECAUTIONS

z Read this manual thoroughly and follow all the safety precautions and instructions
given in this manual before operations such as system configuration and program
creation.

z Keep this manual handy so that you can refer to it any time you want.
z If you have any question concerning any part of this manual, contact your nearest

Hitachi branch office or service engineer.
z Hitachi will not be responsible for any accident or failure resulting from your operation

in any manner not described in this manual.
z Hitachi will not be responsible for any accident or failure resulting from modification of

software provided by Hitachi.
z Hitachi will not be responsible for reliability of software not provided by Hitachi.
z Make it a rule to back up every file. Any trouble on the file unit, power failure during

file access or incorrect operation may destroy some of the files you have stored. To
prevent data destruction and loss, make file backup a routine task.

z Furnish protective circuits externally and make a system design in a way that ensures
safety in system operations and provides adequate safeguards to prevent personal
injury and death and serious property damage even if the product should become
faulty or malfunction or if an employed program is defective.

z If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it
must be positioned external to the programmable controller. If you do not observe
this precaution, equipment damage or accident may occur when the programmable
controller becomes defective.

z Before changing the program, generating a forced output, or performing the RUN,
STOP, or like procedure during an operation, thoroughly verify the safety because the
use of an incorrect procedure may cause equipment damage or other accident.

 “RUN/STOP” SWITCH CAUTION

The “RUN/STOP” switch only stops execution of the ladder logic program or HI-FLOW
program. Digital and analog outputs are left in the active state when execution stops,
unless the optional rungs described in the CPU manual have been added. The
“RUN/STOP” switch does not affect the operation of C-language or FA-BASIC language
programs. Outputs can still be produced in response to C-language or FA-BASIC
programs, or by the action of programmers typing in commands in these languages,
while the “RUN/STOP” switch is in the “STOP” position.

DO NOT DEPEND ON THE STOP SWITCH TO STOP MOVING PARTS OR TO
PREVENT UNEXPECTED MOTION OR ENERGIZATION. USE HARDWIRED
SAFETY DISCONNECT AND LOCK OUT POWER AND CONTROL VOLTAGES
BEFORE WORKING ON ELECTRICAL CIRCUITS OR PARTS THAT CAN MOVE.

v

PREFACE

Flowchart type programming language HI-FLOW was developed to allow the user to easily code
programs for the programmable controller.

This manual describes instructions for programming in HI-FLOW. For ladder programs, refer to the
following manual.

<Related manual>

SOFTWARE MANUAL PROGRAMMING LADDER CHART For Windows® (Manual number
SAE-3-121)

See the following list when you use the NESP
(Nissan Electronic Sequence Processor) series.

【HITACHI-S10α series】 【NESP series】
HITACHI-S10/2α
HITACHI-S10/2αE
HITACHI-S10/2αH
HITACHI-S10/2αHf

………

………

………

………

NESP-S25E
NESP-2αE
NESP-2αH
NESP-2αHf

<Trademarks>
• Microsoft® Windows® operating system, Microsoft® Windows® 95 operating system,

Microsoft® Windows® 98 operating system, Microsoft® Windows® 2000 operating system,
Microsoft® Windows® XP operating system are registered trademarks of Microsoft Corporation in
the United States and/or other countries.

• Ethernet is a registered trademark of Xerox Corp.
Other product names written in this manual are the trademarks of each manufacturer.

 vi

CONTENTS

1 CONFIGURATION OF HI-FLOW PROGRAMS... 1

2 HOW TO USE THIS MANUAL.. 3
2.1 Overview .. 4
2.2 Outline of the Syntax.. 5
2.3 Application Instructions ... 6

3 PROCESSES .. 9
3.1 About the Process ... 10
3.2 Program .. 15
3.3 Process Information.. 28

4 EXPLANATION OF SYNTAXES .. 29
4.1 Process Start and Process End.. 30
4.2 Route Start and Route End ... 34
4.3 Wait .. 35
4.4 Box.. 37
4.5 Control Box .. 42
4.6 Repeat Start and Repeat End .. 46
4.7 If.. 47
4.8 Jump.. 49
4.9 Escape... 50
4.10 Parallel Start and Parallel End.. 51
4.11 Select, Wait in Selective Branching and Select End .. 52
4.12 Multi-entry.. 53
4.13 Call ... 54
4.14 Function.. 55
4.15 Wait with Previous State Cleared... 55

5 APPLICATION INSTRUCTIONS .. 57
5.1 Overview .. 58
5.2 Usage .. 58
5.3 Parameters .. 58
5.4 Type Conversion for Operation.. 60
5.5 System Error Flags ... 61

 vii

5.6 Explanation of Functions .. 62

SUPPLEMENT.. 113
Supplement 1 Work Flow Based on HI-FLOW Program... 114
Supplement 2 PCs Memory .. 115
Supplement 3 Online Mode .. 116
Supplement 4 Check for Progress... 120
Supplement 5 Relationships between a HI-FLOW Program

and the CPU Load.. 122

INDEX... 127

THIS PAGE INTENTIONALLY LEFT BLANK.

1 CONFIGURATION OF
HI-FLOW PROGRAMS

1 CONFIGURATION OF HI-FLOW PROGRAMS

- 2 -

This manual describes the specifications of the new HI-FLOW language. When creating actual
programs, refer to this manual at the necessary times.

HI-FLOW programs you create consist of the following components:

Name Up to 16 characters

Comment Up to 132 characters

Free label Up to 6 characters

Free comment Up to 70 characters

Step numbers 1 to 999

Symbols 19

Labels B1 to B255

Step comment Up to 70 characters

Reserved words 18

Constants 3

Variables 5

Operators 15

HI-FLOW program

Process

Program
Route

Step

From process 0 to process 255

1 to 255
vertically
(Y axis).
Up to 999

1 to 20
horizontally
(X axis).
There is no
limit on the
number of
processes.

There is no
limit on the
number of
routes.

Settable
for each
process

Syntax
21

Process information

・・・

2 HOW TO USE THIS
MANUAL

2 HOW TO USE THIS MANUAL

- 4 -

2.1 Overview

This manual is prepared according to the configuration shown in Chapter 1. The following table
shows relationships between individual items and their corresponding chapters or sections and
pages.

Item Chapter or section Page

• Process 3 9

• Program
• Route

• Step
• Step number
• Symbol
• Label
• Syntax

• Reserved word
• Constant
• Variable
• Operator

• Step comment
• Free label
• Free comment

3.2 15
15
19
20
20
23
23
24
24
24
26
26
27
27

• Process information
• Name
• Comment

3.3 28
28
28

2 HOW TO USE THIS MANUAL

- 5 -

2.2 Outline of the Syntax

After “2.1 Overview,” this manual describes details of the syntax for each function. The
following table shows relationships between functions and their corresponding chapters or sections
and pages.

Item Symbol Chapter or section Page

Explanation of syntax 4 29
• Process Start

Process End
• STP
• RST
• CLR
• ACT

 4.1 30

30
31
32
32

• Route Start
Route End

 4.2 34

• Wait
• Condition expression
• Timer
• Output bit
• Wait timer

 4.3 35
35
35
35
35

• Box
• Assignment expression
• ON
• OFF
• Parallel timer
• TUP
• TRS

 4.4 37
37
38
39
39
40
41

• Control Box
• ACT
• RST
• STP
• CLR

 4.5 42
42
43
44
44

• Repeat Start
Repeat End

 4.6 46

• If 4.7 47
• Jump 4.8 49
• Escape 4.9 50
• Parallel Start

Parallel End
 4.10 51

• Select
Wait in Selective Branching

 4.11 52

Select End 4.12 53
• Multi-entry
• Call 4.13 54
• Function 4.14 55
• Wait with Previous State Cleared * 4.15 55

2 HOW TO USE THIS MANUAL

- 6 -

2.3 Application Instructions

HI-FLOW supports application instructions of functions as well as ladder diagrams. The
following table shows application instructions and their functions.

Major class Class Symbol Function Page
Addition ADD S+D → R 63
Subtraction SUB S - D → R 64
+1 INC S+1 → S 65
-1 DEC S - 1 → S 66
Multiplication MUL S*D → R 67
Division DIV S/D → R 68
Residue MOD Residual of S/D → R 69

Arithmetic
operation
instructions

Scale conversion SCL S*D1/D2 → R 70
Logical Product AND S AND D → R 71
Logical Sum OR S OR D → R 72
Exclusive Logical Sum EOR S EOR D → R 73

Logical
operation
instructions

Not NOT NOT S → R 74
= EQU True or false of S = D → R 75
< > NEQ True or false of S < > D → R 76
> GT True or false of S > D → R 77
> = GE True or false of S >= D → R 78
< LT True or false of S < D → R 79
< = LE True or false of S <= D → R 80

Compare
operation
instructions

Test TST Sign of S → R 81
Move MOV S → D 82
Block Move MOM S ~ Sn → D ~ Dn 83
Exchange EXC S ←→ D 84
FIFO Write PSH S → D (FIFO table) 85
FIFO Read POP S (FIFO table) → D 86
Address Set AST S address → D 87

Data move
instructions

Search SCH S = D(n) → n is set in R. 88
BIN-BCD BTD BIN → BCD

S ―――→ R
89

BCD-BIN DTB BCD → BIN
S ―――→ R

90

Data
conversion
instructions

BIN-7SEG SEG BIN → 7 segments
S ―――→ R

91

2 HOW TO USE THIS MANUAL

- 7 -

Major class Class Symbol Function Page
ASP 92 BIN-ASC
ASU

BIN → ASCII (packed, unpacked)
S → (R, R+1), (R, R+1, R+2, R+3) 93

APB 94 ASC-BIN
AUB

ASCII (packed, unpacked) → BIN
(S, S+1), (S, S+1, S+2, S+3) → R 95

Absolute Value ABS ｜S｜→ R 96
+/- NEG _S → R 97
Decode DCD 2^11 to 2^15 of S → Bit 2^n of R

is turned on.
98

Data
conversion
instructions

Encode ECD Number of the first turned-on bit
of S → 2^11 to 2^15 of R

99

Logical Right Shift LSR S Logical Right Shift D → R 100
Logical Left Shift LSL S Logical Left Shift D → R 101
Arithmetic Right Shift ASR S Arithmetic Right Shift D → R 102

Shift
instructions

Arithmetic Left Shift ASL S Arithmetic Left Shift D → R 103
Right Rotate ROR S Right Rotate R 104 Rotate

instructions Left Rotate ROL S Lift Rotate R 105
Limiter LIM 106
Dead Band BND 107
Dead Zone ZON 108
Root ROT 109
MAX MAX 110

Function
process
instructions

MIN MIN 111
Special
instructions

Clear XCLR
YCLR
GCLR
RCLR
KCLR
TCLR
UCLR
CCLR
VCLR
ECLR
FCLR
JCLR
QCLR
HHCLR

 112

THIS PAGE INTENTIONALLY LEFT BLANK.

3 PROCESSES

3 PROCESSES

- 10 -

3.1 About the Process

A process is the largest configuration unit in a HI-FLOW program. It starts with Process Start ()
and ends with Process End (). A process consists of programs having at least one route and
process information. You can control production lines with one or more processes created by
function.

A process (P0 to P255) is recognized with “P+process number (in decimal).” P0 is called the
initial process. It is reserved for activation by the HI-FLOW operating system that controls
execution of the HI-FLOW program when the PCs is turned on. After the initial process is
activated, processes P1 to P255 can be controlled.

During process execution, the specified PI/O register is turned on, enabling process execution to be
monitored. (See the description of standard QF00 to QFFF and the system bit assignment
command.)

HI-FLOW OS

QF00 is on during
execution of the
initial process.

During execution,
QF01 is on.

During execution,
QF0A is on.

P0 (process 0)

Activation reservation at power on

P2

P10

Activated

During execution,
QF02 is on.

During execution,
QF03 is on.

P3

P4

Activated Call

During execution,
QF04 is on.

P5

Call

During execution,
QFFF is on.

P255

Activated
Activated

3 PROCESSES

- 11 -

Process States

Each process in the PCs is in one of nine states.

State Description

Not found There is no HI-FLOW process.
Executable A HI-FLOW process can be operated when it is activated.
Executing A HI-FLOW process was with ACT by another process and is being executed.

Stop A HI-FLOW process is being stopped in the middle because some conditions
were satisfied. The process information and PI/O values are held. For the
timer, you can specify whether you hold the timer value or continue
measurement.

Reset Execution of a HI-FLOW process was canceled because some conditions were
satisfied, and it is stopping at the process start point. The process information is
initialized. The PI/O values are held. For the timer, you can specify whether
you reset the timer at predetermined reset time or continue measurement.

Clear When some conditions are satisfied while a HI-FLOW process is being stopped,
reset, call-stopped, or callreset, the bit-type PI/O (in the ON statement or parallel
timer) being used in the process is cleared to 0.

Call execution A HI-FLOW process was subroutine-called by another process and is being
executed.

Call stop A HI-FLOW process is being stopped at a point in it because some conditions
were satisfied during execution of a call. The process information and PI/O
values are held. For the timer, you can specify whether you hold the timer value
or continue measurement.

Call reset Execution of a HI-FLOW process was canceled because some conditions were
satisfied during execution of a call, and it is stopping at the process start point.
The process information is initialized. The PI/O values are held. For the timer,
you can specify whether you reset the timer at reset time or continue
measurement.

The process enters into the stop and reset state once conditions are satisfied. Even if these
conditions are released, the process continues the states. The clear state is entered each time the
conditions are satisfied.

3 PROCESSES

- 12 -

Process states change

There are nine process states. The following figure shows how these states are changed by what
(circled numbers in the figure).

[State change]

Stop

PI/O clear

Executing

Reset

Call execution

Call reset

Call stop

PI/O clear

Executable

Not found

Delete Create

Main process Subprocess

①
②

③

④

⑥ ⑤⑦⑧

⑨

⑩

⑪
⑫

⑬

⑭

⑯ ⑮ ⑰ ⑱

⑲

⑳
21

3 PROCESSES

- 13 -

① Control box ACT ()
② Escape ()
③ Process Start STP (), Control Box STP ()
④ Process Start ACT (), Control Box ACT ()
⑤ Process Start RST (), Control Box RST ()
⑥ Process Start ACT (), Control Box ACT ()
⑦ Process Start RST (), Control Box RST ()
⑧ Process Start CLR (), Control Box CLR ()
⑨ Process Start CLR (), Control Box CLR ()
⑩ Process Call ()
⑪ Process Call ()
⑫ Process End (), Escape ()

Control Box RST to calling process ()
Process Start RST to calling process ()

⑬ Process Start STP ()
Control Box STP to calling process ()
Process Start STP to calling process ()

⑭ Process Start ACT ()
Control Box ACT to calling process ()
Process Start ACT to calling process ()

⑮ Process Start RST ()
⑯ Process Start ACT ()
⑰ Process Start RST ()
⑱ Process Start CLR ()

Control Box CLR to calling process ()
Process Start CLR to calling process ()

⑲ Process Start CLR ()
⑳ Control Box RST to calling process ()

Process Start RST to calling process ()
Control Box RST to calling process ()
Process Start RST to calling process ()

When a process is changed to the executing or call execution state, you can specify either of two
activation methods: master reset or zone. When you omit specification, zone activation is
assumed.

When a process is changed to the process end (), escape (), or executable state, the handing
of the PI/O values (whether they are held or cleared to 0) and the timer (whether the timer is
forcibly timed out or reset or measurement is continued) depends on the activation method.

21

3 PROCESSES

- 14 -

Relationships between the setting of the key switch on the PCs and the states of
processes

Below is an explanation of how processes in the PCs change according to the setting of the key
switch on the PCs and when the PCs are recovered from a power failure. HI-FLOW does not
recognize the difference in the setting of the key switch between RUN and SIM RUN. With the
key switch set to RUN or SIM RUN, the states of processes depend on the operation of the PCs.

(a) When the PCs are recovered from a power failure (when the key switch is reset)
When the PCs are recovered from a power failure, all processes in the PCs are initialized.
<At initialization>

• The processes become executable.
• The timers are stopped.
• PI/Os are turned off. (The states of DW, FW, K, and KW remain unchanged.)

Process 0 (initial process) is reserved for activation. It is executed when the key switch on
the PCs is set to RUN next time.

(b) When the key switch is set to STOP
With the key switch on the PCs set to STOP, the states of the processes remain unchanged
even when the state of a PI/O or timer in the PCs changes.

(c) When the key switch is set to RUN or SIM RUN
With the key switch on the PCs set to RUN or SIM RUN, the states of the processes change
accordingly when the state of a PI/O and/or timer in the PCs changes.

(d) When the key switch is changed from STOP to RUN or SIM RUN
When the key switch on the PCs is changed from STOP to RUN or SIM RUN, the processes
change from the state in (b) to that in (c). If the PCs are in the state immediately after power
is recovered, process 0 is executed. You can also set the processes in the state in (c) when
the PCs are not in the state immediately after power is recovered. To do this, specify the
same effect for HI-FLOW as after the PCs are recovered from a power failure. (See the
system edition commands.)

(e) When key switch is changed from RUN or SIM RUN to STOP
When the key switch on the PCs is changed from RUN or SIM RUN to STOP, the processes
changed from the state in (c) to that in (b). At the same time, timers WT and PT stop
measurement.

3 PROCESSES

- 15 -

3.2 Program

A process consists of programs and process information. Programs actually control production
lines. A program consists of one or more routes.

Route

A route which flows vertically starts with Process Start () or Route Start () and ends with
Process End () or Route end (). A route is the minimum unit of a process program. With
multiple routes, a process can be subject to synchronous or selective processing. A branch
occurs at a main route. Branching routes are called subroutes. A subroute branches at Parallel
Start () or Select (). Subroutines are joined at Parallel End () or Select End ().

You do not need to recognize routes with route numbers, so these numbers are managed only by
the system.

Synchronous routes do not always need to be joined. When they are not joined, the effect of the
main route is just to activate routes. A selection route must be joined with another route even if
there is an unconditional branch.

Route 0
(main route with respect to routes 1 to 3)

Route 1 Route 3

Route 2
(Main route with
respect to route 4)

Route 4

3 PROCESSES

- 16 -

(1) Use of both the synchronization syntax and selection syntax
When the synchronization syntax and selection syntax are programmed independently, there is
no problem. When using them together, however, care must be taken.

(a) When the same route is used as a route at which a branch starts and a route at which routes
are joined
For both synchronization and selection routes, all possible patterns are allowed.

OK!

OK!

OK!

3 PROCESSES

- 17 -

(b) When different routes are used as a route at which a branch starts and a routed at which
routes are joined
When the synchronization syntax and selection syntax are programmed independently,
operation is possible. Otherwise, a program can be created but it cannot be operated
correctly.

[The program runs correctly.]

OK! OK!

OK! OK!

3 PROCESSES

- 18 -

[The program does not run correctly.]

NG! NG!

NG! NG!

3 PROCESSES

- 19 -

Step

A step is an instruction unit in HI-FLOW. As with a free label and free comment, a step is a unit
of a route. A step consists of a step number, symbol, label, syntax, and step comment.

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

* Note that, as regards the combined use of syntax, label, and comment strings, the total length of
the strings that is acceptable is up to 70 characters. Note, also, that a logical operator within a
syntax string is considered to be two characters long in counting although it is regarded as a
string of only one character in editing.

: Step

3 PROCESSES

- 20 -

Step number

A step number is a unique number in the process. It is automatically assigned by the system
when the program is created. (A process number is from 1 to 999. This means that up to 999
steps can be created in one process.)

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

Symbol

A symbol outlines a condition, branch, or other control. A symbol is always required when a
step is created. Some steps consist of only a symbol. Other steps consist of a symbol and
syntax.

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

There are 19 symbols (listed below). Symbols themselves have meanings.

* Note that, as regards the combined use of syntax, label, and comment strings, the total length of
the strings that is acceptable is up to 70 characters. Note, also, that a logical operator within a
syntax string is considered to be two characters long in counting although it is regarded as a
string of only one character in editing.

3 PROCESSES

- 21 -

[Symbols usable in HI-FLOW]
(1/2)

No. Symbol Name Function Syntax Remarks
1 Process Start Starts a process. Yes
2 Process End Stops the process. No
3 Route Start Starts a subroute. No
4 Route End Stops the subroute. No
5 Repeat Start Starts a repetitive process. Yes End is decided with >=.
6 Repeat End Stops the repetitive

process.
No

7 If Conditionally branches
program control.

Yes A branch to another route
can be made.

8 Jump Unconditionally branches
program control.

No A branch to another route
can be made.

9 Escape Forrcibly stops the local
process.

No A subprocess returns to
the main process in the
same scan.

10 Parallel Start Branches to a
synchronous subroute.

No

11 Parallel End Waits for the end of a
synchronous subroute.

No When program control is
returned from the
selectively branched
subroutine, control is
passed to the next step in
the same scan. (With
the previous model, a
delay of one scan
occurred.)

12 Select Branches to a selectively
branched subroutine.

No

13 Wait in Selective
Branching

Provides a route selection
condition in selective
branching.

Yes Use Route Start and
Select as a pair.

14 Select End Returns program control
form the selectively
branched subroutine.

No The subroute may not
join the main route.
(This is not possible in
the previous model.)
Control is passed to the
next step with no scan
delay. (With the
previous model, a delay
of one scan was required
before the next step was
executed.)

3 PROCESSES

- 22 -

(2/2)
No. Symbol Name Function Syntax Remarks
14 Multi-entry Starts reexecution from

this step when the set
conditions are satisfied.

Yes

15 Wait Waits for the shift
condition to be satisfied.

Yes

 Wait for the specified
time to expire.

Yes It is possible to monitor
that the condition for
consecutive PI/Os are
satisfied.

16 Box PI/O Output. Yes With interlocked Y-
output.

 Assignment expression Yes
 Sends PI/O waveforms. Yes
 Resets timers. Yes Up to 7 timers can be

reset. This function is
equivalent to the
conventional forcible
timeout function.

 Causes a forcible timeout. Yes New function added to
this model.

17 Control Box Controls the state of
another process.

Yes The master reset function
is provided. The
function to specify a step
is added. The function
to specify STP timer
measurement is added.
The function to forcibly
timeout or reset the RST
timer is added.

 Controls a task. Yes
18 Call Call a subroute of another

process.
Yes The master reset function

is provided.
The function to specify a
step is added.

19 Function Application instruction Yes New function added to
this model.

20 * Condition with
previous State
Cleared

Clears PI/O when a
condition is changed.

Yes New function added to
this model. Use this
function together with the
wait function.

 Wait Timer with
previous State
Cleared

Clears PI/O when a
forcible timeout occurs.

Yes

3 PROCESSES

- 23 -

Label

A label represents a destination to which a symbol branches. A label is represented by a number
from B1 to B255 followed by a colon (:). (These numbers can be created for each process. A
branch to another process cannot be specified.) Labels can be assigned only to steps.

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

Syntax

A syntax clarified the contents of a condition expression, assignment expression, or control
statement. Some symbols have no syntax. A syntax consists of a reserved word and an
expression which consists of a constant, variable and operator.

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

Syntax Reserved word
 Expressions Constant
 Variable
 Operator

* Note that, as regards the combined use of syntax, label, and comment strings, the total length of
the strings that is acceptable is up to 70 characters. Note, also, that a logical operator within a
syntax string is considered to be two characters long in counting although it is regarded as a
string of only one character in editing.

3 PROCESSES

- 24 -

Reserved word

Each reserved word has a specific meaning provided by the system. You cannot use reserved
words as symbol names.

Reserved words

ACT, CLR, MRST, ON, OFF, RST, STP, TASK
TUP, TRS, TCNT, CNxxx, PTxxx, WTxxx,
Bxxx, Pxxx, H????????
Application instruction names (See “5 APPLICATION INSTRUCTIONS.”)

xxx: 3-digit decimal constant
????????: 8-digit hexadecimal constant

Constant

Long-word constants can be specified in HI-FLOW.

Constants Bit type : 0, 1
 Word type : Decimal numbers from -32768 to 32767

Hexadecimal numbers from H0 to HFFF
 Long type : Usable only in application instructions

Decimal numbers from [-2147483648] to [2147483647]
Hexadecimal numbers from [H0] to [H7FFFFFFF]

Variable

You can use physical PI/O registers such as X and Y.
In application instructions, @ can be prefixed to PI/O for indirect specification of a variable, and
a variable can be enclosed by brackets ([]) to handle it as long word.
The physical PI/O registers usable in HI-FLOW are listed below.

Variables Bit type Simple
 One-dimensional array such as X000 (5)
 Word type Simple
 One-dimensional array such as XW000 (FW000)
 Long type Simple

Usable only in application instructions.
When [FW000] is specified, FW000 and FW001 are
handled as long words.

3 PROCESSES

- 25 -

[PI/O registers]

Item Symbol Range Type Remarks

X 000 to FFF Bit Extemal input
registers XW 000 to FF0 Word

Y 000 to FFF Bit Extemal output
registers YW 000 to FF0 Word

G 000 to FFF Bit
GW 000 to FF0 Word
A 000 to FFF Bit

Communication
link registers

AW 000 to FF0 Word
R 000 to FFF Bit
RW 000 to FF0 Word
K 000 to FFF Bit
KW 000 to FF0 Word
M 000 to FFF Bit
MW 000 to FF0 Word
E 000 to FFF Bit
EW 000 to FF0 Word
Z 000 to 3FF Bit
ZW 000 to 3F0 Word
S 000 to BFF Bit

Internal
registers

SW 000 to BF0 Word
J 000 to FFF Bit
JW 000 to FF0 Word
Q 000 to FFF Bit
QW 000 to FF0 Word

These registers establishes a link
to the ladder program.

HH 000 to 1FF Bit These registers establishes a link
to another process.

DW 000 to FFF Word

Other registers

FW 000 to BFF Word
WT 000 to 255 Decimal notation Timers
PT 000 to 255

Counter CN 000 to 127 Decimal notation

R
eg

is
te

rs

Label

B 001 to 255 (You can
set a label consisting
of six or less
charactera.)

 Decimal notation. Specifiable
for each process.

3 PROCESSES

- 26 -

Operator

As with the previous model, there are four operators: parentheses, arithmetic operators, relational
operators and logical operators.

Item Description Priority

Logical & (AND)
｜ (OR)
~ (NOT)
∧ (Exclusive OR)

5

Arithmetic *
/

2

 +
-

3

Relational =, < >, <, >, >=, <= 4

Operators

Parentheses Parentheses can be nested at up to 7 levels. 1

Step comment

A step comment is a character string consisting of a combination of letters, numbers and special
characters. You can write a statement comment as long as it fits in one line (74 columns).
However, you do not always need to write a statement comment to the full length of a line.

ON Y000 Syntax (up to 70 characters)

999 B255: Step label (up to 5 characters)
Normal motor rotation Step comment (up to 70 characters)

Symbol
Step number (up to 3 characters)

* Note that, as regards the combined use of syntax, label, and comment strings, the total length of
the strings that is acceptable is up to 70 characters. Note, also, that a logical operator within a
syntax string is considered to be two characters long in counting although it is regarded as a
string of only one character in editing.

3 PROCESSES

- 27 -

Free label

You can create, in other than steps, labels to which symbols branch. These labels are called free
labels. They are optional. A free label can be assigned any name (other than reserved words)
beginning with a letter consisting of six or less characters and ending with a colon (:). You can
use free labels only in other than steps.

LABEL: Free label (up to 6 characters)
Joining point Free comment (up to 70 characters)

Free comment

You can create comments in other than steps. These comments are called free comments.
They are optional. A free comment is a character string consisting of a combination of letters,
numbers and special characters. You can write a free comment as long as it fits in one line.
You can add free comments to more identifiable points.

LABEL: Free label (up to 6 characters)
Joining point Free comment (up to 70 characters)

* As regards the combined use of a free label and free comment, the total length of the strings that
is acceptable is up to 70 characters (including the colon “:” for a free label).

3 PROCESSES

- 28 -

3.3 Process Information

A process consists of programs and process information.

In process information, additional information on processes is defined. Process information
consists of five elements that you can change freely with process information commands.

Name

Name used in process information. You can assign unique name to the process with up to 16
characters.

Comment

Comment used in process information. You can assign comments to the process with up to 132
characters.

Process information Name

Comment

4 EXPLANATION OF
SYNTAXES

4 EXPLANATION OF SYNTAXES

- 30 -

This chapter explains syntaxes consisting of symbols and destination labels with typical examples.
In the following syntaxes, optional items are enclosed in brackets ([]).
Of the items enclosed in braces ({ }), select a desired one. The items followed by ~ are repeated.

4.1 Process Start and Process End

Process Start starts a process. Process End ends the process. Symbols for them are automatically
added. You do not need to enter them.
Process Start sets a condition under which the process is stopped, reset or restarted, or PI/O is
initialized. (See the descriptions of STP, RST, ACT and CLR.)
Process End performs processing if all routes except the local route have been ended. If not,
Process End waits for them to be ended. At activation, Process End clear to 0 bit type PI/Os to be
turned on by the local process if master reset is specified. (See the ON statement and parallel
timer.)
The timers being used by the local process are handled according to the activation method. If the
timer was activated with the TUP option specified, it is forcibly timed out. If the TRS option was
specified for activation, the timer is reset to 0 after it expires. When no option was specified, the
timer continues measurement.

[Syntax]

 [{STP-condition-expression [, TCNT] {ON PI/O-bits [:OFF PI/O-bits]} }

{OFF PI/O-bits [:ON PI/O-bits]}
{,RST-condition-expression [, TUP] {ON PI/O-bits [:OFF PI/O-bits]} }

{OFF PI/O-bits [:ON PI/O-bits]}
{,CLR-condition-expression}
{,ACT-condition-expression}]
*PI/O-bits - PI/O-bit-expression [, PI/O-bit-expression] ~

No syntax

STP

• If the condition expression is satisfied during process execution, execution of the local process is

stopped under the current execution state. (The process enters the stop state.)

4 EXPLANATION OF SYNTAXES

- 31 -

• When the condition expression for STP is satisfied, the value of the timer and the values of bit-
type PI/Os to be turned on by the local process are retained. (See the ON statement and
parallel timer.) However, note that it is unavoidable that the local process is turned on or off
by other processes.

• When the condition expression for STP is satisfied, PI/O bits with option specification are
turned on or off as specified. (If the condition expression is not satisfied, PI/O bits are turned
on or off at each scan, contrary to the specification.)

• With the [,TCNT] option specified, the timer continues measurement even when the process
enters the stop state. If the option is not specified, the timer value is retained.

• When the condition expression for STP is satisfied, the called process enters the stop state as
with the calling process. However, the processes for which calls are ended or calls are not
made are not affected.

If a parallel timer is performing measurement when the condition
expression for STP is satisfied, the timer is not affected. (This is
because a call has been ended.)

If the condition expression for STP is satisfied during a call of this
process, the called process also enters the stop state. If the [,TCNT]
option is not specified, the timer value is retained.

RST

• If the condition expression is satisfied while the process is being executed or stopped, the
execution of the local process is stopped and the process enters the wait state with Process Start.
(The process enters the reset state.)

• When the condition expression for RST is satisfied, the values of bit-type PI/Os to be turned on
or off by the local process are retained. (See the ON and OFF statement and parallel timer.)
However, note that it is unavoidable that the local process is turned on or off by other processes.

• When the condition expression for RST is satisfied, PI/O bits with option specification are
turned on or off as specified. (If the condition expression is not satisfied, PI/O bits are turned
on or off at each scan, contrary to the specification.)

• With the [,TUP] option specified, the value of the timer is set to the specified value and the
timer is forcibly timed out. If the option is not specified, the timer is cleared to 0 and
measurement is canceled.

4 EXPLANATION OF SYNTAXES

- 32 -

• When the condition expression for RST is satisfied, the called process enters the executable
state. In this case, PI/Os and timers are handled according to the activation method. The
processes for which calls are ended or not made are not affected.

If a parallel timer is performing measurement when the condition
expression for RST is satisfied, the timer is not affected. (This is
because a call has been ended.)

If the condition expression for RST is satisfied during a call of this
process, the called process enters the executable state.
If master reset activation is specified, PI/Os are cleared. If zone
activation is specified, PI/Os are retained. If a call is made with the
[,TUP] option specified, the timer is forcibly timed out. If a call is made
with the [,TRS] option specified, the timer is reset to 0 after it expires.
When no option was specified, the timer continues measurement.

CLR

If the condition expression is satisfied in the stop or reset state, bit-type PI/Os which are used in
the ON statement or parallel timer and are to be turned on by the local process are cleared to 0.

ACT

When the condition expression for STP or RST is not satisfied in the stop or reset state, process
execution is resumed after the condition expression is satisfied. (The process enters the
execution state.)

4 EXPLANATION OF SYNTAXES

- 33 -

[Sample programs containing Process Start ()]
(∼ : Indicated that the same line is repeated.)

1. STP X000, RST X001, CLR X002, ACT X003

When X000 is on, the process enters the stop state. (The timer value is retained.)
When X001 is on, the process is reset. (The timer is reset to 0 after it expires.)
When X002 is on in the stop or reset state, the bit-type PI/Os in the ON statement or parallel
timer used in the process are cleared to 0.
When X000 and X001 are off and X003 is on, the process is executed.

2. STP G000 & X002, TCNT [ON J000: OFF J001] ~ , RST Q000, TUP

When both G000 and X020 are on, the process is stopped. (The timer continues measurement.)
When the process is stopped, J000 is turned on and J001 is turned off.
When Q000 is on, the process is reset. (The timer is forcibly timed out.)
During process execution, J000 is turned off and J001 is turned on, at each scan.

3. RST FW000<DW000 [OFF G100], ACT FW001=0

When FW000 becomes smaller than DW000, the process is reset. (The timer is reset to 0 after
it expires.)
When the process is reset, G100 is turned off.
When FW000 is greater than or equal to DW000 and FW001 is 0 in the stop or reset state, the
process is executed.
G100 is turned on at each scan during process execution.

4. RST Q001, TUP [ON J001, G200], CLR X200

When Q001 is on, the process is reset. (The timer is reset to 0 after it expires.)
When the process is reset, J001 and G200 are turned on. When X200 is on in the stop or reset
state, the ON statement and bit-type PI/Os in the parallel timer used in the process are cleared to
0.
J001 and G200 are turned off at each scan during process execution.

STP, RST, CLR, and ACT can be specified in any order in Process Start.

4 EXPLANATION OF SYNTAXES

- 34 -

4.2 Route Start and Route End

 No syntax

 No syntax

Route Start starts a subroute. Route End ends the subroute. Be sure to use Route Start and Route
End as a pair. Creation of subroutes enables synchronous syntaxes and selective branch syntaxes
to be implemented. For operation after Route End is executed, see the chapter describing the
synchronous/selective syntax execution order.

[Sample programs containing Route Start () and Route End ()]

1.

2.

Route Start

Route End

Even when the program dose not proceed
below an escape or jump symbol, a Route
End is required.

4 EXPLANATION OF SYNTAXES

- 35 -

4.3 Wait

The program waits at this step until the condition to proceed to the next step is satisfied. The
condition is specified by a condition expression or the wait timer that makes the program wait until
the specified time is reached.

[Syntax]

 { condition-expression[, timer, output-bit] }

{ WTxxx (expression[, condition-expression]) }

Condition expression

A condition expression consists of bit-type or word-type numbers and operators.

Timer (usable on HI-FLOW system version 07-00 or later only)

• Monitoring timer that checks whether the condition expression yields an output (“true”) within

the specified period of time. A timer setting is possible in 100-millisecond units.
• Enter a constant in decimal notation.
• The acceptable range of settings is from 0 to 32767. If you set the range of -32768 through -1,

the program runs as if 32768 through 65535 were set.
• The maximum number of timers that can be monitored simultaneously is 64. Do not put more

than 64 timers under monitoring at the same time.

Output bit (usable on HI-FLOW system version 07-00 or later only)

• This bit is set if the condition is not met within the time period specified by the timer.
• The following registers can be designated as the output bit:
 (Y, G, A, R, K, M, E, Z, S, J, Q)
• The output bit is automatically reset unconditionally at the beginning of the monitoring process.
• Switching to the next step does not take place unless the condition is met within the timer-

specified period of time.
• Even if the condition is met after output bit ON (set), the output bit is not turned OFF (reset).

Wait timer

• A wait timer delays execution for the specified time at the desired step. WT0 to WT255

(numbers are in decimals) can be used. A delay can be specified in 100 ms increments in the
range from 0 to 32767 in decimals. If you set the range of -32768 through -1, the program runs
as if 32768 through 65535 were set.

• When wait timers identified by the same number make the program wait at multiple steps, the
step that occupies the timer first is awaited as specified. The other steps turn on the specified
PI/O (by default, HH1FA) and wait until the step releases the timer. Therefore, the other steps
are awaited longer than the specified time.

• A condition expression can be specified for a wait timer. In this case, execution is awaited
until the condition expression is satisfied continuously for the specified time.

4 EXPLANATION OF SYNTAXES

- 36 -

[Sample programs containing Wait ()]

1. X000

When X000 is on, the program proceeds to the next step.

2. GW000<H2000

When GW000 becomes smaller than H2000, the program proceeds to the next step.

3. X001 (FW000)

When the X register having the value of FW000 as a subscript is turned on during condition
check, the program proceeds to the next step. (The condition check may vary at every time.)

4. WT000 (100)

The program proceeds to the next step 10 seconds after the program reaches this step first.

5. WT255 (10, X01F)

The program proceeds to the next step after it reaches this step then X01F is turned on
continuously for one second.

6. GW000>H2000, 100, Y000

Switching to the next step takes place when the GW000 value is greater than the H2000 value.
If the GW000 value remains smaller than the H2000 value for a period of 10 seconds or longer,
the Y000 is turned ON (set).
Even if the GW000 value is greater than the H2000 value after Y000 ON, the Y000 is not turned
OFF (reset).

4 EXPLANATION OF SYNTAXES

- 37 -

4.4 Box

Box controls PI/O output, data processing, and timers. Multiple Boxes separated by semicolons (;)
can be specified.

[Syntax]

 {ON PI/O-bit-expression [, PI/O-bit-expression] ∼}

{OFF PI/O-bit-expression [, PI/O-bit-expression] ∼}
{assignment-expression}
{PT-number (t1 [, t2]], {ON bit-PI/O [, bit-PI/O] ∼ [:OFF bit-PI/O [, bit-PI/O] ~] }) }

{OFF bit-PI/O [, bit-PI/O] ∼ }
{ {TUP} {WT-number} {, WT-number} }

{TRS} {PT-number} {, PT-number} ∼
{CN-number} {, CN-number}

{: ON PI/O-bit-expression [, PI/O-bit-expression ~ repeated] }
{: OFF PI/O-bit-expression [, PI/O-bit-expression ~ repeated] }
{: Assignment-expression}
{: PT-number (t1 [, t2], {ON bit-PI/O [, bit-PI/O] ∼ [:OFF bit-PI/O [, bit-PI/O] ~] }) } ∼

{OFF bit-PI/O [, bit-PI/O] ∼ }
{: {TUP} {WT-number} {, WT-number} }

{TRS} {PT-number} {, PT-number} ∼
{CN-number} {, CN-number}

Assignment expression

An assignment expression assigns the result of a logical or arithmetic calculation to a variable.
A one-dimensional array is allowed for expressions. Array subscripts are allowed only for
word-type variables. The usable variables and operators are shown below.

Bit-type variables

Word-type variables

Y, G, A
R, K, M
E, Z, J
Q, HH

=
Y, G, A
R, K, M
E, Z, J
Q, HH
X, S
0, 1

()
&
|
∼
∧

Y, G, A
R, K, M
E, Z, J
Q, HH
X, S
0, 1

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW

=
YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
Decimal
Hexadecimal

()
&
|
∼
∧
×
/
+
-

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
Decimal
Hexadecimal

4 EXPLANATION OF SYNTAXES

- 38 -

Operands and results are assumed to be unsigned.
A multiplier and multiplicand must be both one word long.
Multipliers and multiplicands that are too long truncated to one word. The result is also one
word long.
A divisor and dividend must be both one word long. A divisor and dividend that are too long are
truncated to one word. The result is also one word long. If division by 0 is performed, the
answer remains unchanged.
There is no answer back for the operation result state (such as normal termination or overflow).
If answer back is required, use application instructions.

[Sample programs containing the assignment statement ()]

1. FW000=FW001+FW002

The current value of FW001 and that of FW002 are added and the result is assigned to FW000.
Then the program proceeds to the next step.

2. YW000 (DW001)=HFFFF

/FFFF is assigned to the array of YW000 having the current value of DW001 as a subscript.

ON statement

The ON statement turns on the specified PI/O output bit (Y, G, A, R, K, M, E, Z, J, Q, or HH).
When multiple bits separated by commas (,) are specified, multiple outputs can be obtained for
PI/O. A one-dimensional array is allowed for PI/O output bits. Array subscripts are allowed
only for word-type variables.

[Sample programs containing the ON statement ()]

1. ON Y000, Y00F:OFF Y001

Y000 and Y00F are turned on, and Y001 is turned off. Then the program proceeds to the
next step.

2. ON G000 (GW010)

The bit separated by the value of current GW010 from G000 is turned on. Then the program
proceeds to the next step.

4 EXPLANATION OF SYNTAXES

- 39 -

OFF statement

The OFF statement turns off the specified PI/O output bit (Y, G, A, R, K, M, E, Z, J, Q, or HH).
When multiple bits separated by commas (,) are specified, multiple outputs can be obtained for
PI/O. A one-dimensional array is allowed for PI/O output bits. Array subscripts are allowed
only for word-type variables.

[Sample programs containing the OFF statement ()]

1. OFF Y000, Y001

Y000 and Y001 are turned off, and Y001 is turned off. Then the program proceeds to the
next step.

2. OFF G000 (GW010)

The bit separated by the value of current GW010 from G000 is turned off. Then the program
proceeds to the next step.

Parallel timer

The parallel timer sends a waveform to a desired PI/O. t1 is a rising time and t2 is a falling time.
When t1 is 0, PI/O for which ON is specified is just turned off after t2 elapses and PI/O for which
OFF is specified is just turned on after t2 elapses. When t2 is 0 or is omitted, PI/O for which ON
is specified is just turned on after t1 elapses and PI/O for which OFF is specified is just turned off
after t2 elapses. After an instruction for waveform output is issued, the program proceeds to the
next step soon.
Parallel timers can be specified in the range from PT000 to PT255. In t1 and t2 each, a time can
be specified in 100 ms increments in the range from 0 to 32767. If you set the range of -32768
through -1, the program runs as if 32768 through 65535 were set.
If the specified timer is already in use at timer activation, the specified PI/O (by default, HH1F9)
is turned on and the program waits until the timer is released.
Multiple PI/Os separated by commas (,) can be coded. Multiple statements separated by colons
(:) can be coded. A one-dimensional array is also allowed. Usable bit PI/Os are Y, G, A, R, K,
M, E, Z, J, Q and HH.

t1 t2

ON

OFF

(PI/O for
which ON
is specified)

t1 t2

ON

OFF

(PI/O for
which OFF
is specified)

4 EXPLANATION OF SYNTAXES

- 40 -

[Sample programs containing parallel timers ()]

1. PT000 (10, 10, ON Y000 : OFF Y001)

 When this step is passed,
the program proceeds to the
next step soon.

1 second later 2 seconds later

Y000 ?→OFF →ON →OFF
Y001 ?→ON →OFF →ON

2. PT010 (20, ON G000 : OFF G001)

 When this step is passed,

the program proceeds to the
next step soon.

2 seconds later

G000 ?→OFF →ON →
G001 ?→ON →OFF →

3. PT255 (0, 30, ON J100 : OFF J101)

 When this step is passed,

the program proceeds to the
next step soon.

3 seconds later

J100 ?→ON →OFF →
J101 ?→OFF →ON →

TUP (Timer Up)

TUP forcibly times out the timers that are performing measurement. When a wait timer is
performing measurement, the timer value is reset to the specified value. As a result, the wait
state is released and the program waiting for a forcible time-out proceeds to the next step. For a
parallel timer, the timer value is set to t2 (t1 when t2 is omitted). As a result, the timer provides
PI/O output earlier than the specified time. For a loop counter, the timer value is set to the end
value. As a result, the program exits at the next loop check.

[Sample programs containing TUP ()]

1. TUP WT001, WT002, PT001, CN001

Wait timers 1 and 2, parallel timer 1, and counter 1 are forcibly timed out.

4 EXPLANATION OF SYNTAXES

- 41 -

TRS (Timer Reset)

TRS resets the timers that are performing measurement. For wait timers and loop counters, TRS
provides the same effect as TUP. For parallel timers, however, TRS resets t1 and t2. The state
of the specified PI/O is the same as when a timer reset is indicated.

[Sample programs containing TRS ()]

1. TRS WT001, WT002, PT001, CN001

Wait timers 1 and 2, parallel timer 1, and counter 1 are reset.

4 EXPLANATION OF SYNTAXES

- 42 -

4.5 Control Box

Control Box activates (reactivates), stops or resets other processes, or clears PI/O.

[Syntax]

 {ACT Pxxx {-Pxxx] [, step-number] [, MRST] [{, TUP}] } }
{, TRS}

{, TASK, factor-number }
{RST Pxxx { [-Pxxx] [, TUP] } }

{ [, TASK] }
{STP Pxxx [-Pxxx]], TCNT] }
{CLR Pxxx [-Pxxx] }

ACT

 Item Description

1 Function outline ACT activates the specified processes. Specifiable processes are P0
to P255. A range of processes can be specified with a hyphen (-).
When a step number is omitted, execution starts with step 1. The
specified step may not be a main route. After activation, the program
proceeds to the next step soon.

2 Behavior of the
activated process

When Process End finishes execution, the activated process is executed
again from the process start point at the next scan. (This is also true
when a step is specified.)

3 Activating a process
being executed

The ACT bit that represents the Control Box result is turned on. Then
the program proceeds to the next step (by default, HH1FF).

4 Activating a
nonexisting process

5 Activating a
stopped process

The stopped process is activated and execution is resumed.

6 Activating a reset
process

The reset process is activated and execution is resumed from the
process start point.

7 Instruction for timer
states

When Process End or Escape is executed with the ,TUP option
specified or the executable state is entered, the parallel timers occupied
by the local process are forcibly timeout.
When Process End or Escape is executed with the ,TRS option
specified or the executable state is entered, the parallel timers occupied
by the local process are reset.

8 Activation with
master reset
specified

When Process End or Escape is executed with the ,MRST option
specified or the executable state is entered, bit-type PI/Os turned on by
the local process are cleared to 0. (ON statement, parallel timer)

9 Activating a CPMS
task

Specify the ,TASK,factor-number options and specify a CPMS task
(1 to 127) with Pxxx. Then issue the RLEAS and QUEUE macros.

4 EXPLANATION OF SYNTAXES

- 43 -

RST

 Item Description
1 Function outline RST resets the specified processes. Specifiable processes are P0 to

P255. A range of processes can be specified with a hyphen (-).
After Control Box with RST specified is issued, the program proceeds
to the next step soon.

2 Behavior of the
reset process

Execution of the specified process is canceled. The process enters the
reset state and waits to be reexecuted with Process Start. (When the
process is activated by another process with ACT or the ACT condition
is satisfied to start the local process, the process is reexecuted.)

3 Instruction for timer
states

The parallel timers occupied by the process with the ,TUP option
specified are forcibly timed out. When the ,TUP option is not
specified, the timers are reset. The option is valid only for the
specified process. The called processes are not affected.

4 PI/O for the reset
process

When the process has been activated with master reset specified,
bit-type PI/Os turned on or off by the local process are cleared to 0.

5 Resetting a stopped
process

Execution of the specified process is canceled. The process enters the
reset state and waits to be reexecuted with Process Start. (When the
process is activated by another process with ACT or the ACT condition
is satisfied to start the local process, the process is reexecuted.)

6 Resetting a
nonexisting process

The RST bit that represents the Control Box result is turned on. Then
the program proceeds to the next step (by default, HH1FD).

7 Resetting the local
process

Specify the local process number with the parameter.

8 Stopping a CPMS
task

Specify the ,TASK option and specify a CPMS task with Pxxx. Then
issue the ABORT macro.

4 EXPLANATION OF SYNTAXES

- 44 -

STP

 Item Description
1 Function outline RST stops the specified processes. Specifiable processes are P0 to

P255. A range of processes can be specified with a hyphen (-).
After Control Box with STP specified is issued, the program proceeds
to the next step soon.

2 Behavior of the
stopped process

Execution of the specified process is stopped. The process enters the
stop state and waits to be reexecuted at the current execution point.

3 Conditions for
reexecution

The process is reexecuted when it is activated by another process with
ACT or the ACT condition is satisfied to start the local process, the
process is reexecuted.

4 Instruction for timer
states

The parallel timers occupied by the process with the ,TCNT option
specified continue measurement. When the ,TCNT option is not
specified, the timers are stopped. The option is valid for all processes
linked by the specified process.

5 PI/O for the stopped
process

When the process has been activated with master reset specified,
bit-type PI/Os turned on or off by the local process are cleared to 0.

6 Stopping a
nonexisting process

The STP bit that represents the Control Box result is turned on. Then
the program proceeds to the next step (by default, HH1FE).

7 Resetting a reset
process

8 Stopping the local
process

Specify the local process number with the parameter.

CLR

 Item Description

1 Function outline Bit-type PI/Os turned on or off by the specified processes are cleared to
0. Specifiable processes are P0 to P255. After Control Box with
CLR specified is issued, the program proceeds to the next step soon.
This function is valid only when the specified processes are stopped or
reset. PI/Os used by other processes are cleared without checking
their usage states. A range of processes can be specified with a
hyphen (-).

2 Clearing a
nonexisting process

The CLR bit that represents the Control Box result is turned on. Then
the program proceeds to the next step (by default, HH1FC).

3 Clearing a process
being executed

4 Clearing a process
not activated

4 EXPLANATION OF SYNTAXES

- 45 -

[Sample programs containing Control Box ()]

1. ACT P1-P5, MRST

Processes 1 to 5 are activated in master reset mode, starting from step 1. Then the program
proceeds to the next step. When Process End or Escape is executed or the process enters the
executable state, the parallel timers continue measurement.

2. ACT P100, 5, TUP

Process 100 is activated in zone mode, starting from step 5. Then the program proceeds to the
next step. When Process End or Escape is executed or the process enters the executable state,
the parallel timers are forcibly timed out.

3. ACT P80, TASK, 3

When the RLEAS macro is issued to CPMS task 80 and the QUEUE macro is issued with factor
3, the program proceeds to the next step.

4. RST P10

Process 10 is reset then the program proceeds to the next step. The parallel timers are reset,
which were performing measurement when Control Box with RST specified was issued.

5. RST P11, TUP

Process 11 is reset then the program proceeds to the next step. The parallel timers are forcibly
timed out, which were performing measurement when Control Box with RST specified was
issued.

6. RST P12, TASK

After the ABORT macro is issued to CPMS task 12, the program proceeds to the next step.

7. STP P50

Process 50 is stopped then the program proceeds to the next step. The parallel timers and/or
wait timers are stopped, which were performing measurement when Control Box with STP
specified was issued.

8. STP P51, TCNT

Process 51 is stopped then the program proceeds to the next step. The parallel timers and/or
wait timers continue measurement without being stopped, which were performing measurement
when Control Box with STP specified was issued.

9. CLR P40

Bit-type PI/Os used by process 40 are cleared to 0 then the program proceeds to the next step.

4 EXPLANATION OF SYNTAXES

- 46 -

4.6 Repeat Start and Repeat End

Repeat Start and Repeat Stop bracket the steps to be executed repeatedly. If Repeat Start steps and
Repeat Stop steps are not paired correctly within the same loop, a syntax error is detected. An
increment is added to the initial value after each repetition. Repetition continues until the result of
addition exceeds the end value. If the initial value is greater than the end value, the program
proceeds to the next step without executing the steps between Repeat Start and Repeat Stop.
When an increment is omitted, 1 is assumed. When 0 is specified as an increment, the program
enters an infinite loop.
The setting range of the initial value, the end value, and increment is 0 through 32767. If you set
the range of -32768 through -1, the program runs as if 32768 through 65535 were set.

[Syntax]

 CNxxx (initial-value, end-value {, increment})

(xxx: Decimal number from 000 to 127)
 No syntax

[Sample programs containing Repeat Start () and Repeat End ()]

1.
 CN000 (1, 10)

The program executes the steps between Repeat Start and Repeat End
repeatedly 10 times, then proceeds to the next step after Repeat End.
Repeat Start is executed immediately after Repeat End is executed.

2.
 CN127 (1, 5, 2)

The program executes the steps between Repeat Start and Repeat End
repeatedly three times, then proceeds to the next step after Repeat End.

3.
 CN001 (FW000, FW001, FW002)

The values of FW000, FW001, and FW002 when Repeat Start is passed first
are the initial value, end value and increment, respectively.

4 EXPLANATION OF SYNTAXES

- 47 -

4.7 If

If judges whether the specified condition expression is true or false and performs processing
accordingly. When the condition expression is satisfied (true), If executes the steps between the
comma (,) and semicolon (;). When the condition expression is not satisfied (false), If executes the
steps after the semicolon. When the condition expression is not satisfied but there are no steps
after the semicolon, the program proceeds to the next step. When a label is specified after the
comma or semicolon, the program branches to the label.

[Syntax]

 condition-expression { destination-label (Bxxx) }

{ free-label }
{ON/OFF-statement} {: ON/OFF-statement}
{assignment-statement} {: assignment-statement}
{ACT-statement} {: ACT-statement}
{STP-statement} {: STP-statement}
{RST-statement} {: RST-statement} ~
{CLR-statement} {: CLR-statement}
{TUP-statement} {: TUP-statement}
{TRS-statement} {: TRS-statement}
{PT-statement} {: PT-statement}

{; destination-label (Bxxx) }
{; free-label }
{; ON/OFF-statement} {: ON/OFF-statement}
{; assignment-statement} {: assignment-statement}
{; ACT-statement} {: ACT-statement}
{; STP-statement} {: STP-statement}
{; RST-statement} {: RST-statement} ~
{; CLR-statement} {: CLR-statement}
{; TUP-statement} {: TUP-statement}
{; TRS-statement} {: TRS-statement}
{; PT-statement} {: PT-statement}

(xxx: Decimal number from 1 to 255)

<NOTICE>

A branch to another process cannot be made but a branch to another route can be made. In actual
execution, however, the following branches may not be handled correctly:

• Branch to the inside of a loop between Loop Start and Loop End
• Branch from the inside of parallel processing
• Branch no the inside of parallel processing
• Branch to a route being executed

4 EXPLANATION OF SYNTAXES

- 48 -

[Sample programs containing If ()]

1. X000, B1 ; LABEL

When X000 is on, the program jumps to the step having label B1. When X000 is off, the
program jumps to the next step after the step having label LABEL.

2. H0 < > (YW000 & H3000), ON Q005

When the logical product of YW000 and H3000 is not 0, Q005 is turned on. If the logical
product is 0, the program proceeds to the next step without doing nothing.

3. Q000, FW100=FW100+1 ; ACT P10

When Q000 is on, 1 is added to FW001. Then the program proceeds to the next step. When
Q000 is off, process 10 is activated with ACT. Then the program proceeds to the next step.

4. GW000=4, STP P6 : RST P7 ; EW000=8 : ON J000

When GW000 is 4, process 6 is stopped and process 7 is reset. Then the program proceeds to
the next step.
When GW000 is not 4, EW000 is set to 8 and J000 is turned on. Then the program proceeds to
the next step.

5. X010, ON J000, J001, J002, J003 ; ERRLB

When X010 is on, J000, J001, J002, and J003 are turned on. Then the program proceeds to the
next step. When X010 is off, the program jumps to the next step after the step having label
ERRLB.

4 EXPLANATION OF SYNTAXES

- 49 -

4.8 Jump

Jump causes the program to unconditionally jump to the specified label within the process. Label
B1 to B255 are specifiable within one process. In HI-FLOW, free labels can be specified. (You
can assign any names consisting of up to six characters to free labels. Free labels can be set in
other than steps.)

[Syntax]

 { destination-label (Bxxx) }

{ free-label }

<NOTICE>

A branch to another process cannot be made but a branch to another route can be made. In actual
execution, however, the following branches may not be handled correctly:

• Branch to the inside of a loop between Loop Start and Loop End
• Branch from the inside of parallel processing
• Branch no the inside of parallel processing
• Branch to a route being executed

[Sample programs containing Jump ()]

1. B1

The program jumps to the step having label B1 then starts execution from the step soon.

2. ERRBLK

The program jumps to the next step after the step having label LABEL then starts execution from
the step soon.

4 EXPLANATION OF SYNTAXES

- 50 -

4.9 Escape

Escape forcibly terminates the local process. When the local process is a main process, Escape
forcibly terminates all routes and the process enters the executable state. The processes being
called, if any, are all escaped. The timers being used by the local process are handled according to
the activation mode. (See the TUP and TRS options.)
When the local process is a subprocess, Escape functions in the same way as when the local process
is a main process except that execution points are returned to the main process in the same scan.
When the local process was activated in master reset mode, the bit-type PI/Os to be turned on by the
local process are cleared to 0. (See the ON statement and parallel timer.)

[Syntax]

 No syntax

[Sample programs containing Escape ()]

1.

2.

When this step is executed, execution of the process
is stopped if it was activated with ACT.

When this step is executed by the
subprocess, execution of the process is
stopped. The program returns to the
main process and executes it.

 Call

4 EXPLANATION OF SYNTAXES

- 51 -

4.10 Parallel Start and Parallel End

A Parallel Start and Parallel End pair represents a portion to be synchronously processed. After
the synchronized subroute is activated, Parallel Start causes the program to proceed to the next step
after the local route. After all joined routes are terminated, Parallel End instructs execution of the
next step after the local route.
In the previous models, Parallel End monitored termination of the joined subroute (i.e., the main
route was being executed), execution of the next step was delayed one scan. In this model,
however, each of Parallel End and Route End checks whether it was joined last. If Parallel End or
Route End was joined last, it instructs execution of the next step joining the main route. If not, it
instructs termination of the local route (the main route is not always being executed). This
eliminates a delay of one scan.

[Syntax]

 No syntax
 No syntax

[Sample programs containing Parallel Start () and Parallel End ()]

1. 2.

3.

4 EXPLANATION OF SYNTAXES

- 52 -

4.11 Select, Wait in Selective Branching and Select End

A set of Select, Wait in Selective Branching and Select End represents a portion to be processed for
selective branching.
After the selective branching route is activated, Select causes the program to proceed to Wait in
Selective Branching in the local route. (Select and Wait in Selective Branching or Route Start and
Wait in Selective Branching must be consecutive.)
When the condition expression for the local route is satisfied, Wait in Selective Branching
terminates execution of the other routes. The program proceeds to the next step in the local route.
In the previous models, the main route was always being executed. (Both the main route and the
selected route were being executed.) In this model, however, selection of a subroutine terminates
the main route. (Only the selected route is executed.)
Condition expressions are checked sequentially from the leftmost route on the screen. When
multiple conditions are met in the same scan, therefore, the leftmost route is selected.
In the previous models, Select End monitored termination of the joined subroutes (i.e., the main
route was being executed), execution of the next step was delayed one scan.
In this model, however, when a subroute is selected, Route End of the route activates the main route
and instructs execution of the next step joining the main route. This eliminates a delay of one
scan.
Also in the previous models, Select End and Select had to be present in the same route. In this
model, however, they may not need to be in the same route (they may not need to join the branch
source route).

[Syntax]

 No syntax
 condition-expression [, timer, output-bit]
 No syntax

• Timer (usable on HI-FLOW system version 07-00 or later only)
• Output bit (usable on HI-FLOW system version 07-00 or later only)
* For the timer and output bit, see “4.3 Wait.”

[Sample programs containing Select (), Wait in Selective Branching ()
and Select End ()]

1. 2.

4 EXPLANATION OF SYNTAXES

- 53 -

4.12 Multi-entry

When a condition expression is set in the symbol for Select End, it is handled as Multi-entry.
When the condition expression is satisfied during process execution, execution is resumed from the
step containing Multi-entry. (Even during execution of the first process, execution starts from the
first process when the condition expression is satisfied.) The condition expression is checked at
the beginning of scanning. This may delay execution a maximum of one scan.
Steps are checked against the condition sequentially from the one having the smallest step number.
If several conditions are satisfied in the same scan, therefore, execution is resumed from the step
having the smallest step number.
Multi-entry can also be set in subroutes.
When the condition is satisfied and the process is executed, all routes except those containing
parallel timers, wait timers, counters, a process being called and Multi-entry are initialized but the
PI/O values remain unchanged.

[Syntax]

 condition-expression

<NOTICE>

• If Multi-entry is set between Loop Start and Loop End, the program may not run correctly.
• Multi-entry cannot be set in a subroute having a synchronous syntax.

[Sample programs containing Multi-entry ()]

1. X000

When X000 is on, reexecution starts from this step.

2. GW000<H2000

When GW000 becomes smaller than H2000, reexecution starts from this step.

4 EXPLANATION OF SYNTAXES

- 54 -

4.13 Call

Call makes a subroutine call for the process specified by one of P0 to P255. Execution starts from
the step specified by the [,step-number] option. (When a step number is omitted, execution starts
from Process Start.)
When the specified process or step is not found or the local process is called, the CALL bit that
represents the Control Box result is turned on then the program proceeds to the next step.
If the specified process is already being executed, the program waits until it can call the process
(until the process shifts to the executable state). However, a process which was called with ACT
and is reset cab be called.
A subprocess can further call another process. Up to 16 nesting levels are allowed.
To make a master reset call, specify the [,MRST] option. When a master reset call is made, bit-
type PI/Os turned on by the local process are cleared to 0 on the following timing: the called
process is terminated; Escape is executed; or the executable state is entered.
When the [,TUP] option is specified, the parallel timers occupied by the local process are forcibly
timed out at execution of Process End or Escape or at shift to the executable state.
When the [,TRS] option is specified, the parallel timers occupied by the local process are reset at
execution of Process End or Escape or at shift to the executable state.
When the option is not specified, the parallel timers continue measurement even after the process is
terminated.

[Syntax]

 Pxxx [, step-number] [, MRST] { [, TUP] }

{ [, TRS] }

[Sample programs containing Call ()]

1. P1

Process 1 is called in zone mode, starting from step 1. The parallel timers occupied by the
called process continue measurement when Process End or Escape is executed or the process
executable state is entered.

2. P2, 5, MERST

Process 2 is called in master reset mode, starting from step 5. The parallel timers occupied by
the called process continue measurement when Process End or Escape is executed or the process
executable state is entered.

3. P3, TUP

Process 3 is called in zone mode, starting from step 1. The parallel timers occupied by the
called process are forcibly timed out when Process End or Escape is executed or the process
executable state is entered.

4 EXPLANATION OF SYNTAXES

- 55 -

4.14 Function

Function supplements the operation and data processing functions that are supported by Box. For
details, see the chapter explaining application instructions.

[Syntax]

 application-instruction-name parameter [, parameter] ∼

4.15 Wait with Previous State Cleared

Wait with Previous State Cleared provides the same effect as Wait before the shift conditions are
met. After these conditions are met, it functions differently. When the previous step is an ON
statement or process call, Wait with Precious State Cleared turns off its PI/Os before making the
program proceed to the next step. When the previous step is neither an ON statement nor a
process call, Wait with Previous State Cleared is the same as Wait. (The program proceeds to the
next step without PI/Os being turned off.)
When starting execution from this step through a branch, note that the previous state of the branch
source is not cleared.
This step is conform to the SFC standard.

[Syntax]

 * {condition-expression}

{WTxxx (expression [, SB] [, condition-expression]) }

THIS PAGE INTENTIONALLY LEFT BLANK.

5 APPLICATION
INSTRUCTIONS

5 APPLICATION INSTRUCTIONS

- 58 -

5.1 Overview

HI-FLOW syntaxes support only assignment for word-length data, arithmetic operations, and
logical operations as operation and data processing functions. To supplement this, HI-FLOW
supports application instructions equivalent to ladder diagrams.

5.2 Usage

Program application instructions in the following format:

 application-instruction parameter [, parameter] ~

5.3 Parameters

Unlike ladder operation functions, HI-FLOW accepts difference in type between application
instructions and parameters specified in them.

(Ladder)

(HI-FLOW)

For example FW000 0001 0001
 1 0000 0000
 2 0002 → → 0002
 3 1111 0000
 4 1111 0003

ADD
W

FW000+FW001→FW002
All parameters are word-length parameters.

ADD
FW000,

Word-length

[FW001], [FW003]

Long-length

After the application
instruction is executed

5 APPLICATION INSTRUCTIONS

- 59 -

In general, three types of parameters are used: source (S), destination (D), and result (R). Three
types of parameters, bit-type PI/O, word-type PI/O and constant, are provided. In HI-FLOW
application instructions, the following four types of addressing modes can be specified for
parameters:

1. Direct word-length specification: Specify parameters as they are.
2. Direct long-length specification: Enclose parameters in brackets ([]).
3. Indirect word-length specification: Prefix @ to the description in 1. above.
4. Indirect long-length specification: Prefix @ to the description in 2. above.

Parameters
Bit-type PI/O Word-type PI/O Constant

Addressing mode

X000 Data 1
X001 Data 2

Data 1 and data 2
 Data a
 Data b

FW000 Data 3
FW001 Data 4

Data 3 and data 4
 Data c
 Data d

XXXX YYYYYYYY

XXXX Data e
 Data f
YYYYYYYY Data g
 Data h

1. Direct word-length Result obtained by
ANDing data 1 with data 1

Data 3 XXXX.
For long-length data
YYYYYYYY, only the
low-order word is valid.

 Examples X000 FW000 1230
H20000000

2. Direct long-length Result obtained by
ANDing data 1 and data 2
with data 1

Data 3 and data 4 XXXX, YYYYYYYY.
XXXX is handled as long-
length data.

 Examples [X000] [FW000] [H1234]
[H20000000]

3. Indirect word-length Parameter error Data c.
When data 3 and data 4 are
odd numbers, an error is
detected.

For XXXX, data e is valid.
For YYYYYYYY, data g
is valid. When XXXX
and YYYYYYYY are odd
numbers, an error is
detected.

 Examples @ FW000 @ HFFF0
@ H180000

4. Indirect long-length Parameter error Data c and data d.
When data 3 and data 4 are
odd numbers, an error is
detected.

For XXXX, data e and data
f are valid. For
YYYYYYYY, data g and
data h are valid. When
XXXX and YYYYYYYY
are odd numbers, an error
is detected.

 Examples @ [FW000] @ [HFFF0]
@ [H180000]

5 APPLICATION INSTRUCTIONS

- 60 -

5.4 Type Conversion for Operation

When parameter values are included for operation, they are all sign-extended to long-length data.

FW00 8001 During operation, this data is handled as HFFFF8001.

When an operation result is stored, its type is converted to conform to the data type of the
destination.

Operation result

HFFFF8001

Bit-type PI/O Destination where word-
length data is stored

Destination where long-length
data is stored

H0001 H8001 HFFFF8001

The result is
ANDed with 1
and the result
is stored.

The low-order word is stored.
When an overflow occurs, the
maximum value and minimum
values are stored.

5 APPLICATION INSTRUCTIONS

- 61 -

5.5 System Error Flags

Flags are set in SW020, according to the execution result of the HI-FLOW application instruction.

Flags

X: Extend S020
E: Error S021
P: Positive S022
N: Negative S023
Z: Zero S024
V: Overflow S025
F. U: Reserved

Each flag is set according to the flag setting condition determined for each application instruction.
When the following conditions hold, the pertinent flags are set for all application instructions.

Error flag: This flag is set when (1) the number of parameters used in the application instruction is

invalid, (2) CPU memory is protected, (3) the address or PI/O specified by the result
parameter (R) points to an address in a protected area, or (4) the specified PI/O is in
error (for example, it cannot be used).

Overflow flag: This flag is set when the value of the operation result exceeds the range (word or

long) specified by the result parameter (R). The limit of the size is set in the
operation result.

 Word-length Positive overflow: 7FFF
 Negative overflow: 8000

 Long-length Positive overflow: 7FFFFFFF
 Negative overflow: 80000000

(MSB)
SW020

(LSB)

5 APPLICATION INSTRUCTIONS

- 62 -

5.6 Explanation of Functions

This section details individual application instructions in the following format:

ADD ADD

Function Adds the contents of the source to those of the destination and stores the result in the
area specified by the result parameter.

S+D → R Parameters and
processing

 ADD S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.41 ms
Remarks
Examples ADD FW000, FW001, FW002

FW000 0001
FW001 00FF
FW002 0100

 ADD H1234, [GW000], FW100

H1234 GW000 0010
 GW001 0011

FW100 7FFF The V flag is turned on.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D, R
Bit-type

PI/O
Word-type

PI/O

Constant

Direct
word-length ○ ○ ○

Direct
long-length ○ ○ ○

Indirect
word-length × △ △

Indirect
long-length × △ △

Processing of the
application instruction is
outlined.

Processing is illustrated.

A parameter list is shown.

The flags whose contents
change after execution of
the application instruction
are shown.

The time required for
processing by the S10/2α
is shown.

Notes to be followed are
described.

Main examples are
shown.

Parameters specifiable as
source (S), destination
(D), and result (R)
parameters are shown.

○: Can be specified
△: Can be specified on

conditions
×: Cannot be specified

Application instruction name Function name

5 APPLICATION INSTRUCTIONS

- 63 -

ADD ADD

Function Adds the contents of the source to those of the destination and stores the result in
the area specified by the result parameter.

S+D → R Parameters and
processing

 ADD S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.41 ms
Remarks
Examples ADD FW000, FW001, FW002

FW000 0001
FW001 00FF
FW002 0100 ＋

 ADD H1234, [GW000], FW100
H1234 ＋ GW000 0010
 GW001 0011
FW100 7FFF The V flag is turned on.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 64 -

SUB SUBTRACT

Function Subtracts the contents of the destination from those of the source and stores the
result in the area specified by the result parameter.

S-D → R Parameters and
processing

 SUB S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.41 ms
Remarks
Examples SUB FW000, FW001, FW002

FW000 0100
FW001 00FF
FW002 0001 －

 SUB H1234, [GW000], FW100
H1234 － GW000 0010
 GW001 0011
FW100 8000 The V flag is turned on.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 65 -

INC +1 (INCREMENT)

Function Increments the contents of the source by one.
S+1 → S Parameters and

processing
 INC S
S: Source

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.29 ms
Remarks
Examples INC FW000

FW000

 INC [GW000]
GW000
GW001

GW000 and GW001 are incremented by one, assuming that
they are long-length variables.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant

Direct
word-length ○ ○ ×

Direct
long-length ○ ○ ×

Indirect
word-length × △ △

Indirect
long-length × △ △

+1

+1

5 APPLICATION INSTRUCTIONS

- 66 -

DEC -1 (DECREMENT)

Function Decrements the contents of the source by one.
S-1 → S Parameters and

processing
 DEC S
S: Source

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.29 ms
Remarks
Examples DEC FW000

FW000

 DEC [GW000]
GW000
GW001

GW000 and GW001 are decremented by one, assuming that
they are long-length variables.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant

Direct
word-length ○ ○ ×

Direct
long-length ○ ○ ×

Indirect
word-length × △ △

Indirect
long-length × △ △

-1

-1

5 APPLICATION INSTRUCTIONS

- 67 -

MUL MULTIPLY

Function Multiplies the contents of the source by those of the destination and stores the
result in the area specified by the result parameter.

S×D → R Parameters and
processing

 MUL S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.49 ms (when both S and D are word-length parameters)

1.35 ms (when either S or D is a long-length parameter)
Remarks
Examples MUL FW000, FW001, FW002

FW000 0100
FW001 00FF
FW002 FF00 ×

 MUL H22, [GW000], FW100
H0022 × GW000 0010
 GW001 0011
FW100 7FFF The V flag is turned on.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 68 -

DIV DIVIDE

Function Divides the contents of the source by those of the destination and stores the
quotient in the area specified by the result parameter.

S÷D → R Parameters and
processing

 DIV S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.49 ms (when both S and D are word-length parameters)

1.35 ms (when either S or D is a long-length parameter)
Remarks When D = 0, the E flag is turned on and nothing is performed.
Examples DIV FW000, FW001, FW002

FW000 0100
FW001 0010
FW002 0010 ÷

 DIV H22, [GW000], FW100
H0022 ÷ GW000 0000
 GW001 0011
FW100 0002

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 69 -

MOD MOD (Remainder)

Function Divides the contents of the source by those of the destination and stores the
remainder in the area specified by the result parameter.

S÷D → R Parameters and
processing

 MOD S, D, R
S: Source
D: Destination
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.50 ms (when both S and D are word-length parameters)

1.40 ms (when either S or D is a long-length parameter)
Remarks When D = 0, the E flag is turned on and nothing is performed.

When an overflow occurs, R is set to 0.
Examples MOD FW000, FW001, FW002

FW000 0100
FW001 0012
FW002 0004 ÷

 DIV H22, [GW000], FW100

H0022 ÷ GW000 0000
 GW001 0012
FW100 0010

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 70 -

SCL SCALE CHANGE

Function Converts the scale of the source with the contents of the destination and stores
the result in the area specified by the result parameter.

S×D1÷D2 → R Parameters and
processing

 SCL S, D1, D2, R
S: Source
D1: Destination 1
D2: Destination 2
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 1.38 ms

Remarks When a multiplication overflow occurs, the overflow value is written in the area
specified by the result parameter and processing is terminated. When D2=0,
the E flag is turned on and nothing is performed. When an overflow occurs, R
is set to 0.

Examples SCL FW000, FW001, FW002, FW003
FW000 3320
FW001 0010
FW002 0066
FW003 0805 /3320×/10÷/66

 SCL GW000, GW001, H1110, FW100
GW000 2222
GW001 0012 H1110

FW100 0024 /2222×/12÷/1110

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D1, D2
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 71 -

AND AND

Function ANDs the contents of the source with those of the destination and stores the
logical product in the area specified by the result parameter.

S && D → R Parameters and
processing

 AND S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.36 ms
Remarks When R is a word-length parameter, the low-order word of the operation result

is written.
Examples AND FW000, FW001, FW002

FW000 0001
FW001 00FF
FW002 0001 &&

 AND H1234, [GW000], FW100
H1234 && GW000 0010
 GW001 0011
FW100 0010

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 72 -

OR OR

Function ORs the contents of the source with those of the destination and stores the
logical sum in the area specified by the result parameter.

S | | D → R Parameters and
processing

 OR S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.36 ms
Remarks When R is a word-length parameter, the low-order word of the operation result

is written.
Examples OR FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 5335 | |

 OR H1234, [GW000], FW100
H1234 | | GW000 0010
 GW001 0011
FW100 1235

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 73 -

EOR EXCLUSIVE OR

Function EORs the contents of the source with those of the destination and stores the
logical sum in the area specified by the result parameter.

S ^ ^ D → R Parameters and
processing

 EOR S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.36 ms
Remarks When R is a word-length parameter, the low-order word of the operation result

is written.
Examples EOR FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 5115 ^ ^

 EOR H1234, [GW000], FW100
H1234 ^ ^ GW000 0010
 GW001 0011
FW100 1225

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 74 -

NOT NOT (Negative)

Function Inverts the contents (bits) of the source and stores the result in the area specified
by the result parameter.

S (bit inversion) → R Parameters and
processing

 NOT S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.36 ms

Remarks
Examples NOT FW000, FW002

FW000 4321

FW002 BCDE NOT

 NOT [GW000], FW100
GW000 0010
GW001 0011

FW100 FFEE NOT

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 75 -

EQU EQUAL

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when a match is found. Otherwise,
stores 0 in the area.

S = D 1 → R
S ≠ D 0 → R

Parameters and
processing

 EQU S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples EQU FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0000 Comparison

 EQU HF234, [GW000], FW100
HF234 Comparison GW000 0000
 GW001 F234
FW100 0000 HF234 is HFFFFF234.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 76 -

NEQ NOT EQUAL

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when a match is not found.
Otherwise, stores 0 in the area.

S ≠ D 1 → R
S = D 0 → R

Parameters and
processing

 NEQ S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples NEQ FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0001 Comparison

 NEQ HF234, [GW000], FW100
HF234 Comparison GW000 0000
 GW001 F234
FW100 0001 HF234 is HFFFFF234.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 77 -

GT GREATER THAN

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when the source is greater than the
destination. Otherwise, stores 0 in the area.

S > D 1 → R
S <= D 0 → R

Parameters and
processing

 GT S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples GT FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0001 Comparison

 GT H1234, [GW000], FW100
H1234 Comparison GW000 0000
 GW001 F234
FW100 0000

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 78 -

GE GREATER OR EQUAL

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when the source is greater than or
equal to the destination. Otherwise, stores 0 in the area.

S >= D 1 → R
S < D 0 → R

Parameters and
processing

 GE S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples GE FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0001 Comparison

 GE H1234, [GW000], FW100
H1234 Comparison GW000 0000
 GW001 F234
FW100 0000

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 79 -

LT LESS THAN

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when the source is smaller than the
destination. Otherwise, stores 0 in the area.

S < D 1 → R
S >= D 0 → R

Parameters and
processing

 LT S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples LT FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0000 Comparison

 LT H1234, [GW000], FW100

H1234 Comparison GW000 0000
 GW001 F234
FW100 0001

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 80 -

LE LESS OR EQUAL

Function Compares the contents of the source with those of the destination. Stores 1 in
the area specified by the result parameter when the source is smaller than or
equal to the destination. Otherwise, stores 0 in the area.

S <= D 1 → R
S > D 0 → R

Parameters and
processing

 LE S, D, R
S: Source
D: Destination
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.40 ms

Remarks Word-length data is sign-extended to long-length data before it is compared.
Examples LE FW000, FW001, FW002

FW000 4321
FW001 1234
FW002 0000 Comparison

 LE H1234, [GW000], FW100

H1234 Comparison GW000 0000
 GW001 F234
FW100 0001

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 81 -

TST TEST

Function Tests the contents of the source and set the P, Z, and N flags.
S > 0 : P = 1, Z = 0, N = 0
S = 0 : P = 0, Z = 1, N = 0
S < 0 : P = 0, Z = 0, N = 1

Parameters and
processing

 TST S
S: Source

Flags The settings of the E, P, Z, and N flags change. The other flags are turned off.
Processing time 0.17 ms

Remarks Word-length data is sign-extended to long-length data before it is tested.
Examples TST FW000

FW000 4321

FW020 2000 Test

 TST [GW000]
GW000 FFFF
GW001 F234

SW020 1000 Test

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant

Direct
word-length ○ ○ ○

Direct
long-length ○ ○ ○

Indirect
word-length × △ △

Indirect
long-length × △ △

5 APPLICATION INSTRUCTIONS

- 82 -

MOV MOVE

Function Moves the contents of the source to the destination.
S → D Parameters and

processing
 MOV S, D
S: Source
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.28 ms
Remarks When the size of data to be moved does not conform, its type is converted.

Examples MOV FW000, FW002
FW000 4321

FW002 4321

 MOV HF234, @ [H180000]

HF234 H180000 FFFF
 2 F234
 HF234 is HFFFFF234.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant D

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 83 -

MOM MOVE MULTI

Function Moves the contents of the source to the destination n word-length or long-length
data items at one time.

 MOM S, n, D

S1 → D1

Sn → Dn

Parameters and
processing

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.39+0.02×n ms

Remarks When n is less than or equal to 0 or greater than 256, nothing is processed.
When S is a constant, its value is converted to the type of D before the value is
set. When S and D have different types, type conversion is performed.

Examples MOM FW000, FW002
FW000 4321

FW002 4321

 MOM FW000, 2, @ [H180000]

FW000 F234 H180000 FFFF
FW001 0001 2 F234
FW002 0000 4 0000
FW003 FFFF 6 0001

HF234 is HFFFFF234.
H0001 is H00000001.

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant D

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

S: Source
D: Destination
n: Number of word-length or long-length data items transferred at one time

5 APPLICATION INSTRUCTIONS

- 84 -

EXC EXCHANGE

Function Exchanges the contents of the source and those of the destination with each other.
S ←→ D Parameters and

processing
 EXC S, D
S: Source
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.31 ms
Remarks When the size of data to be moved does not conform, its type is converted.

Examples EXC FW000, FW002
FW000 1234

FW002 4321

 EXC @ H170000, @ [H180000]
H170000 F234 H180000 0010
 2 0001
After exchange
H170000 7FFF H180000 FFFF

 2 F234

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant

Direct
word-length ○ ○ ×

Direct
long-length ○ ○ ×

Indirect
word-length × △ △

Indirect
long-length × △ △

5 APPLICATION INSTRUCTIONS

- 85 -

PSH FIFO PUSH

Function Pushes the contents of the source into the FIFO table. The FIFO table contains
only word-length data.

 FIFO table Parameters and
processing

 PSH S, TB
S: Source
TB: First address of the FIFO table

Flags The setting of the E flag changes.
The other flags are turned off.

Processing time 0.31 ms
Remarks When n is less than or equal to 0 or

greater than 256, nothing is processed.
When the value of the pointer is less
than 0 or the data size is less than the
value of the pointer, noting is
processed. When the value of the pointer is equal to the data size, the FULL
flag is turned on and nothing is processed. After the contents of the source are
pushed, the contents of the pointer are incremented. When the pointer reaches
n, the FULL flag is turned on. Otherwise, the ZERO and FULL flags are turned
off. When TB is a constant, it is assumed to be the table address.

Examples PSH FW000, DW000
FW000 1234 PSH

DW000

DW004
DW005 Pointer
DW006 Data 1
DW007 Data 2
DW008 Data 3
DW009 1234

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant TB

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length × ○ △
Direct
long-length ○ ○ ○ Direct

long-length × ○ △
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Data 1
Data 2

Push data

n (data size)
ZERO flag
address
FULL flag
address

Pointer
Data 1

Data n

Pointer

Data storage area
specified by the data size

5 APPLICATION INSTRUCTIONS

- 86 -

POP FIFO POP

Function Pops data from the FIFO table and stores the popped data in the destination.
The FIFO table contains only word-length data.

 FIFO table Parameters and
processing

 POP TB, D
D: Destination
TB: First address of the FIFO table

Flags The setting of the E flag changes.
The other flags are turned off.

Processing time 0.32+0.01×n ms
Remarks When n is less than or equal to 0 or

greater than 256, nothing is processed.
When the value of the pointer is less
than 0 or the data size is less than the
value of the pointer, noting is
processed. When the value of the pointer is 0, the ZERO flag is turned on and
nothing is processed. After data is popped, the contents of the pointer are
decremented. When the pointer reaches 0, the ZERO flag is turned on.
Otherwise, the ZERO and FULL flags are turned off. When TB is a constant, it
is assumed to be the table address.

Examples POP DW000, FW000
FW000 1234 POP

DW000

DW004
DW005 Pointer
DW006 1234
DW007 Data 2
DW008 Data 3
DW009 Data 4

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

TB
Bit-type

PI/O
Word-type

PI/O
Constant D

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length × ○ △ Direct

word-length ○ ○ ×
Direct
long-length × ○ △ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Data 1
Data 2
Data 3
Data 4

Popped data n (data size)
ZERO flag
address
FULL flag
address

Pointer
Data 1

Data n

Pointer

Data storage area
specified by the data size

5 APPLICATION INSTRUCTIONS

- 87 -

AST ADDRESS SET

Function Transfers the address of the source to the destination. Valid only for PI/O.
Address of S → D Parameters and

processing
 AST S, D
S: Source
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.25 ms
Remarks When word-length data is specified in D, the address is converted to word-length

data.

Examples AST FW000, [FW002]
FW000

FW002 000E
FW003 2000 Address

 AST X000, @ [H180000]
Address H180000 000A
of X000 2 0000

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant D

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ × Direct

word-length ○ ○ ×
Direct
long-length ○ ○ × Direct

long-length ○ ○ ×
Indirect
word-length × × × Indirect

word-length × △ △
Indirect
long-length × × × Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 88 -

SCH SEARCH

Function Searches the destination for the contents of the source from the beginning of the
destination before the specified area (m) is reached. Stores, in the area specified
by the result parameter, the number (n) of the steps where the contents of the
source are found.

 S R Parameters and
processing

 SCH S, D, m, R
S: Source
D: Destination
m: Number of steps to be searched
R: Result

Flags The setting of the E flag changes.
The other flags are turned off.

Processing time 0.45+0.01×n ms

Remarks When m is less than or equal to 0 or
greater than 256, nothing is processed.
A match occurs when the first occurrence of the contents of the source is
encountered. If a match is not found within the search range, -1 is set in the
area specified by the result parameter. When the type (long or word) of the
data to be searched is different from that of data in the destination, an error is
detected. The step numbers (n) in the destination start with 0.

Examples SCH DW000, FW000, 5, FW005
DW000 1234 Search

FW000 0000
FW001 1234 First
FW002 0000 occurrence
FW003 1234
FW004 0000
FW005 0001

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, m
Bit-type

PI/O
Word-type

PI/O
Constant D, R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Data n

Data

Search table

Search range

D (0)
(1)

(n)

(m-1)

5 APPLICATION INSTRUCTIONS

- 89 -

BTD BINARY → BCD CONVERSION

Function Converts the contents of the source from the binary form to the BCD form and
stores the result in the area specified by the result parameter.

S (binary) → R (BCD) Parameters and
processing

 BTD S, R
S: Source
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 1.03 ms

Remarks When S < 0, nothing is processed. In this case, the E flag is turned on and the
V flag is turned off. If an overflow occurs, H9999 or H99999999 is set.

Examples BTD FW000, FW002
FW000 007B

FW002 0123 BTD

 BTD HBC614E, @ [H180000]
HBC614E BTD H180000 1234

 2 5678

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 90 -

DTB BCD → BINARY CONVERSION

Function Converts the contents of the source from the BCD form to the binary form and
stores the result in the area specified by the result parameter.

S (BCD) → R (binary) Parameters and
processing

 DTB S, R
S: Source
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.46 ms

Remarks If any of A to F is used in S, the E flag is turned on and nothing is processed.
Examples DTB FW000, FW002

FW000 1234

FW002 04D2 DTB

 DTB H99999999, @ [H180000]
H99999999 DTB H180000 05F5

 2 E0FF

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 91 -

SEG BINARY → 7-SEGMENT CONVERSION

Function Converts the contents of the source from the binary form to 7-segment data and
stores the result in the area specified by the result parameter.

S (binary) → R (7-segment data)Parameters and
processing

 SEG S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.35 ms

Remarks S is doubled in size and written in R.
Examples

 SEG FW000, FW002
FW000 5678

FW002 585F
FW003 707F

 SEG HDEF01234, @ [H180000]

HDEF01234 H180000 3D4F

 2 477E
 4 306D
 6 7933

7-segment correspondence table

No. 0 1 2 3 4 5 6 7 8 9 A B C D E F
Data 7E 30 6D 79 33 5B 5F 70 7F 7B 77 1F 4E 3D 4F 47

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Conversion to 7-
segment data

Conversion to 7-
segment data

5 APPLICATION INSTRUCTIONS

- 92 -

ASP BINARY → ASCII CONVERSION (PACKED MODE)

Function Converts the contents of the source from the binary form to ASCII data and
stores the result in the area specified by the result parameter in packed mode.

S (binary) → R (ASCII, packed) Parameters and
processing

 ASP S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.47 ms

Remarks S is doubled in size and written in R.
Examples

 ASP FW000, FW002
FW000 5678

FW002 3536
FW003 3738

 ASP HDEF01234, @ [H180000]

HDEF01234 H180000 4445

 2 4630
 4 3132
 6 3334

Correspondence table between ASCII and binary data

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
Data 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Conversion to
ASCII data

Conversion to
ASCII data

5 APPLICATION INSTRUCTIONS

- 93 -

ASU BINARY → ASCII CONVERSION (UNPACKED MODE)

Function Converts the contents of the source from the binary form to ASCII data and
stores the result in the area specified by the result parameter in unpacked mode.

S (binary) → R (ASCII, unpacked)Parameters and
processing

 ASU S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.49 ms

Remarks S is multiplied by four in size and written in R.
Examples

 ASU FW000, FW002
FW001 5678
FW002 3035
FW003 3036
FW004 3037
FW005 3038

 ASU HDEF01234, @ [H180000] H180000 3044

 2 3045
HDEF01234 4 3046

 6 3030
 8 3031
 A 3032
 C 3033
 E 3034

Correspondence table between ASCII and binary data

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
Data 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Conversion to
ASCII data

Conversion to
ASCII data

5 APPLICATION INSTRUCTIONS

- 94 -

APB ASCII → BINARY CONVERSION (PACKED MODE)

Function Converts the contents of the source from ASCII data in packed mode to the
binary form and stores the result in the area specified by the result parameter.

S (ASCII, packed) → R (binary) Parameters and
processing

 APB S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.57 ms

Remarks Data with the size in R multiplied by two is fetched from S and converted. If
data in S contains any of H30 to H39 and H41 to H46, the E flag is turned on
and nothing is processed.

Examples

 APB FW000, FW002
FW000 3132
FW001 3334
FW002 1234

 APB DW000, @ [H180000]

 DW000 4645 H180000 FEDC
 1 4443 2 9876
 2 3938
 3 3736

Correspondence table between ASCII and binary data

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length × ○ × Direct

word-length ○ ○ ×
Direct
long-length × ○ × Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Conversion to
binary data

Conversion to
binary data

5 APPLICATION INSTRUCTIONS

- 95 -

AUB ASCII → BINARY CONVERSION (UNPACKED MODE)
Function Converts the contents of the source from ASCII data in unpacked mode to the

binary form and stores the result in the area specified by the result parameter.
S (ASCII, unpacked) → R (binary)Parameters and

processing
 AUB S, R
S: Source
R: Result

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.57 ms
Remarks Data with the size in R multiplied by four is fetched from S and converted. If

data in S contains of any H30 to H39 and H41 to H46, the E flag is turned on
and nothing is processed.

Examples

 AUB FW001, FW002
FW001 3035
FW002 3036
FW003 3037
FW004 3038
FW005 5678

 AUB [DW000], @ [H180000]
DW000 1130 H180000 0123
 1131 2 4567
 0032
 2233
 3334
 4435
 5536
 FF37

Correspondence table between ASCII and binary data

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length × ○ × Direct

word-length ○ ○ ×
Direct
long-length × ○ × Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

Conversion to
binary data

Conversion to
binary data

5 APPLICATION INSTRUCTIONS

- 96 -

ABS ABSOLUTE VALUE

Function Stores the absolute value of the contents of the source in the area specified by
the result parameter.

| S | → R Parameters and
processing

 ABS S, R
S: Source
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.32 ms

Remarks If an overflow occurs, H7FFFFFFF is set in the area specified by the result
parameter.

Examples ABS FW000, FW002
FW000 FF9C

FW002 0064 Absolute value

 ABS DW000, @ [H180000]

DW000 FFFB

H180000 0000 Absolute value
2 0005

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 97 -

NEG SIGN SEARCH

Function Sign-converts the contents of the source and stores the result in the area
specified by the result parameter.

-S → R Parameters and
processing

 NEG S, R
S: Source
R: Result

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.32 ms

Remarks If an overflow occurs, H7FFF or H7FFFFFFF is set in the area specified by the
result parameter.

Examples NEG FW000, FW002
FW000 1000

FW002 F000 NEG

 NEG DW000, @ [H180000]

DW000 1234

H180000 FFFF NEG
2 EDCC

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 98 -

DCD DECODE

Function Decodes the contents of the source and stores the result in the area specified by
the result parameter.

Parameters and
processing

 DCD S, R
S: Source
R: Result

S n →
 0 n (LSB)

R 0 ~ 0 1 0 ~ 0

Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.38 ms

Remarks The valid bits in S depend on the data size specified in R. When word-length is
specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples DCD FW000, FW002
FW000 0003

FW002 1000 DCD

 DCD [DW000], @ [H180000]

DW000 0000
DW001 001F

H180000 0000 DCD

2 0001

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 99 -

ECD ENCODE

Function Encodes the contents of the source and stores the result in the area specified by
the result parameter.

Parameters and
processing

 ECD S, R
S: Source
R: Result

 0 n (LSB)
S 0 ~ 0 1 ? ~ ?

→ S n
Flags The setting of the E flag changes. The other flags are turned off.
Processing time 0.38+0.01×n ms

Remarks When S=0, nothing is processed. Only one bit is decoded. It is the first bit set
to 1, when it is searched from the most significant bit (MSB).

Examples ECD FW000, FW002
FW000 0456

FW002 0005 ECD

 ECD [DW000], @ [H180000]

DW000 0000
DW001 0080

H180000 0000 ECD

2 0018

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 100 -

LSR LOGICAL SHIFT RIGHT

Function Shifts the contents of the source right by the contents of the destination, and
stores the result in the area specified by the result parameter.

Parameters and
processing

 LSR S, D, R
S: Source
R: Result
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.

Processing time 0.37 ms
Remarks The valid bits in D depend on the data type in S. When word-length is

specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples LSR FW000, FW001, FW002
FW000 0456
FW001 0004
FW002 0045 LSR

 LSR [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 21D9 LSR

2 50C8

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

RS-D (LSB)

(LSB)

0

0

S

R 0 ~ 0

The length of RS
depends on the
data type; 15 bits
for word-length or
31 bits
for long-length.

5 APPLICATION INSTRUCTIONS

- 101 -

LSL LOGICAL SHIFT LEFT

Function Shifts the contents of the source left by the contents of the destination, and stores
the result in the area specified by the result parameter.

Parameters and
processing

 LSL S, D, R
S: Source
R: Result
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.

Processing time 0.37 ms
Remarks The valid bits in D depend on the data type in S. When word-length is

specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples LSL FW000, FW001, FW002
FW000 0456
FW001 0004
FW002 4560 LSL

 LSL [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 1D95 LSL

2 0C84

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

D (LSB)

(LSB)

0

0

S

R 0 ~ 0

The length of LSB
depends on the
data type; 15 bits
for word-length or
31 bits for long-
length.

5 APPLICATION INSTRUCTIONS

- 102 -

ASR ARITHMETIC SHIFT RIGHT

Function Shifts the contents of the source right by the contents of the destination (the sign
bit is retained), and stores the result in the area specified by the result parameter.

Parameters and
processing

 ASR S, D, R
S: Source
R: Result
D: Destination

Flags The settings of the E and V flags change. The other flags are turned off.

Processing time 0.43 ms
Remarks When R is of the word-length type, the low-order word is set. The valid bits in

D depend on the data type in S. When word-length is specified, the low-order
four bits are valid. When long-length is specified, the low-order five bits are
valid.

Examples ASR FW000, FW001, FW002
FW000 8456
FW001 0004
FW002 F845 ASR

 ASR [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 E1D9 ASR

2 0246

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

RS-D (LSB)

(LSB)

0

0

S

R 0 ~ 0

The length of RS
depends on the
data type; 15 bits
for word-length
or 31 bits for
long-length.

~

5 APPLICATION INSTRUCTIONS

- 103 -

ASL ARITHMETIC SHIFT LEFT

Function Shifts the contents of the source left by the contents of the destination, and stores
the result in the area specified by the result parameter. Sets the full-scale value
if an overflow occurs.

Parameters and
processing

 ASL S, D, R
S: Source
R: Result
D: Destination

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.41 ms
Remarks The valid bits in D depend on the data type in S. When word-length is

specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples ASL FW000, FW001, FW002
FW000 0456
FW001 0004
FW002 4560 ASL

 ASL [DW000], 2, @ [H180000]

DW000 4765 2
DW001 4321

H180000 7FFF ASL

2 FFFF Overflow (The V flag is turned on.)

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

The length of LSB
depends on the
data type; 15 bits
for word-length or
31 bits for long-
length.

D (LSB)

(LSB)

0

0

S

R 0 ~ 0

5 APPLICATION INSTRUCTIONS

- 104 -

ROR ROTATE RIGHT

Function Rotates the contents of the source right by the contents of the destination, and
stores the result in the area specified by the result parameter.

Parameters and
processing

 ROR S, D, R
S: Source
R: Result
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.

Processing time 0.37 ms
Remarks The valid bits in D depend on the data type in S. When word-length is

specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples ROR FW000, FW001, FW002
FW000 8456
FW001 0004
FW002 6845 ROR

 ROR [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 61D9 ROR

2 50C8

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

RS-D (LSB) 0
S The length of RS

depends on the data
type; 15 bits for
word-length or 31
bits for long-length.

5 APPLICATION INSTRUCTIONS

- 105 -

ROL ROTATE LEFT

Function Rotates the contents of the source left by the contents of the destination, and
stores the result in the area specified by the result parameter.

Parameters and
processing

 ROL S, D, R
S: Source
R: Result
D: Destination

Flags The setting of the E flag changes. The other flags are turned off.

Processing time 0.37 ms
Remarks The valid bits in D depend on the data type in S. When word-length is

specified, the low-order four bits are valid. When long-length is specified, the
low-order five bits are valid.

Examples ROL FW000, FW001, FW002
FW000 8456
FW001 0004
FW002 4568 ROL

 ROL [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 1D95 ROL

2 0C86

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

D (LSB) 0
S The length of RS

depends on the data
type; 15 bits for
word-length or 31
bits for long-length.

5 APPLICATION INSTRUCTIONS

- 106 -

LIM LIMITER

Function Compares the contents of the source with the values of the specified boundaries
(contents of destinations D1 and D2), and stores the result in the area specified
by the result parameter.

Parameters and
processing

 LIM S, D1, D2, R
S: Source
R: Result
D1, D2: Destination

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.52 ms
Remarks When D1 < D2, the E flag is turned on.

Examples LIM FW000, FW001, FW002, FW003
FW000 0023
FW001 0010
FW002 FFF0
FW003 0010 LIM

 LIM [DW000], 2, -1, @ [H180000]

DW000 FFFF 2
DW001 FFFF -1

H180000 FFFF LIM

2 FFFE

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D1, D2
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

(R)

(S)D1

D1
D2

D2

5 APPLICATION INSTRUCTIONS

- 107 -

BND DEAD BAND

Function Compares the contents of the source with the values of the specified boundaries
(contents of destinations D1 and D2), and stores the contents within the
boundaries as a dead area (data 0) in the area specified by the result parameter.

Parameters and
processing

 BND S, D1, D2, R
S: Source
R: Result
D1, D2: Destination

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.52 ms
Remarks When D1 < D2, the E flag is turned on.

Examples BND FW000, FW001, FW002, FW003
FW000 0023
FW001 0010
FW002 FFF0
FW003 0013 BND

 BND [DW000], 2, -1, @ [H180000]

DW000 FFFF 2
DW001 FFFF -1

H180000 0000 BND

2 0000

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D1, D2
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

(R)

(S) D1
D2

These inclines are the same.

5 APPLICATION INSTRUCTIONS

- 108 -

ZON DEAD ZONE

Function Adds a bias (contents of destination D1 or D2) to the contents of the source
according to its sign (positive or negative), and stores result in the area specified
by the result parameter.

Parameters and
processing

 ZON S, D1, D2, R
S: Source
R: Result
D1, D2: Destination

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.52 ms
Remarks When D1 < D2, the E flag is turned on.

Examples ZON FW000, FW001, FW002, FW003
FW000 0023
FW001 0010
FW002 FFF0
FW003 0033 ZON

 ZON [DW000], 2, -1, @ [H180000]

DW000 FFFF 2
DW001 FFFF -1

H180000 FFFF ZON

2 FFFE

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D1, D2
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

(R)

(S)
D1

D2
These inclines are the same.

5 APPLICATION INSTRUCTIONS

- 109 -

ROT ROOT

Function Stores the integer part of the root obtained from the contents of the source in the
area specified by the result parameter.

Parameters and
processing

 ROT S, R
S: Source
R: Result

When S >= 0: Root of S → R
When S < 0: 0 → R

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.77 ms

Remarks
Examples ROT FW000, FW002

FW000 0456

FW002 0021 ROT

 ROT [DW000], @ [H180000]

DW000 0000
DW001 0080

H180000 0000 ROT

2 000B

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 110 -

MAX MAXIMUM

Function Compares the contents of the source with those of the destination, and stores the
larger value in the area specified by the result parameter.

Parameters and
processing

 MAX S, D, R
S: Source
R: Result
D: Destination

When S >= D: S → R
When S < D: D → R

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.42 ms
Remarks
Examples MAX FW000, FW001, FW002

FW000 0456
FW001 0004
FW002 0456 MAX

 MAX [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 0000 MAX

2 0002

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 111 -

MIN MINIMUM

Function Compares the contents of the source with those of the destination, and stores the
smaller value in the area specified by the result parameter.

Parameters and
processing

 MIN S, D, R
S: Source
R: Result
D: Destination

When S <= D: S → R
When S > D: D → R

Flags The settings of the E and V flags change. The other flags are turned off.
Processing time 0.42 ms
Remarks
Examples MIN FW000, FW001, FW002

FW000 0456
FW001 0004
FW002 0004 MIN

 MIN [DW000], 2, @ [H180000]

DW000 8765 2
DW001 4321

H180000 8765 MIN

2 4321

Valid
parameters

△: A parameter
error is detected
when an odd-
numbered
address is used.

S, D
Bit-type

PI/O
Word-type

PI/O
Constant R

Bit-type
PI/O

Word-type
PI/O

Constant

Direct
word-length ○ ○ ○ Direct

word-length ○ ○ ×
Direct
long-length ○ ○ ○ Direct

long-length ○ ○ ×
Indirect
word-length × △ △ Indirect

word-length × △ △
Indirect
long-length × △ △ Indirect

long-length × △ △

5 APPLICATION INSTRUCTIONS

- 112 -

CLR CLEAR

Function Clears a specified I/O area. TCLR, UCLR, and CCLR also clear the respective
measured value areas.

Parameters and
processing

 Name S
Name: CLR application instruction name
S: Source (Top of the specified I/O area.)

Flags All flags are set to 0.
Processing time See the table below.

Remarks
Explanation

Name Function Processing time

XCLR Clears X000 to XFFF. 0.92 ms
YCLR Clears Y000 to YFFF. 0.92 ms
GCLR Clears G000 to GFFF. 0.92 ms

RCLR Clears R000 to RFFF. 0.92 ms
KCLR Clears K000 to KFFF. 0.92 ms
TCLR Clears T000 to T3FF and also

clears the measured area of T.
2.46 ms

UCLR Clears U000 to U3FF and also
clears the measured area of U.

1.70 ms

CCLR Clears C000 to C3FF and also
clears the measured area of C.

1.70 ms

VCLR Clears V000 to VFFF. 0.92 ms
ECLR Clears E000 to EFFF. 0.92 ms.

FCLR Clears S020 to S027. 0.15 ms
JCLR Clears J000 to JFFF. 0.92 ms

QCLR Clears Q000 to QFFF. 0.92 ms
HHCLR Clears HH000 to HH1FF. 1.70 ms

Examples XCLR X000

 HHCLR HH000

SUPPLEMENT

SUPPLEMENT

- 114 -

Supplement 1 Work Flow Based on HI-FLOW Program

A HI-FLOW program is created using a programming tool such as a personal computer and
executed by the PCs. When the execution result is to be monitored, minimum necessary data is
received from the PCs, and it is combined with the program in the tool and output. This aims at
increasing the monitor speed by decreasing the amount of communication.
The storage media such as FD and HD are also used to save and load the created program.

User

Input

Programming tool

HI-FLOW program

Saving

Loading

Storage media
(FD and HD)

Transmission Reception

+

PCs

HI-FLOW program

Monitor
data

Execution

Monitor

SUPPLEMENT

- 115 -

Supplement 2 PCs Memory

The HI-FLOW program to be executed on the PCs are placed in the area shown below. The
program is actually stored in the memory of the PC, as shown in the memory map below.

/110000 /119600 /11FFFE

The processes are not always arranged in
ascending order.

HI-FLOW system Process
index table

Process
n

Process
n-3

Process
n+2

Process
n-7

Fixed
Any memory area may be reserved for
processes using the system edition command.
Normally, the area ranging from/120000 to
/13FFFE is reserved.

Beginning of program area
End of program area
End of programmable area

Beginning of process 0
End of process 0
Beginning of process 1
End of process 1

Beginning of process 255
End of process 255

Reverse-translation
information
management table

Object program

Execution table

Send/receive
data

SUPPLEMENT

- 116 -

Supplement 3 Online Mode

“Offline” means that the text to be edited is made into a program of the programming tool
regardless of the contents of PCs memory.

“Online” means that the text to be edited or monitored is made into a program for the PCs. When
the PCs are placed under monitoring, not all necessary data has been read from the PCs since it
takes a long time to do so by communication. For this reason, it is necessary that the program of
the tool matches that of the PCs. This matching is enabled by transmission or reception.

A HI-FLOW program is self-contained in a process. Therefore, if only one process contains a
matching program, the process can be subjected to editing or monitoring. Transmission and
reception of all processes or just one process are available for saving time and many other purposes.

(1) All-processes transmission

The following shows the data flow when transmitting all HI-FLOW programs on the tool to the
PCs at one time.

After all the processes have been transmitted, the processes and tables in memory are arranged
in ascending order.

Programming tool

Source
programs

PRCS000

PRCS255

①
Translates all
processes.

Object
programs

PRCO000

PRCO255

Tables

EXTD000
EXTD001
EXTD002

②
Transmits a directive to delete
all processes.

③
Transmits the object
programs of all processes
in ascending order.

④
Transmits the tables.

PCs

P
ro

ce
ss

 0

P
ro

ce
ss

 1

P
ro

ce
ss

 2
55

SUPPLEMENT

- 117 -

(2) All-processes reception
The following shows the data flow when receiving all HI-FLOW programs from the PCs with
the tool.

On reception, the processes and tables in the memory are not always arranged in ascending
order.

Programming tool
①Deletes all processes and tables.

Source
programs

PRCS000

PRCS255

④
Reverse
translation

Object
programs

PRCO000

PRCO255

Tables

EXTD000
EXTD001
EXTD002

②
Receives the object
programs of all processes
in ascending order.

③
Receives the tables.

PCs

P
ro

ce
ss

 ?

P
ro

ce
ss

 ?

P
ro

ce
ss

 ?

SUPPLEMENT

- 118 -

(3) One-process transmission
The following shows the data flow when transmitting one specific HI-FLOW process on the
tool to the PCs.

After the process has been transmitted, it is placed after all other processes in the memory.

Programming tool

Source
program

PRCS???

①
Translates one
process.

Object
program

PRCO???

Tables

EXTD000
EXTD001
EXTD002

②
Transmits a directive to delete
the specified process.

③
Transmits the object
program of the specified
process.

④
Receives the tables
from the PCs.

PCs

P
ro

ce
ss

 ?

P
ro

ce
ss

 ?

P
ro

ce
ss

 ?
??

SUPPLEMENT

- 119 -

(4) One-process reception
The following shows the data flow when receiving one specific HI-FLOW process on the PCs
with the tool.

On reception, the processes and tables on the memory are not always arranged in ascending
order.

Programming tool

Source
program

PRCS???

③
Reverse
translation

Object
program

PRCO???

Tables

EXTD000
EXTD001
EXTD002

①
Receives the object of the
specified process.

②
Receives the tables from
the PCs.

PCs

P
ro

ce
ss

 ?

P
ro

ce
ss

 ?
??

P
ro

ce
ss

 ?

SUPPLEMENT

- 120 -

Supplement 4 Check for Progress

HI-FLOW indicates the current position on the user program with the monitor cursor. The HI-
FLOW system in the PCs controls the progress of the current position. This section describes how
the user program transferred to the PCs is checked for progress by the PCs.

Item Description

Basic rules ･ The progress is checked at each by the PCs.
･ Processes activated with ACT are checked sequentially in ascending order of

process numbers.
･ In the same process, routes are checked sequentially in ascending order of

route numbers. (The route numbers on the screen are increased from left to
right and from top to bottom.)

･ In the same route, steps are checked sequentially in ascending order of step
numbers.

･ Upon completion of checking a step, the next step is checked for progress.
If the program cannot proceed to the next step, the route having the next
route number is checked for process. At the next scan, progress check for
this process and route starts with this step.

Called process ･ The called process is checked for progress after progress check for the
calling process and calling route is done. When progress check for the
called process is completed but process execution is not completed, the next
route after the calling process and calling route is checked. When process
execution is completed, the next step after the calling route is checked.

Process control ･ The process called with ACT is checked for progress at the time of
activation. When processes have smaller process numbers than the process
number of the process called with ACT, these processes are checked for
progress at the next scan. When the process numbers are larger, these
processes are checked at the same scan as for the process.

･ RST, STP, and CLR in Control Box and Process Start are processed at they
are specified.

Around-the-clock
monitoring

･ The condition to start a process (ACT, STP, RST, or CLR) and multi-entry
condition are checked before the process is checked for progress. When
the condition is satisfied, the processing is performed before process
progress check.

･ Y-output interlock conditions are checked at each scan and Y-output is
turned on or off before the first process is checked for progress.

SUPPLEMENT

- 121 -

Item Description

Branch ･ After a branch step (If or Jump) is executed, the destination step is checked
for progress. Therefore, the route being executed may not be checked for
progress for one scan or it may be checked twice. Also, a closed loop
without progress conditions may be executed infinitely.

Repetition ･ After Repeat End, Repeat Start is checked for progress. Therefore,
repetition without progress conditions may result in an infinite loop.

Forcible
termination

･ When Escape is executed, the next process is checked for progress. When
the process is a called process, the next step after the calling process and
calling route is checked for progress.

Synchronization ･ After execution of Parallel Start, the next step is checked for progress.
･ Parallel End or Route End checks the next step after Parallel End for the

joined route when all synchronous routes are terminated. When some
synchronous routes are not terminated, Parallel End or Route End stops the
local route and checks the next route for progress.

Selection ･ After execution of Select, the next step is checked for progress.
･ When the condition for Wait in Selective Branching is satisfied, the other

selected routes are stopped and the next step is checked for progress.
When the condition is not satisfied, the next route is checked.

･ Select End or Route End checks the next step after the Select End for the
joined route. If the joined route is stopped, Select End or Route End
activates it.

Wait for
condition

･ When the condition is satisfied, Wait checks the next step for progress.
When the condition is not satisfied, Wait checks the route having the next
number. At the next scan, progress check for this process and route starts
with this step.

･ Wait in Selective Branching checks whether the previous step is an ON
statement before proceeding to the next step. If so, Wait in Selective
Branching clears to 0 the ON statement.

Symbol with no
delay

･ This symbol enables the program to proceed to the next step with no delay in
any case. The following steps proceed to the appropriate step with no
delay: Process Start, Route Start, Parallel Start, Select, Multi-entry, Box ,
Control Box, Function, Process End at termination of a called process, Route
End and Parallel End at synchronization end, Route End and Select End at
selective joining, and branch steps (Repeat Step, Repeat End, If, and Jump).

SUPPLEMENT

- 122 -

Supplement 5 Relationships between a HI-FLOW Program and the CPU
Load

A HI-FLOW program runs on a PCs as part of the operating system. As the amount of the HI-
FLOW program increases, therefore, the load of the operating system in the PCs increases. As a
result, the following problems arise:

･ More sequence cycle time than the specified value is required.
･ The states of LEDs on the PCs cannot change.
･ When the PCs is reset, LEDs do not light up.

If the load is further increased, the entire system dose not rum correctly, for example, the sequence
cycle stops. How to create an efficient HI-FLOW program is explained as well as a measure to
judge the load.

How to create an efficient HI-FLOW program

1. The load of the HI-FLOW program is determined by the number of steps being executed. It
is not affected by the vertical (route) length of the HI-FLOW program. Therefore, the load
of a program consisting of too many processes and routes is high.

2. Do not make unnecessary loops.

Do not make loops that are not required or have no stop points.

3. Use timers so that their numbers are specified consecutively in ascending order. Wait
timers, parallel timers, and counters having lower numbers have lower load.

B1 : ON G000

ACT P4

ON G001

X000, B1

The program on the left continues executing steps
in the loop until X000 is turned off, resulting in a
high load.

SUPPLEMENT

- 123 -

4. In the same route, use wait timers having the same number.

In the same route, multiple timers are never used at the same time. Use wait timers having
the same number. Do not use wait timers having a larger number as far as possible.

5. Use a minimum number of called processes.

A program divided into subroutines is more understandable. During execution, however,
the load is higher compared when called processes are not used. Carefully determine a
program structure.

6. Do not use Control Box steps consecutively, if possible.

The execution load of the Control Box step is very high. Do not use Control Box steps
consecutively as far as possible. If it is unavoidable to use them in such a way, use
consecutive specification of processes in an efficient way.

7. Set a minimum number of system control bits.

System control bits (see utilities in the operation manual) must be checked in each sequence
cycle or during execution of each step, increasing the load. Set a minimum number of
system control bits.

8. Use a minimum number of Multi-entry steps.

Multi-entry steps must be checked in each sequence cycle. When too many Multi-entry
steps are used, the load becomes high. Use a minimum number of Multi-entry steps.

ACT P1

ACT P20

ACT P1-P20

SUPPLEMENT

- 124 -

9. Take care so that the Multi-entry step does not enter an in-loop.

The Multi-entry step checks condition expressions in each cycle. If a condition is satisfied,
Multi-entry starts execution from the step. If consecutive conditions rather than an edge
condition are satisfied, Multi-entry enters an infinite loop. Be sure to edge-trigger for
conditions Multi-entry.

10. Set STP or RST in the Process Start step a minimum number of times.

The Process Start step with STP or RST specified checks conditions in each sequence cycle,
increasing the load significantly. Set STP or RST a minimum number of times.

11. Take care when setting CLR in the Process Start step.

The Process Start step with CLR specified clears PI/O each time a condition is satisfied,
increasing the load. (The Process Start step with RST, STP, or ACT specified does not
check further conditions once a condition is satisfied.) Create conditions to be checked by
the Process Start step with CLR specified.

12. Do not use consecutive application instructions if possible.

Application instructions perform operation continuously. If they are written consecutively,
the sequence cycle may be extended. When writing application instructions, take care.

13. Do not use complex condition expressions if possible.

When complex condition expressions are used in a HI-FLOW program, analysis of them
takes more time than a ladder program. When using complex condition expressions, write
them in a ladder program then pass them to the HI-FLOW program.

X000

ACT P10

ON G000

X001

1

2

3

4

If X001 is not satisfied and X000 is left on in the
program on the left, steps 1 to 4 are executed in
each sequence cycle. To prevent this, set an
edge condition for X000.

SUPPLEMENT

- 125 -

Correlation between a HI-FLOW program and the CPU load

The following tables gives measures of times of sequence cycle during which processes can be
executed on the S10/2α, S10/2αE, and S10/2αH(f) for individual process counts. The
conditions below are assumed:

(1) The following processes are used. Conditions are not satisfied. Other programs including
a ladder program are not used.

(2) All system control bits are invalid.

(3) When the PCs are turned on with the CPU key switch set to RUN, the actual sequence cycle
time is measured. (The sequence cycle accumulation counter in SW140 is measured for a
certain time.)

[S10/2α] : These process can be executed in the specified time.
 : When these processes are set, the sequence cycle stops.

Number of processes to be executed (n) Specified sequence

cycle time (ms) 10 30 50 100 150 200 256
10
20
30
50
75

100
125
150
175
200

Process 0

ACT P1-Pn

X000

Other Processes (1 to n)

X000

SUPPLEMENT

- 126 -

[S10/2αE] : These processes can be executed in the specified time.

Number of processes to be executed (n) Specified sequence
cycle time (ms) 10 30 50 100 150 200 256

10
20
30
50
75

100
125
150
175
200

[S10/2αH(f)] : These processes can be executed in the specified time.

Number of processes to be executed (n) Specified sequence
cycle time (ms) 10 30 50 100 150 200 256

10
20
30
50
75

100
125
150
175
200

When actually designing the system, set the sequence cycle time based on the above table,
taking the safety factor into account. Considering the ladder operation functions and the
existence of C mode programs, about halt of the sequence cycle time in which program
execution is possible on the PCs is appropriate.

INDEX

- 128 -

INDEX

A

about the process 10
ABS 96
ACT 32, 42
ADD 63
AND 71
APB 94
application instruction 58
application instruction,
explanation of functions 62
application instruction, overview 58
application instruction, parameters 58
application instruction,
system error flags 61
application instruction, type conversion
for operation 60
application instruction, usage 58
application instructions 6
ASL 103
ASP 92
ASR 102
assignment expression 37
AST 87
ASU 93
AUB 95

B

BND 107
box 37
BTD 89

C

call 54
CCLR 112
CLR 32, 44, 112
condition expression 35
configuration of HI-FLOW programs 2
constant 24
control box 42

D

DCD 98
DEC 66
DIV 68
DTB 90

E

ECD 99
ECLR 112
EOR 73
EQU 75
Escape 50
EXC 84
explanation of syntaxes 30

F

FCLR 112
free comment 27
free label 27
function 55

INDEX

- 129 -

G

GCLR 112
GE 78
GT 77

H

HHCLR 112
how to use this manual 4

I

If 47
INC 65

J

JCLR 112
Jump 49

K

KCLR 112

L

label 23
LE 80
LIM 106
LSL 101
LSR 100
LT 79

M

MAX 110
MIN 111
MOD 69
MOM 83
MOV 82
MUL 67
Multi-entry 53

N

NEG 97
NEQ 76
NOT 74

O

OFF statement 39
ON statement 38
operator 26
OR 72
outline of the syntax 5
output bit 35
overview 4

P

Parallel Start, Parallel End 51
parallel timer 39
POP 86
Process Start, Process End 30
process 10
process information 28
process information, comment 28
process information, name 28

INDEX

- 130 -

process state 11
process state change 12
program 15
PSH 85

Q

QCLR 112

R

RCLR 112
relationships between the setting of
the key switch on the PCs and
the states of processes 14
Repeat Start, Repeat End 46
reserved word 24
ROL 105
ROR 104
ROT 109
Route Start, Route End 34
route 15
RST 31, 43

S

SCH 88
SCL 70
SEG 91
Select, Wait in Selective
Branching, Select End 52
step 19
step comment 26
step number 20
STP 30, 44
SUB 64

symbol 20
syntax 23

T

TCLR 112
timer 35
TRS (Timer Reset) 41
TST 81
TUP (Timer Up) 40

U

UCLR 112
use of both the synchronization syntax and
selection syntax 16

V

variable 24
VCLR 112

W

wait 35
wait timer 35
Wait with Previous State Cleared 55
When different routes are used as
a route at which a branch starts and
a route at which routes are joined 17
When the same route is used as
a route at which a branch starts and
a route at which routes are joined 16

INDEX

- 131 -

X

XCLR 112

Y

YCLR 112

Z

ZON 108

	Cover
	Copyright
	SAFETY PRECAUTIONS
	PREFACE
	CONTENTS
	1 CONFIGURATION OF HI-FLOW PROGRAMS
	2 HOW TO USE THIS MANUAL
	2.1 Overview
	2.2 Outline of the Syntax
	2.3 Application Instructions

	3 PROCESSES
	3.1 About the Process
	3.2 Program
	3.3 Process Information

	4 EXPLANATION OF SYNTAXES
	4.1 Process Start and Process End
	4.2 Route Start and Route End
	4.3 Wait
	4.4 Box
	4.5 Control Box
	4.6 Repeat Start and Repeat End
	4.7 If
	4.8 Jump
	4.9 Escape
	4.10 Parallel Start and Parallel End
	4.11 Select, Wait in Selective Branching and Select End
	4.12 Multi-entry
	4.13 Call
	4.14 Function
	4.15 Wait with Previous State Cleared

	5 APPLICATION INSTRUCTIONS
	5.1 Overview
	5.2 Usage
	5.3 Parameters
	5.4 Type Conversion for Operation
	5.5 System Error Flags
	5.6 Explanation of Functions

	SUPPLEMENT
	Supplement 1 Work Flow Based on HI-FLOW Program
	Supplement 2 PCs Memory
	Supplement 3 Online Mode
	Supplement 4 Check for Progress
	Supplement 5 Relationships between a HI-FLOW Program and the CPU Load

	INDEX

