

 ii

NOTE

A l l in format ion in th is manual is based on the la test product in format ion avai lab le at
the t ime of pr in t ing. Hi tach i has reviewed the accuracy of th is manual , but assumes
no responsib i l i ty for any omiss ions or er ro rs which may appear . The des ign of the
product is under constant review and, whi le every ef for t is made to keep th is manual
up to date, the r ight is reserved to change speci f icat ions and equipment a t any t ime
wi thout pr ior not ice.

PROHIBITION

These products should not be used for medica l , power supply, nuc lear , water supply,
dra inage p lants , t ra f f ic cont ro l , mi l i tary, space, nor d isaster prevent ion equipment .

Divers ion and/or resale of these products wi thout th is manual is prohib i ted.

Reproduct ion of the contents of th is manual in whole or in par t , wi thout wr i t ten
permiss ion of Hi tach i , is proh ib i ted.

TRADEMARKS

HITACHI-S10/2α, S10/4α and PSEα are registered trademarks of Hitachi, Ltd.

BI-KB-TN<IC-NS> (FL-MW20, AI8.0)

FIRST EDITION, NOVEMBER, 1998, SAE - 3 - 133 (A) (out of print)
SECOND EDITION, SEPTEMBER, 2003, SAE - 3 - 133 (B)
All Rights Reserved, Copyright © 1998, 2003, Hitachi, Ltd.

 iii

Hi tach i , L td . , warrants i ts products to be manufactured in accordance wi th publ ished
speci f icat ions and f ree f rom defects in mater ia ls and/or workmanship.

Hi tach i , L td . , warrants i ts products against defects in par ts and workmanship for one
fu l l year f rom date of purchase.

HITACHI, LTD., MAKES NO W ARRANTIES, EITHER EXPRESS OR IMPLIED EXCEPT
AS PROVIDED HEREIN, INCLUDING W ITHOUT LIMITATION THEREOF, W ARRANTIES
AS TO MARKETABILITY FOR A PARTICULAR PURPOSE OF USE, OR AGAINST
INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL HITACHI BE LIABLE FOR
ANY DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR
COSTS, CHARGES, LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE
PRODUCT OR THE USE OF ANY PRODUCT.

LIMITED WARRANTY

 SOFTWARE UP–TO DATE POLICY

Hitachi, Ltd., constantly reviews its software so as to incorporate the latest technology. Hitachi reserves
the right to make changes to any software to improve reliability, function, or design. Hitachi cannot be
held responsible for any errors in its software.

iv

 SAFETY PRECAUTIONS

z Read this manual thoroughly and follow all the safety precautions and instructions
given in this manual before operations such as system configuration and program
creation.

z Keep this manual handy so that you can refer to it any time you want.
z If you have any question concerning any part of this manual, contact your nearest

Hitachi branch office or service engineer.
z Hitachi will not be responsible for any accident or failure resulting from your operation

in any manner not described in this manual.
z Hitachi will not be responsible for any accident or failure resulting from modification of

software provided by Hitachi.
z Hitachi will not be responsible for reliability of software not provided by Hitachi.
z Make it a rule to back up every file. Any trouble on the file unit, power failure during

file access or incorrect operation may destroy some of the files you have stored. To
prevent data destruction and loss, make file backup a routine task.

z Furnish protective circuits externally and make a system design in a way that ensures
safety in system operations and provides adequate safeguards to prevent personal
injury and death and serious property damage even if the product should become
faulty or malfunction or if an employed program is defective.

z If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it
must be positioned external to the programmable controller. If you do not observe
this precaution, equipment damage or accident may occur when the programmable
controller becomes defective.

z Before changing the program, generating a forced output, or performing the RUN,
STOP, or like procedure during an operation, thoroughly verify the safety because the
use of an incorrect procedure may cause equipment damage or other accident.

 “RUN/STOP” SWITCH CAUTION

The “RUN/STOP” switch only stops execution of the ladder logic program or HI-FLOW
program. Digital and analog outputs are left in the active state when execution stops,
unless the optional rungs described in the CPU manual have been added. The
“RUN/STOP” switch does not affect the operation of C-language or FA-BASIC language
programs. Outputs can still be produced in response to C-language or FA-BASIC
programs, or by the action of programmers typing in commands in these languages,
while the “RUN/STOP” switch is in the “STOP” position.

DO NOT DEPEND ON THE STOP SWITCH TO STOP MOVING PARTS OR TO
PREVENT UNEXPECTED MOTION OR ENERGIZATION. USE HARDWIRED
SAFETY DISCONNECT AND LOCK OUT POWER AND CONTROL VOLTAGES
BEFORE WORKING ON ELECTRICAL CIRCUITS OR PARTS THAT CAN MOVE.

v

PREFACE

We greatly appreciate your purchase of the RPDP/S10 system.

This manual is intended for those users who have knowledge of the personal computer, Windows®,
and MS-DOS®.
Development of real-time programs requires the developer to procure an MCP68K C Compiler
Package (containing crossing C compiler MCC68K and crossing assembler ASM68K) separately. In
addition to this package, it may also require the procurement of a text editor, depending on the
development environment.
This manual applies to the following versions of system.

System name/version
RPDP/S10 SYSTEM For Windows® 03-03

For Microsoft® Windows® 95, 98, 2000, and MS-DOS®, crossing C compiler MCC68K, and
crossing assembler ASM68K, refer to the their respective manuals.
For CPMS, refer to the manual listed below.

<Related manual>

SOFTWARE MANUAL GENERAL DESCRIPTION & MACROS COMPACT PMS V5
(Manual number SAE-3-201)

See the following list when you use the NESP
(Nissan Electronic Sequence Processor) series.

【HITACHI-S10α series】 【NESP series】
HITACHI-S10/2α
HITACHI-S10/2αE
HITACHI-S10/2αH
HITACHI-S10/2αHf

………

………

………

………

NESP-S25E
NESP-2αE
NESP-2αH
NESP-2αHf

<Trademarks>

• Microsoft® Windows® operating system, Microsoft® Windows® 95 operating system,
Microsoft® Windows® 98 operating system, Microsoft® Windows® 2000 operating system,
Microsoft® Windows® XP operating system, MS-DOS® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

• Ethernet is a registered trademark of Xerox Corp.
• MCP68K, MCC68K, and ASM68K are trademarks of MICROTEC: A Menter Graphics Company

in the United States.
Other product names written in this manual are the trademarks of each manufacturer.

This manual describes how to create real-time programs that, under the HITACHI S10/2α
series CPMS and its debugger, run on a personal computer in which Microsoft® Windows®
is installed (simply called the personal computer throughout this manual).

vi

Systems Supported by Windows® 2000 and Windows® XP
The systems supported by Microsoft® Windows® 2000 operating system (hereafter abbreviated as
Windows® 2000) and Microsoft® Windows® XP operating system (hereafter abbreviated as
Windows® XP) are shown in the following table.
Systems of earlier versions than those shown in the following table are not supported by Windows®
2000 and Windows® XP but supported by only Microsoft® Windows® 95 operating system
(hereafter abbreviated as Windows® 95) and Microsoft® Windows® 98 operating system (hereafter
abbreviated as Windows® 98). (The system names in the following table are hereafter abbreviated
as each system.)

<Table of Systems Supported by Windows® 2000 and Windows® XP>

No. System name Type Version Windows® 2000 Windows® XP
1 S10Tools SYSTEM S-7890-01 07-05 √ √
2 LADDER CHART SYSTEM S-7890-02 07-05 √ √
3 HI-FLOW SYSTEM S-7890-03 07-02 √ √
4 CPMS LOADING SYSTEM S-7890-04 07-04 √ √
5 CPMSE LOADING SYSTEM S-7890-05 07-04 √ √
6 CPMS DEBUGGER SYSTEM S-7890-06 07-02 √ √
7 CPMSE DEBUGGER SYSTEM S-7890-07 07-02 √ √
8 GP-IB LOADING SYSTEM S-7890-08 07-01 √ √
9 BACKUP RESTORE SYSTEM S-7890-09 08-01 √ √
10 RPDP/S10 SYSTEM S-7891-10 03-03 √ (*2) ns (*1)
11 NX/Tools-S10 SYSTEM S-7890-13 07-02 √ √
12 4α LADDER CHART SYSTEM S-7890-17 07-05 √ √
13 4αH LADDER CHART SYSTEM S-7890-18 07-05 √ √
14 LADDER COMMENT CONVERTER SYS S-7890-19 06-01 √ √
15 HIGH SPEED REMOTE I/O SYSTEM S-7890-21 07-01 √ √
16 CPU LINK SYSTEM S-7890-22 07-01 √ √
17 4ch ANALOG PULSE COUNTER SYS S-7890-23 07-01 √ √
18 EXTERNAL SERIAL LINK SYSTEM S-7890-24 07-02 √ √
19 S10ET LINK SYSTEM S-7890-25 07-02 √ √
20 J.NET SYSTEM S-7890-27 07-02 √ √
21 OD.RING/SD.LINK SYSTEM S-7890-28 07-03 √ √
22 ET.NET SYSTEM S-7890-29 07-01 √ √
23 FL.NET SYSTEM S-7890-30 07-03 √ √
24 D.NET SYSTEM S-7890-31 07-04 √ √
25 LADDER CHART MONITOR SYSTEM S-7890-34 07-04 √ √
26 HI-FLOW MONITOR SYSTEM S-7890-35 07-01 √ √
27 IR.LINK SYSTEM S-7890-36 07-02 √ √
28 Crossing C compiler

(manufactured by Mentor graphics company)
MCP68K 5.3 √ (*2) ns (*1)

√: Supported ns: Not supported
(*1) Crossing C compiler (No.28) is not supported by Windows® XP. Use it on Windows® 2000.
(*2) Crossing C compiler (No.28) must be a version supported by Windows® 2000 (later than version 5.3) as

a premise.

vii

 Precautions on Using Windows® 2000
To install, uninstall or execute the Crossing C Compiler (MCP68K) and the RPDP/S10, set the
user name to “Administrator” on the [Log On to Windows] window that is displayed when the
PC is started. If the user name is set to any other than “Administrator”, the Crossing C
Compiler (MCP68K) and the RPDP/S10 cannot be installed, uninstalled or executed correctly.

 Hardware and Software Requirements

Using each system requires the following hardware and software.

<Personal Computers (hereafter abbreviated as PC)>

OS
Item

Windows® 95 (*1)
Windows® 98 (*1)

Windows® 2000 (*1) Windows® XP (*1)
(*2)

CPU Pentium 133 MHz or more Pentium 300 MHz or more
Memory (RAM) 32 MB or more 64 MB or more 128 MB or more
Free hard disk capacity
(*3)

20 MB or more/system
(However, 10 MB or more/system for OS loading and option module
support software)

Floppy disk drive 1 unit or more (required to install software by FD)
CD-ROM drive 1 unit or more (required to install software by CD-ROM)
Ethernet (10BASE-T) 1 port or more (required to connect a PC with the ET.NET module)
Serial (D-sub 9-pin) 1 port or more (required to connect the PCs with a PC by RS-232C or set

an IP address for the ET.NET module)
PC card (conforming to
the PC Card Standard
(JEITA V4.2) TYPE II
or TYPE III)

1 slot or more (required to connect a PC with the parallel interface module
(LWZ400). At this time, the following GP-IB card is also required.)
GP-IB card: PCMCIA-GPIB (Model: 777438-02)

(manufactured by National Instruments Corporation)
Display Resolution of 800 × 600 pixels or more
Microsoft® Internet
Explorer

Version 4.01 or later

(*1) For the OS service pack, refer to the attached reference materials for software.
(*2) No.10 and No.28 in <Table of Systems Supported by Windows® 2000 and Windows® XP> in

“PREFACE” are excepted.
(*3) This is a capacity required to install each system. A free capacity to save user programs is also

required.

viii

Users are advised to use the CPMS and its debugger contained on system floppy disks with the version
numbers indicated below. Any versions older than these will not run on the personal computers
listed below.

Programmable controllers (PCs) used System name/version
S10/2α CPMS LOADING SYSTEM 03-00 or later

CPMS DEBUGGER SYSTEM 03-00 or later
S10/2αE, 2αH, 2αHf CPMS LOADING SYSTEM 03-00 or later

CPMS DEBUGGER SYSTEM 03-00 or later

<Definitions of Terms>

N coil: A ladder program converted into a form that can be run on the PCs by pasting a symbol on
the sheet displayed on a PC.

Process: A HI-FLOW program converted into a form that can be run on the PCs by pasting a
symbol on the sheet displayed on a PC.

Compile: To convert an application program such as a ladder chart and HI-FLOW into a form (N
coil, process, etc.) that can be run on the PCs.

Build: To compile only a corrected application program.
Rebuild: To compile every existing application program.
Sheet: Paper to prepare an application program of ladder chart and HI-FLOW, etc. This paper is

controlled on a PC.
PCs: An abbreviation of Programmable Controllers.

This is a general term for PLC such as the S10α and S10mini series.
PLC: An abbreviation of Programmable Logic Controller.

This is an industrial electronic device to exert sequence control, having an incorporated
program.
The S10α and S10mini series come under this PLC.

<Note for storage capacity calculations>
z Memory capacities and requirements, file sizes and storage requirements, etc. must be calculated

according to the formula 2n. The following examples show the results of such calculations by 2n
(to the right of the equals signs).
1 KB (kilobyte) = 1024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes

z As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1000 bytes
1 MB (megabyte) = 10002 bytes
1 GB (gigabyte) = 10003 bytes

 ix

CONTENTS

1 OVERVIEW... 1
1.1 RPDP/S10 ... 2
1.2 Sites... 4
1.3 Crossing C Compiler... 5

2 PROGRAM DEVELOPMENT PROCEDURES... 7
2.1 Overall Flow ... 8
2.2 Dividing Memory.. 10
2.3 Loading Programs and Creating Tasks ... 11
2.4 Resident Subprograms .. 11
2.5 Values ... 11
2.6 Programming Guide for GLBs, VALs, and RSUBs ... 11
2.7 Restrictions on Program Creation under CPMS ... 15

3 OUTLINE OF COMMANDS .. 19
3.1 Commands .. 20
3.2 Environment Variables ... 22
3.3 Installation Procedure ... 24

4 COMPILER.. 25
4.1 Required Option.. 26
4.2 Outline of Options... 26

5 LIBRARIES ... 27
5.1 Libraries .. 28
5.2 Librarian.. 28

6 GENERATOR.. 29
6.1 sgen (System Generation) ... 30
6.2 ssi (Sets and displays the site to be acted on.) .. 35

7 ALLOCATOR.. 37
7.1 Command Language Specification ... 38
7.2 sdfa (Allocates a split area.).. 39
7.3 sdla (Deallocates a split area.)... 40

 x

7.4 sdfs (Allocates a secondary partition area [sarea].) .. 41
7.5 sdls (Deallocates a secondary partition area [sarea].) ... 42
7.6 sdfv (Defines a VAL.) .. 43
7.7 sdlv (Deletes a VAL.) ... 44

8 LOADER ... 45
8.1 Execution Environment of the Loader.. 46
8.2 sload (Loads a program, a subprogram, or data.) ... 49
8.3 sdload (Deletes a program or subprogram.).. 53
8.4 scomp (Compares a program, a subprogram, or data.) ... 54
8.5 Program Layout .. 55

9 BUILDER .. 57
9.1 sctask (Creates a task.).. 58
9.2 sdtask (Deletes a task.) ... 59
9.3 sbuild (Creates a built-in subroutine.) .. 60
9.4 sdbuild (Deletes a built-in subroutine.) .. 60
9.5 sirbld (Creates or deletes an indirectly linked subprogram or table.) 61

10 sdebug (ONLINE DEBUGGER) ... 63
10.1 Starting the Debugger ... 64
10.2 Debugger Commands ... 66
10.3 sdhp (Displays CPMS trace information.).. 87
10.4 srpl (Loads programs.).. 88

11 MANAGEMENT TOOLS... 89
11.1 smap (Displays map information.) ... 90
11.2 sirmap (Displays indirectly linked map information.).. 99
11.3 sadm (Displays the name corresponding to an address.) .. 100

12 MEMORY MAP.. 101
12.1 HITACHI S10/2α Memory Map .. 102
12.2 PI/O Bit Form Area .. 103
12.3 PI/O Word Form Area .. 104
12.4 User Work Area.. 105

 xi

APPENDIXES ... 107
APPENDIX A LIBRARIES ... 108
A.1 Conditions for specifying libraries.. 108
A.2 Order of specifying libraries ... 108
A.3 Indirectly linked address reference subroutines .. 108

A.3.1 irglbad.. 108
A.3.2 irsubad ... 109

APPENDIX B NAMES AND STATEMENTS USABLE IN PROGRAMS......................... 109
B.1 Reserved names .. 109

B.1.1 Assembly language.. 109
B.1.2 C language... 109
B.1.3 Reserved names in other programming languages .. 109

B.2 Unusable statements.. 110
B.2.1 Assembly language.. 110
B.2.2 C language... 110

B.3 Names used in the system ... 110
APPENDIX C RECOVERY FROM FAILURES BY THE SYSTEM MANAGER............. 111
APPENDIX D SITE MANAGEMENT FILES .. 113
APPENDIX E ALLOCATOR ERROR MESSAGES.. 116
APPENDIX F LOADER ERROR MESSAGES .. 120
APPENDIX G BUILDER ERROR MESSAGES .. 127
APPENDIX H COMMUNICATION (Ethernet, GP-IB, AND RS-232C) 132
H.1 Ethernet-based Communication.. 132

H.1.1 Setting the S10Hosts File .. 132
H.1.2 Configuring at MS-DOS Prompts ... 132

H.2 GP-IB based Communication ... 133
H.2.1 Configuring at an MS-DOS Prompt.. 133

H.3 RS-232C based Communication... 133
H.3.1 Configuring at an MS-DOS Prompt.. 133

APPENDIX I C LANGUAGE PROGRAM DEVELOPMENT ENVIRONMENT
AND SYSTEM EXECUTION ENVIRONMENT.. 134

APPENDIX J SAMPLE OPERATION.. 136

 xii

FIGURES

Figure 2-1 Overall Flow of Program Development for the PCs... 9
Figure 2-2 Writing to Individual Areas .. 16
Figure 8-1 Load Module Structures.. 46
Figure 8-2 Processing by the Loader .. 47

TABLES

Table 2-1 How to Use GLBs and VALs ... 12
Table 2-2 How to Use RSUBs .. 14
Table 7-1 Permitted Combinations of Areas Allocated by
 “sdfa,” Arguments, and Options ... 40
Table 7-2 Permitted Combinations of Areas Allocated by
 “sdfs,” Arguments, and Options ... 42
Table 8-1 Input Conditions of Load Modules ... 46
Table 8-2 Permitted Combinations of Externally Referencing Items
 and Externally Referenced Items .. 48
Table 8-3 Permitted Combinations of Referencing Programs and Referenced Programs 49
Table 8-4 Permitted Combinations of Options ... 51
Table 9-1 Defaults of Options... 59
Table 9-2 Relationships between Types of Task Created and Options Used 59
Table 11-1 Permitted Combinations of Options ... 91
Table A-1 Conditions for Specifying Libraries.. 108
Table D-1 Site Management Files.. 114

1 OVERVIEW

1 OVERVIEW

- 2 -

This chapter describes RPDP/S10 which provides a software development environment in which the
user can develop C programs for use on HITACHI S10/2α series models.

1.1 RPDP/S10

The Real-time Program Developing Package for HITACHI S10/2α (RPDP/S10) is a tool that
the user can use to develop programs for execution under the Compact Process Monitor System
(CPMS). CPMS is the real-time operating system for HITACHI S10/2α series machines.
This tool runs under MS-DOS that is an operating system for personal computers.
Programs that run under CPMS perform high-speed real-time processing by using attributes and
features that differ from those for programs that run under MS-DOS. To provide these
attributes and features, a dedicated development system, called RPDP/S10, is used for
development of real-time programs under CPMS.
Below are differences in attributes and features between programs under CPMS and those
under MS-DOS.

(1) Programs under MS-DOS are loaded into main memory when they are requested to be started.
By contrast, programs under CPMS are loaded into main memory in advance, minimizing the
time taken from when a start request is made until their execution starts. These programs are
called resident programs. The RPDP allocator manages main memory so that resident
programs are placed in main memory in an efficient manner without duplication. When
creating programs under CPMS, the user must determine the way the user works with main
memory by using the RPDP allocator.

(2) All subprograms used by a program under MS-DOS are combined into a single program group as
internal subprograms. Under CPMS, each subprogram can reside in main memory,
independently of the program. This allows multiple programs to share a single subprogram to
use memory more efficiently. These subprograms are called resident subprograms (RSUBs).
When linking programs, the user can use the dedicated loader (sload). The loader does not link
all subprograms as internal subprograms. Rather it links subprograms to the program while
leaving them outside as defined as RSUBs.
With RPDP, the loader (sload) calls the linker to link programs.

1 OVERVIEW

- 3 -

(3) Under MS-DOS, data is exchanged between multiple programs. To make this possible, a
pipelining feature is used for data passing and reception. In real-time processing, multiple
programs (tasks) are running while maintaining their mutual association by using global (GLB)
areas, which are allocated as data areas to be shared by tasks. These areas are also managed by
the allocator. When a program accesses data in a global area, its absolute address is used to
assure high-speed access. For example, if a program containing references to a GLB area, it is
necessary to find the location of the GLB area and embed the GLB address in the text and data
portions of the program. RPDP supports a loader (sload) that does the job. The loader links
addresses with RSUBs and embeds constants, called values (VALs), common to all programs in
the programs and their data.

(4) When a program under MS-DOS issues a system call, a link to the MS-DOS kernel is made. In
real-time processing, a link to CPMS is established by a system call. System calls supported by
CPMS are called macro instructions. CPMS macro linkage libraries are also provided to enable
programs to use macro instructions. As a result, programs can issue macro instructions in the
same way as when using functions in C.

(5) An “sdebug” command loads programs under CPMS that were created under MS-DOS onto an
actual machine on which they will actually run. The loader (sload) and builders (sctask, sdtask,
sbuild, and sdbuild) are not responsible for loading onto the actual machine.

Parallel interface module

ET.ENT module

To the COM1 port

HITACHI S10/2α

Personal computer

Hub

RS-232C

Connected to the PCMCIA slot via the RS-232C,
GP-IB, or Ethernet interface.

GP-IB
Ethernet

1 OVERVIEW

- 4 -

1.2 Sites
RPDP/S10 manages programs in sites. One personal computer can manage multiple sites.
Programs managed at one site can be downloaded to one or more PCs (programmable
controllers).
However, multiple PCs cannot be accessed at the same time. In addition, one PC cannot be
handled as being at multiple sites.

Site nSite 2Site 1

Managed as being at the same site.

Ethernet
RS-232C or GPIB
can also be used.

Management of multiple sites

A site can be changed to another by the “ssi” command, environment variable RSSITE, or a
command with the -u option specified.

To change a site, use: Purpose

ssi command Setting of defaults for each personal computer
Environment variable RSSITE Setting or modification for each MS-DOS prompt
Command with the -u option specified Temporary modification for each command

The user should not store information on one site in multiple personal computers and access
one PC from these personal computers. Also, he or she should not make multiple MS-DOS
prompts active to perform multiple operations for the same site.

1 OVERVIEW

- 5 -

1.3 Crossing C Compiler
RPDP/S10 assumes that the user uses the MCP68K C Compiler Package.
The MCP68K package includes the following commands:
• MCC68K compiler
• ASM68K assembler
• LNK68K linker
• LIB68K object module librarian
For details, refer to the manual supplied with the MCP68K package.
RPDP cannot be used with the XRAY debugger.
It is used with its own “sdebug” debugger.

Include file C source files

Compiler
MCC68K

Object file

Loader
sloadSystem libraries

***. C

(*1)

***. OBJ

Librarian
LIB68K

Create these files
using a text editor
such as "nodepad."

User libraries
***. LIB

(*2)

<Data flow>

(*1) This compiler automatically
starts assembler ASM68K.

(*2) This loader automatically starts
linker LNK68K.

THIS PAGE INTENTIONALLY LEFT BLANK.

2 PROGRAM
DEVELOPMENT
PROCEDURES

2 PROGRAM DEVELOPMENT PROCEDURES

- 8 -

2.1 Overall Flow
Figure 2-1 shows an overall flow of program development for the PCs.

2 PROGRAM DEVELOPMENT PROCEDURES

- 9 -

si
rb

ld
: D

el
et

es
 a

n
in

di
re

ct
ly

 li
nk

ed
 s

ub
pr

og
ra

m
.

si
rb

ld
: R

eg
is

te
rs

 a
n

in
di

re
ct

ly
 li

nk
ed

 s
ub

pr
og

ra
m

.

C
re

at
e

us
er

 li
br

ar
ie

s.

sg
en

: S
ys

te
m

 g
en

er
at

io
n

ss
i:

Se
ts

 th
e

si
te

 to
 b

e
ac

te
d

on
.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

C
re

at
e

a
so

ur
ce

 f
ile

 u
si

ng
 a

co

m
m

er
ci

al
ly

 a
va

ila
bl

e
ed

ito
r.

C
om

pi
la

tio
n

us
in

g
th

e
M

C
C

68
K

 c
om

pi
le

r

T
he

 u
se

r
ne

ed
s

to
 ta

ke
 th

e
st

ep
s

be
lo

w
 th

is
 li

ne
 e

ac
h

tim
e

he
 o

r
sh

e
co

rr
ec

ts
 th

e
so

ur
ce

 f
ile

.

Ta
sk

B
ui

lt-
in

 s
ub

pr
og

ra
m

In
di

re
ct

ly
 li

nk
ed

 s
ub

pr
og

ra
m

D
ir

ec
tly

 li
nk

ed

su
bp

ro
gr

am
G

lo
ba

l d
at

a
w

ith

in
iti

al
 v

al
ue

s
G

lo
ba

l d
at

a
w

ith
 n

o
in

iti
al

va

lu
es

sd
ta

sk
: D

el
et

es
 a

 ta
sk

.

sd
lo

ad
: D

el
et

es
 a

 p
ro

gr
am

.

sl
oa

d:
 R

eg
is

te
rs

 a
 p

ro
gr

am
.

ss
i:

Se
ts

 th
e

si
te

 to
 b

e
ac

te
d

on
.

C
om

pl
et

el
y

st
or

ed
 in

a

sp
lit

 a
re

a?

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

sc
ta

sk
: R

eg
is

te
rs

 a
 ta

sk
.

sd
bu

ild
: D

el
et

es
 a

 b
ui

lt-
in

su
bp

ro
gr

am
.

sd
lo

ad
: D

el
et

es
 a

 p
ro

gr
am

.

sl
oa

d:
 R

eg
is

te
rs

 a
 p

ro
gr

am
.

C
om

pl
et

el
y

st
or

ed
 in

a

sp
lit

 a
re

a?

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

sb
ui

ld
: R

eg
is

te
rs

 a
 b

ui
lt-

in
su

bp
ro

gr
am

.

sd
lo

ad
: D

el
et

es
 a

 p
ro

gr
am

.

sl
oa

d:
 R

eg
is

te
rs

 a
 p

ro
gr

am
.

C
om

pl
et

el
y

st
or

ed
 in

a

sp
lit

 a
re

a?

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

sd
lo

ad
: D

el
et

es
 a

 p
ro

gr
am

.

sl
oa

d:
 R

eg
is

te
rs

 a
 p

ro
gr

am
.

C
om

pl
et

el
y

st
or

ed
 in

a

sp
lit

 a
re

a?

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

sl
oa

d:
 R

eg
is

te
rs

 d
at

a.

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

C
om

pl
et

el
y

st
or

ed
 in

 a
sp

lit
 a

re
a?

C
om

pl
et

el
y

st
or

ed
 in

 a
se

co
nd

ar
y

pa
rt

iti
on

 a
re

a?

sd
ls

: D
ea

llo
ca

te
s

a
se

co
nd

ar
y

pa
rt

iti
on

 a
re

a.

sd
fs

: A
llo

ca
te

s
a

se
co

nd
ar

y
pa

rt
iti

on
 a

re
a.

sd
la

: D
ea

llo
ca

te
s

a
sp

lit
 a

re
a.

sd
fa

: A
llo

ca
te

s
a

sp
lit

 a
re

a.

C
om

pl
et

el
y

st
or

ed
 in

 a

sp
lit

 a
re

a?

sd
eb

ug
: D

eb
ug

ge
r

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

N
O

N
O

N
O

N
O

N
O

N
O

N
O

C
om

pl
et

el
y

st
or

ed
 in

 a

 s
ec

on
da

ry
 p

ar
tit

io
n

ar
ea

?

sd
ls

: D
ea

llo
ca

te
s

a
se

co
nd

ar
y

pa
rt

iti
on

 a
re

a.

sd
fs

: A
llo

ca
te

s
a

se
co

nd
ar

y
pa

rt
iti

on
 a

re
a.

N
O

Fi
gu

re
 2

-1

O
ve

ra
ll

Fl
ow

 o
f P

ro
gr

am
 D

ev
el

op
m

en
t f

or
 th

e
PC

s

2 PROGRAM DEVELOPMENT PROCEDURES

- 10 -

2.2 Dividing Memory
Memory is divided into smaller areas for two purposes: one is to place programs and data in
divided areas of main memory efficiently without duplication, and the other is to manage what
is installed as common memory on the system bus.
During system generation by “sgen,” the main memory is defined as global areas each called a
“garea” and having a particular use. Common memory on the system bus is also defined as
global areas each intended for use with a particular type of memory card. In addition, a
“garea” is divided into split areas each called an “area.” When an “area” is part of a global
area (GLB), it is further divided into secondary partition areas each called an “sarea”). When
a program stores data, an “area” or “sarea” name is used to indicate the location where the data
is to be stored. The allocator defines divided areas in a hierarchy. The loaders and builders
run according to the definition.

<Examples of Divided Areas and Their Names>

garea os sub glbr task glbrw ems
area a3 a4 a5 a1 a2 a6 a10 a11

sarea

Not
managed
by RPDP s1 s2 s3 s4 s10 s11

Unprotected

garea: Each “garea” is defined by the user at the time of system generation using “sgen.”
“sgen” divides the main memory and extension memory into “gareas” for the system,
subprograms (sub), read-only global data (glbr), tasks, and read/write global data
(glbrw). If an extension memory is provided for added sites, a “garea” named “ems”
must be defined. Do not specify its usage as “garea.” The use of “ems” is not
declared as of a “garea,” but is declared when executing “sdfa.”
The “garea” named “ems” is an unprotected area.

area: Each “area” is allocated by “sdfa” and deallocated by “sdla.” More than one “area”
can be allocated in one “garea.” In one “area,” more than one task, subprogram, or
“sarea” may be located. When deallocating an “area,” make sure that all tasks or
subprograms in it have been deleted.

sarea: Each “sarea” is allocated by “dfs” and deallocated by “sdls.” Define one “sarea” for
each GLB.

2 PROGRAM DEVELOPMENT PROCEDURES

- 11 -

2.3 Loading Programs and Creating Tasks
According to the management information determined by an allocator, the loader (sload) loads
programs and data generated as load modules into “areas” or “sareas.” “sload” fetches
information on CPMS resources such as a GLB from the area management information and sets
the fetched information in a load module to create an executable module. The created
executable module is stored in a backup file in the auxiliary storage device of the personal
computer.
An executable module, when loaded as a single program, is registered as a task by a builder
(sctask). The “sctask” builder sets the attributes of the task in the task control block (TCB)
managed by CPMS.

2.4 Resident Subprograms

A task involves many subprograms. Of these, subprograms incorporated in the main body of
the task are called internal subprograms (ISUBs). By contrast, subprograms always in main
memory separately from the task are called resident subprograms (RSUBs). RSUBs can be
shared by other tasks.
There are two types of RSUBs: directly linked RSUBs and indirectly linked RSUBs (IRSUBs).
Directly linked RSUBs are placed at predetermined addresses in main memory. Even if the
coding of a directly linked RSUB is altered, it must be placed at the same address as before the
alteration. However, the altered RSUB may be too large to fit into that area. IRSUBs are
used to avoid such a problem. Management tables to be linked to the calling program are set
up for IRSUBs. In the presence of these tables, IRSUBs can be altered with ease by only
updating the linked management table.
The “sload” loader updates directly linked RSUBs and indirectly linked RSUBs. The “sirbld”
builder updates management tables for indirectly linked RSUBs.

2.5 Values

The user can register as external names constants that are shared by programs. These
registered constants are called values (VALs). VALs are registered by “sdfv” and deleted by
“sdlv.” When a load module is saved in the backup file, the loader sets all necessary VALs in
that backup file. For this reason, any VALs must be registered before tasks and subprograms
that reference them are loaded.

2.6 Programming Guide for GLBs, VALs, and RSUBs

The preceding sections discuss what GLBs, VALs, and RSUBs actually are. This section
explains how to code and link these items for use in programs.

(1) Naming rules for GLBs and VALs
① Maximum length

8 characters (excluding attribute characters)

2 PROGRAM DEVELOPMENT PROCEDURES

- 12 -

② Characters
Letters of the alphabet, digits, and _ (underscore). Each name must start with a letter and
end with either of the following attribute characters:
GLB: _g
VAL: _v

③ Uniqueness
No name may be defined multiply.

(2) How to use GLBs and VALs
Table 2-1 shows how to use GLBs and VALs.

Table 2-1 How to Use GLBs and VALs

No. Usage Coding in C
1 Declaration of a GLB

(on the referencing side)
extern long name_g [size]
Explanation:
Specify the above statement.
name: Global name
size: Size of the global area (in units of four bytes)

2 Referencing of a GLB main () {
long i;
i=a_g [0];
}
Explanation:
a: Global name
Add a declaration as shown in item No. 1 above
before the first line of this coding.
(Example) extern long a_g [25]

3 Declaration of a GLB
(on the referenced side)

Nothing need be declared.
Set the initial value as shown in item No. 4 below.

4 Setting of initial values
in the GLB

long a_g [25]=
 {0, 0, ⋅⋅⋅, 0};

Enter the initial values here.
Explanation:
a: Global name

5 Referencing of a VAL
value

extern long vl_v
long y=(long)&vl_v;
main () {
 long x;
 x=y;
}
Explanation:
vl: VAL name

2 PROGRAM DEVELOPMENT PROCEDURES

- 13 -

(3) Notes on referencing GLB data
When referencing GLB data during creation of a program, do not define any initial values of that
GLB data in the same program. To assure this, create a program that references the GLB data,
keeping the following points in mind:

(a) Note on declaration of a GLB
In GLB declaration, the user can declare the size in bytes of each name, as indicated in item
No. 1 within Table 2-1. The compiler and assembler do not perform validity check between
the declared size and the actual size of the area allocated by the “sdfs” command. Therefore,
an error is not detected even when the program references an address outside the actual area.
Example: Reference to an address outside the declared area

<Allocator>
sdfs usrresp0/glb2 100
<c>
extern long glb2_g [100];

glb2_g [100]= ⋅⋅⋅⋅⋅⋅;

(b) Referencing a relative address
A GLB can be referenced in the form of “name ± α”, where α is a relative byte address in the
range of -231 to 231 - 1.

(c) Omitted declaration
If no GLB data is declared, then compilation continues as if a GLB data item whose size is 0
is declared.

(d) Notes on handing “sload”
The user should create a file containing only the initial values of GLB data and work with the
GLB data separately. The user may not define multiple GLB subareas with initial values in
one single source program.
For each GLB subarea, create a source file containing initial GLB data. Compile and load
the source file for only one GLB subarea at a time. Do not store initial values for two or
more GLB subareas in one single source file.
A source file in which the GLB initial values are stored should not contain any data for other
GLB subareas.
Do not store both the initial values for a GLB subarea and a program or subprogram in one
single source file.

No error is detected.

⋅⋅⋅⋅⋅⋅

2 PROGRAM DEVELOPMENT PROCEDURES

- 14 -

Source file containing
the initial values of glb1

Source file containing
the initial values of glb2

glb1.c

Compiler

glb1.obj

sload

glb2.c

Compiler

glb2.obj

sload

Backup fileBackup file

(4) Notes on creation of RSUBs

For details, see item (3) in Section 2.7.

(5) How to use RSUBs
The “sload” loader assumes that all undefined names of object modules created by the compiler,
except GLB and VAL names, are RSUB names. Be sure to load RSUBs before the load
modules using them.

Table 2-2 How to Use RSUBs

Usage Coding in C

Referencing of an RSUB void rsubl();
double rsub2();
main() {
long rusub3();

rsubl(&i);
i=rsub3(i);
y=rsub2(x[i]);

}
Explanation:
The names rsub1, rsub2, and rsub3
declared as function types can be used as
RSUB names.

⋅⋅⋅
⋅⋅⋅

2 PROGRAM DEVELOPMENT PROCEDURES

- 15 -

2.7 Restrictions on Program Creation under CPMS
The following restrictions apply to the creation of programs that run under CPMS:

(1) No support for overlay structures
CPMS does not support an overlay structure for tasks or resident subprograms. When creating
two or more tasks or resident subprograms, take care so that they do not become too large.

(2) No support for bulk subroutines
CPMS does not support bulk subroutines that are placed in auxiliary memory and transferred to
main memory when they are to be run. The only subprograms, including subroutines, that can
be used under CPMS are resident subprograms (RSUBs) or internal subprograms (ISUBs)
embedded in tasks. (Note that no auxiliary memory can be used with the S10/2α series.)

(3) Notes on creation of resident subprograms (RSUBs)
RSUBs reside in main memory and shared by multiple main programs. Therefore, RSUBs
occupy areas of main memory independently of main programs that use them. Since RSUBs
are used by multiple main programs at the same time, they need to be reentrant.
Only reentrant programs are used as RSUBs. A reentrant program is a program that can be
called again by another program before it finishes its current run.
The following paragraphs explain how to create RSUBs properly.
An RSUB consists of two parts: a fixed part, which consists of a procedure section (text section)
and a data section, and a variable part, which consists of work areas. The fixed part is shared
by multiple main programs. The variable part is placed in the variable portion of each
individual main program. RSUBs use the variable portion of main programs. Therefore, an
RSUB needs to be programmed in such a way that the variable area used by the RSUB
references the stack area. If an RSUB has a work area with no initial values (bss section), and it
is programmed so that the stack area is to be read, then the RSUB cannot be shared by multiple
main programs.
When creating an RSUB, note the following two points:
① All work areas must be secured in the stack area.
② Do not change any of the initial values of defined static variables.
③ If an RSUB consists of multiple routines, do not use any area to be shared by those routines.
Whether the restrictions in items ① and ② above are followed can be seen by checking that
the length of the bss section in the map output by “sload” is 0.

2 PROGRAM DEVELOPMENT PROCEDURES

- 16 -

Procedure

section Data section Work area Stack area

text data bss stack

Figure 2-2 Writing to Individual Areas

① Writing to the stack area. The task can write to the stack area.
② Writing to the work area. Usually, RSUBs do not secure a work area nor do they write to

the area. The task can write to the work area.
③ Writing to the data section. The task must not write to the data section.

Below are notes to be followed during the creation of RSUBs in any particular programming
language.
Sample programming in C:

int b1; ... ①
int d1=10; .. ②
static int b2; ③
static int d2=100;........................... ④
ex() {

static int b3; ⑤
static int d3=1000; ⑥
int s1;.. ⑦
int s2=20; .. ⑧

}
A program that writes to b1 declared at ① is non-reentrant.
A program that writes to d1 declared at ② is non-reentrant.
A program that writes to b2 declared at ③ is non-reentrant.
A program that writes to d2 declared at ④ is non-reentrant.
A program that writes to b3 declared at ⑤ is non-reentrant.
A program that writes to d3 declared at ⑥ is non-reentrant.

③ ② ①
nw

nw
√ √: Can be written

nw: Cannot be written

⋅⋅⋅⋅⋅⋅

2 PROGRAM DEVELOPMENT PROCEDURES

- 17 -

If programs write to s1 and s2 declared at ⑦ and ⑧, respectively, they remain reentrant. In
an RSUB, the only variables that may be used are those like the variables at ⑦ and ⑧.
What variables are placed in what areas is described below.
Usually, b1 is placed in the bss area. (*)
b2 is placed in the bss area.
b3 is placed in the bss area.
d1 is placed in the data area.
d2 is placed in the data area.
d3 is placed in the data area.
s1 is placed in the stack area.
s2 is placed in the stack area.
(*) When an initial value is assigned to b1 in another program, b1 is placed in the data area.

(4) No relocatability
Programs and subprograms have no relocatability. Thus, those programs and subprograms
whose run areas are already determined cannot be run in any other area. If you want to run such
programs and subprograms in other areas, delete them and then register them again.

(5) Up to eight characters for names
The names of programs or subprograms may be up to eight characters long. GLB and VAL
names may also be up to eight characters long. When specifying GLBs or VALs in C, suffix
their names with “_g” or “_v”, bringing the total length to up to 10 characters.

(6) GLB and VAL names
If names terminated with “_g” or “_v” are declared as external names, they are handled as GLB
or VAL names. Assign names not terminated with “_g” or “_v” to programs that do not use
GLBs or VALs. Names terminated with “_b” are reserved for future extension and should not
be used.

(7) Unique external names
External names may not duplicate any other GLB names, program names, subprogram names, or
VAL names already in use in the system.

(8) Unusable names
Because of certain restrictions on program creation, the use of some symbols as names is
prohibited, and the use of some other symbols and particular statements is permitted only under
limited conditions. For details, see Appendix B.

2 PROGRAM DEVELOPMENT PROCEDURES

- 18 -

(9) Program structure
Programs under CPMS have a structure as shown below.

The sizes of these areas are corrected so that they are multiples of four bytes. Also, these areas
are secured in such a way that the first address of each area is a multiple of 4.

(10) Restriction on the first address
GLB areas may be re-allocated by the allocator so that their default first addresses are multiples
of 4.

(11) Handling initial values
As shown below, initial values are handled differently, depending on whether MS-DOS or
CPMS is used.

Area CPMS MS-DOS
data Programmed value Programmed value
bss Unpredictable 0
stack Unpredictable Unpredictable

text

data

bss

stack

Area to store the procedure
portion of the program

Area to store the initial values
used in the program
Static work area used by the
program

Dynamic work area used by
tasks involving the program

3 OUTLINE OF
COMMANDS

3 OUTLINE OF COMMANDS

- 20 -

3.1 Commands

Classification Command Function Page
Compilation MCC68K C compiler 26

sgen System generation 30 Generation
ssi Sets and displays the site to be acted on. 35
sdfa Allocates a split area. 39
sdla Deallocates a split area. 40
sdfs Allocates a secondary partition area (sarea). 41
sdls Deallocates a secondary partition area (sarea). 42
sdfv Defines a VAL. 43

Allocation

sdlv Deletes a VAL. 44
sload Stores a program, a subprogram, or data. 49
sdload Deletes a program or subprogram. 53

Loading

scomp Compares the load module and backup of a program, a
subprogram, or data.

54

sctask Creates a task. 58
sdtask Deletes a task. 59
sbuild Creates a built-in subroutine. 60
sdbuild Deletes a built-in subroutine. 60

Building

sirbld Creates or deletes an indirectly linked subprogram or table. 61
Online debugging 64

qu Requests the start of a task. 66
ab Inhibits a task from being started. 66
re Releases a task from the state in which

its start is inhibited.
66

ta Displays the status of a task. 67
tm Activates the cyclic start of a task. 68

Task start/stop

ct Deactivates the cyclic start of a task. 68
md Displays or changes memory content

between addresses.
69 Memory display/

modification
sd Displays or changes memory content

between symbols.
70

br Sets and displays breakpoints. 72
rb Removes breakpoints. 73
rd Displays the contents of registers. 74
rr Changes the contents of registers. 74

Breakpoint

go Resumes execution from a breakpoint. 75
el Displays system errors. 75
er Clears system errors. 80

Debugging sdebug

System error
display/clearing

ss Displays the system status. 81

3 OUTLINE OF COMMANDS

- 21 -

Commands (continued from previous page)

Classification Command Function Page

st Sets the current time. 81 Current time
setting/display gt Displays the current time. 81

ld Transfers a backup file to memory
in the S10/2α.

82

sv Transfers memory content in the
S10/2α to its corresponding backup
file.

83

Uploading/
downloading

cm Compares a backup file with its
corresponding memory content in
the S10/2α.

84

dr Enables DHP recording. 85
ds Disables DHP recording. 85
ver Displays version information. 85
smd Displays or modifies the contents of

all areas of memory.
85

help Displays a command menu. 86
q Terminates the debugger. 86

sdebug
(continued
from
previous
page)

Others

! Executes an MS-DOS command. 86
sdhp Displays CPMS trace information. 87

Debugger

srpl Loads programs. 88
smap Displays map information. 90
sirmap Displays indirectly linked map information. 99

Management
tool

sadm Displays the name corresponding to an address. 100

3 OUTLINE OF COMMANDS

- 22 -

3.2 Environment Variables
RPDP commands use the following environment variables:
① RSSDIR=C:\hitachi\alc

This environment variable indicates the directory in which to store site information. By
default, site information created by RPDP is placed in the ‘C:\hitachi\alc’ directory.

② RSSITE=sitename
This environment variable specifies a site name. When changing the site for each
MS-DOS prompt program, redefine this environment variable. Usually, this environment
variable is left undefined, in which case the site specified by the ssi command is used.

③ RSUTYP=mode
This environment variable specifies a user type, which is the access privilege level or
processing mode that becomes valid when the -S option is omitted from a particular
command. (Ordinary users should not use the -S option.)
When “mode” is “u”, the user type specified is “user.”
When “mode” is “s”, it is “system.” (Ordinary users should not use this setting.)
Usually, this environment variable is left undefined, in which case the command begins
processing, assuming that “u” is given.

④ FX_LIB_DIR=C:\hitachi\fodu\lib
This environment variable indicates the directory in which to store libraries for use by
CPMS or IRSUBs.

⑤ FODUDIR=C:\hitachi\fodu
This environment variable indicates the directory in which to store RPDP/S10-related files.
When a site name is given to the “ssi” command, it is stored in
file %FODUDIR%\MS_DOS\site.

⑥ MRI_68K_BIN=C:\MRI\MCC68K;C:\MRI\ASM68K
⑦ MRI_68K_LIB=C:\MRI\MCC68K\68000

(MRI_68K_LIB=C:\MRI\MCC68K\68020 for the S10/2αE, 2αH, and 2αHf)
⑧ MRI_68K_INC=C:\MRI\MCC68K
⑨ MRI_68K_TMP=C:\MRI\MCC68K\TMP
⑩ DOS16M=1△@1m-2m
⑪ RPDPS_10=68000

(RPDPS_10=68020 for the S10/2αE, 2αH, and 2αHf)
The environment variables numbered ① and ④ through ⑪ are defined as a result of
execution of the ‘RPDP.BAT’ file.
(For the S10/2α, its environment is set up in the “RPDP.BAT” file.
For the S10/2αE, 2αH, and 2αHf, their environments are set up in the “RPDPE.BAT” file.)
If the installation directory of MCC68K is changed, modify or redefine the “RPDP.BAT”
or “RPDPE.BAT” file. Note that reinstallation initializes the “RPDP.BAT” and
“RPDPE.BAT” files.

3 OUTLINE OF COMMANDS

- 23 -

Standard installation stores the ‘RPDP.BAT’ and ‘RPDPE.BAT’ files in the
‘C:\HITACHI\S10\C\BIN’ directory.
An environment that suits to the connections made with the PCs needs to be established, as
described in Appendixes H and I.

<Precautions on using the Crossing C compiler (MCC68K) manufactured by Mentor
Graphics Company>
The following environment variables are automatically set when installing the Crossing C
compiler (MCC68K).
① MRI_68K_INC=C:\MGC\embeded\include\mcc68k
② MRI_68K_LIB=C:\MGC\embeded\lib
③ LM_LICENSE=C:\MGC\embeded\licence\license.dat
Because ① and ② are changed into other values (values of ⑦ and ⑧) when executing
the PRDP.BAT or RPDPE.BAT, change the corresponding rows into comment statements
as shown below before executing RPDP.BAT or RPDPE.BAT.

rem MRI_68K_INC=C:\MRI\MCC68K
rem MRI_68K_LIB=C:\MRI\MCC68K\68000

RPDP.BAT

Add to rem.

3 OUTLINE OF COMMANDS

- 24 -

3.3 Installation Procedure
The installation procedure is given below. Note that ‘RPDPE.BAT’ and ‘RPDP.BAT’ are
overwritten during reinstallation. Thus, if the ‘RPDPE.BAT’ and ‘RPDP.BAT’ files are used
by adding changes to them, and those changes are not reflected in their backup copies, then the
user should add those changes to then after reinstallation using the backup copies.

(1) Insert the first RPDP floppy disk into the drive.

(2) Select [Add/Remove Programs] from [Control Panel] or from that of [Windows Explorer] to

start ‘setup.exe’ in the floppy disk drive.

(3) Remove the floppy disk from the drive and insert another one, as instructed by the message
presented.

(4) Add the string ‘C:\HITACHI\S10\C\BIN’ to a PATH in the ‘AUTOEXEC.BAT’ file. If the
installation directory has been changed, specify the new installation directory.
Example: PATH=C\⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅;C\HITACHI\S10\C\BIN

(5) Start the personal computer.
Be sure to load the operating system and debugger system program to the PCs before using the
RPDP/S10.

z For the S10/2α

To load the operating system to the PCs, use the CPMS loader system.
To load the debugger system program to the PCs, use the CPMS debugger system.

z For the S10/2αE, S10/2αH, and S10/2αHf

To load the operating system to the PCs, use the CPMSE loader system.
To load the debugger system program to the PCs, use the CPMSE debugger system.

4 COMPILER

4 COMPILER

- 26 -

4.1 Required Option
To compile S10/2α programs, be sure to use MCC68K together with the following option:
>MCC68K -c source file name
Example:
>MCC68K -c PROG.C
Option
-c Creates an object file but does not link it.

4.2 Outline of Options

This section explains the MCC68K options related to program development on the S10/2α.
For details of these options, refer to the “MCC68K Users Guide.”

(1) Related options

-A ANSI-compliant mode (default)
-nA Non-ANSI mode (ANSI extension functions are not used.)
-f Creates codes that use instructions output by a floating-point coprocessor.
 (If the PC has no floating-point coprocessor, do not use this option.)

(2) Unusable options

-G* Debugging-related option
-g Debugging-related option
-h Creates codes for an HP6400 series development system.
-N* Section-related option
-u* Symbol name-related option
-X* External name-related option

There are many other options that affect program execution. Understand their functions before
using them.

5 LIBRARIES

5 LIBRARIES

- 28 -

5.1 Libraries
A library is a set of object modules. By collecting multiple objects in a library and passing the
library to “sload,” all necessary object modules in the library are automatically linked.

5.2 Librarian

The LIB68K librarian edits a library containing object modules generated by MCC68K.
The following paragraphs briefly explain how to use the librarian. For details, refer to the
description about LIB68K in the ASM68K User’s Guide.

z Usage (command-line interface)

(1) Adding a module

>LIB68K-a object file name library file name
• If the specified library is not found, the librarian creates a new library under the

specified name and presents a warning message.

(2) Replacing a module
>LIB68K-r object file name library file name
• If the specified library is not found, the librarian creates a new library under the

specified name and presents a warning message.
• If the specified module is not found in the library, the librarian adds the module to the

library and presents a warning message.

(3) Fetching a module
>LIB68K-e object module name library file name
• An object file is created without the module being deleted from the library.

(4) Deleting a module

>LIB68K-d object module name library file name

(5) Listing the contents of a library
>LIB68K-l library file name
The default extension of object file names is “.OBJ”, and the default extension of library
file names is “.LIB”.

LIB68K may display warning messages when the user uses some commands supported by
RPDP/S10. This is because those commands use LIB68K commands. However, that
presents no problem.

6 GENERATOR

6 GENERATOR

- 30 -

6.1 sgen (System Generation)
The “sgen” command sets up a file environment with necessary information for the controller to
be acted on. The user should define the environment variables described in Section 3.2 and
Appendixes H and I before initiating this command.

(1) Operation
>sgen

+++ site generation +++

 site name (1-8 chars) :{site}

 site type (S10/2A, S10/2AE, S10/2AH) :{type}

 total memory size (in K-byte) :{size}

 C programming area top addr :{addr}

Garea definition start

 task area size (in K-byte) :{tsize}

 sub program area size (in K-byte) :{ssize}

 ir sub program max number :{irsmax}

 read only global data area size (in K-byte) :{grsize}

 read/write global data area size (in K-byte) :{grwsize}

 ir global data max number :{irgmax}

 site name =site

 site type =type

 total memory size (K-byte) =size

 C programming area top addr =addr

Garea information

 task area size (K-byte) =tsize

 sub program area size (K-byte) =ssize

 ir sub program max number =irsmax

 read only global data area size (K-byte) =grsize

 read/write global data area size (K-byte) =grwsize

 ir global data max number :irgmax

site information ok? (y/n) : {ans}

site directory initial start

site directory initial end

+++ site generation end +++

6 GENERATOR

- 31 -

(2) Options
sgen [△-c△site1△site2]
 [△-d△site△]
-c Copies all site information at a time.
-d Deletes all site information at a time.
site Site name (site1, name of the site from which to copy; site2, name of the site to which to
 copy)

(3) Operands

site Site name
type Controller type (*1)
size Total size of main memory
 size>tsize+ssize+grsize+grwsize
addr First address of the C program area (default: 0x160000)
tsize Size of the “garea” for tasks
ssize Size of the “garea” for subprograms (including the management tables for “irsub” and
 “irglb” programs) (*2)
 ssize×1024 ≥ irsmax×6+irgmax×4+8
grsize Size of the read-only global “garea”
grwsize Size of the read/write global “garea”
irsmax Maximum “irsub” number
irgmax Maximum “irglobal” number
ans If the displayed data matches the data the user entered, enter a “y.” Site information
 will then be created. If not, enter an “n” to enter the data again.
(*1) Controller types
 S10/2A: HITACHI S10/2α
 S10/2AE: HITACHI S10/2αE
 S10/2AH(f): HITACHI S10/2αH
(*2) When an “irsub” or “irglobal” is registered, an area for a management table is automatically

allocated. Therefore, the size of the area actually allocated by the “sdfa” command is the
specified size less the size of the management table.

(4) Generation result

① New creation
• The directory specified by the environment variable RSSDIR is created.
• A site information definition file is created in the site directory.
• A site backup file is created. (The backup file is cleared to 0.)

② Copying all site information at a time
All files in the site directory are copied to the specified site at a time.

6 GENERATOR

- 32 -

③ Deleting all site information at a time
All files in the site directory are deleted at a time.

Note: Except for the “garea” size definition, the contents of the site information definition file
(‘sysdef’) after site generation may be modified with a text editor.

Example: New creation
>sgen

+++ site generation +++

 site name (1-8 chars) :pcs01

 site type (S10/2A, S10/2AE, S10/2AH) :S10/2A

 total memory size (in K-byte) :4096

 C programming area top addr :0x160000

Garea definition start

 task area size (in K-byte) :1024

 sub program area size (in K-byte) :1024

 ir sub program max number :1024

 read only global data area size (in K-byte) :512

 read/write global data area size (in K-byte) :1024

 ir global data max number :1024

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =4046

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only grobal data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

site information ok? (y/n) : y

site directory initial start

site directory initial end

6 GENERATOR

- 33 -

<<LIB68K displays a warning message at this time. However, that presents no problem.>>
+++ site generation end +++

Example: Copying all site information at a time
>sgen△-c△pcs01△pcs02

site (pcs01) ---> site (pcs02) copied

Example: Deleting all site information at a time
>sgen△-d△pcs02

site (pcs02) delete ok? (y/n) : y

site (pcs02) deleted

Example: To extend a site
>sgen

+++ site generation +++

 site name (1-8 chars) :pcs01

 site type =S10/2A

 total memory size (in K-byte) =4096

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

 add extended memory size (in K-byte) :4096

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =8192

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

6 GENERATOR

- 34 -

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

 extended area size (K-byte) =4608

site informatin ok? (y/n) : y

site directory updata start

site directory updata end

6 GENERATOR

- 35 -

6.2 ssi (Sets and displays the site to be acted on.)

Operation
ssi [△siten] Setting and display
 [No parameter] Display

siten site name
• Specify a site name for each personal computer. When changing the site name for a

particular MS-DOS prompt, set a new site name in the environment variable RSSITE.
• The site name set by this command is valid until a new site name is set by another “ssi”

command.

Example: Display mode
>ssi

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =4096

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global max number =1024

Example: When the specified site could not be found
>ssi△pcs02

site (pcs02) not found!!

THIS PAGE INTENTIONALLY LEFT BLANK.

6 GENERATOR

6 GENERATOR

- 30 -

6.1 sgen (System Generation)
The “sgen” command sets up a file environment with necessary information for the controller to
be acted on. The user should define the environment variables described in Section 3.2 and
Appendixes H and I before initiating this command.

(1) Operation
>sgen

+++ site generation +++

 site name (1-8 chars) :{site}

 site type (S10/2A, S10/2AE, S10/2AH) :{type}

 total memory size (in K-byte) :{size}

 C programming area top addr :{addr}

Garea definition start

 task area size (in K-byte) :{tsize}

 sub program area size (in K-byte) :{ssize}

 ir sub program max number :{irsmax}

 read only global data area size (in K-byte) :{grsize}

 read/write global data area size (in K-byte) :{grwsize}

 ir global data max number :{irgmax}

 site name =site

 site type =type

 total memory size (K-byte) =size

 C programming area top addr =addr

Garea information

 task area size (K-byte) =tsize

 sub program area size (K-byte) =ssize

 ir sub program max number =irsmax

 read only global data area size (K-byte) =grsize

 read/write global data area size (K-byte) =grwsize

 ir global data max number :irgmax

site information ok? (y/n) : {ans}

site directory initial start

site directory initial end

+++ site generation end +++

6 GENERATOR

- 31 -

(2) Options
sgen [△-c△site1△site2]
 [△-d△site△]
-c Copies all site information at a time.
-d Deletes all site information at a time.
site Site name (site1, name of the site from which to copy; site2, name of the site to which to
 copy)

(3) Operands

site Site name
type Controller type (*1)
size Total size of main memory
 size>tsize+ssize+grsize+grwsize
addr First address of the C program area (default: 0x160000)
tsize Size of the “garea” for tasks
ssize Size of the “garea” for subprograms (including the management tables for “irsub” and
 “irglb” programs) (*2)
 ssize×1024 ≥ irsmax×6+irgmax×4+8
grsize Size of the read-only global “garea”
grwsize Size of the read/write global “garea”
irsmax Maximum “irsub” number
irgmax Maximum “irglobal” number
ans If the displayed data matches the data the user entered, enter a “y.” Site information
 will then be created. If not, enter an “n” to enter the data again.
(*1) Controller types
 S10/2A: HITACHI S10/2α
 S10/2AE: HITACHI S10/2αE
 S10/2AH(f): HITACHI S10/2αH
(*2) When an “irsub” or “irglobal” is registered, an area for a management table is automatically

allocated. Therefore, the size of the area actually allocated by the “sdfa” command is the
specified size less the size of the management table.

(4) Generation result

① New creation
• The directory specified by the environment variable RSSDIR is created.
• A site information definition file is created in the site directory.
• A site backup file is created. (The backup file is cleared to 0.)

② Copying all site information at a time
All files in the site directory are copied to the specified site at a time.

6 GENERATOR

- 32 -

③ Deleting all site information at a time
All files in the site directory are deleted at a time.

Note: Except for the “garea” size definition, the contents of the site information definition file
(‘sysdef’) after site generation may be modified with a text editor.

Example: New creation
>sgen

+++ site generation +++

 site name (1-8 chars) :pcs01

 site type (S10/2A, S10/2AE, S10/2AH) :S10/2A

 total memory size (in K-byte) :4096

 C programming area top addr :0x160000

Garea definition start

 task area size (in K-byte) :1024

 sub program area size (in K-byte) :1024

 ir sub program max number :1024

 read only global data area size (in K-byte) :512

 read/write global data area size (in K-byte) :1024

 ir global data max number :1024

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =4046

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only grobal data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

site information ok? (y/n) : y

site directory initial start

site directory initial end

6 GENERATOR

- 33 -

<<LIB68K displays a warning message at this time. However, that presents no problem.>>
+++ site generation end +++

Example: Copying all site information at a time
>sgen△-c△pcs01△pcs02

site (pcs01) ---> site (pcs02) copied

Example: Deleting all site information at a time
>sgen△-d△pcs02

site (pcs02) delete ok? (y/n) : y

site (pcs02) deleted

Example: To extend a site
>sgen

+++ site generation +++

 site name (1-8 chars) :pcs01

 site type =S10/2A

 total memory size (in K-byte) =4096

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

 add extended memory size (in K-byte) :4096

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =8192

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

6 GENERATOR

- 34 -

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global data max number =1024

 extended area size (K-byte) =4608

site informatin ok? (y/n) : y

site directory updata start

site directory updata end

6 GENERATOR

- 35 -

6.2 ssi (Sets and displays the site to be acted on.)

Operation
ssi [△siten] Setting and display
 [No parameter] Display

siten site name
• Specify a site name for each personal computer. When changing the site name for a

particular MS-DOS prompt, set a new site name in the environment variable RSSITE.
• The site name set by this command is valid until a new site name is set by another “ssi”

command.

Example: Display mode
>ssi

 site name =pcs01

 site type =S10/2A

 total memory size (K-byte) =4096

 C programming area top addr =0x160000

Garea information

 task area size (K-byte) =1024

 sub program area size (K-byte) =1024

 ir sub program max number =1024

 read only global data area size (K-byte) =512

 read/write global data area size (K-byte) =1024

 ir global max number =1024

Example: When the specified site could not be found
>ssi△pcs02

site (pcs02) not found!!

THIS PAGE INTENTIONALLY LEFT BLANK.

7 ALLOCATOR

7 ALLOCATOR

- 38 -

7.1 Command Language Specification

(1) Classification of names
Names handled by the allocator are classified as shown below.

Names Site names
 Area names Global area names
 Split area names
 Secondary partition area names
 External names Executable module names, program names
 (for programs and subprograms)
 Value names
 (Task names)

(2) Rules

(a) Site names, area names, external names, and task names
• The first character must be a letter from “a” to “z.”
• Only the letters (“a” to “z”), digits (“0” to “9”), and underscore (“_”) can be used.
• Each name must be up to eight characters long.

(b) Note
Underscores (“_”) and uppercase letters (“A” to “Z”) are specific to system mode. Do not
use these characters in user mode. However, the allocator does not check characters used.

(3) Numeric data

The allocator commands support decimal and hexadecimal numbers in the following formats:
Decimal 127 (Decimal numbers start with a digit from “1” to “9.”)
Hexadecimal 0x7F (Hexadecimal numbers start with the symbol “0x.”)

(4) Options
z -a△xyz format

Always specify options in this format.
z -a format

When specifying both -a and -b, do not specify them in the form of “-ab.”

(5) Spaces allocatable by the allocator

The allocator can support only spaces in main memory; that is, “sdfa” and “sdfs” can only
allocate spaces in main memory.

7 ALLOCATOR

- 39 -

7.2 sdfa (Allocates a split area.)

Function
This command allocates an area in a specified global area (garea).
Format
sdfa△gname/aname△size [△option]
Explanation
gname Name of a global area
aname Name of the area to be allocated
size Size of the area to be allocated. This size must be a multiple of four bytes.

When the specified number is not a multiple of 4, a warning message appears
and that number is rounded up to the nearest whole multiple of 4 to continue
processing.

Options
-p Allocates an area to store a task.
-s (lowercase) Allocates an area to store a subprogram.
-d Allocates a global area with initial values.
-w Allocates a global area with no initial values.
 If a read-only area (glbr) is specified as a global area, this option may not be

used.
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be processed by the allocator. If this option is omitted,
processing is performed on the default site set in advance.

-l△n Address (location) of the area to be allocated. Use a multiple of 4 to specify a
byte address relative to the beginning of the global area. If the specified
number is not a multiple of 4, a warning message appears and that number is
rounded up to the nearest whole multiple of 4 to continue processing. If this
option is omitted, the first free area found is automatically allocated.

Notes
• The options -p, -s, -d, and -w are mutually exclusive in the command line.
• If none of -p, -s, -d, and -w is specified, -p is assumed.
• Table 7-1 shows the permitted combinations of allocated areas, arguments, and options.

7 ALLOCATOR

- 40 -

Table 7-1 Permitted Combinations of Areas Allocated by “sdfa,” Arguments, and Options

Global Area type

Parameter Task Subprogram With initial
values

With no initial
values

gname Name of global area
aname Name of area to be allocated
size Number of bytes to be allocated (multiple of 4)
type -p (default) -s -d -w

-S (uppercase) Specifiable when the access privilege level is “system.” (If this option is
omitted, the default privilege level is used.)

-u site Site name. (If this option is omitted, the default site name is used.)

O
pt

io
ns

-l n (*) Multiple of 4 that indicates a byte address relative to the beginning of the
global area. (If this option is omitted, an area is automatically allocated.)

(*) n: If the specified number is not a multiple of 4, it is rounded up to the nearest whole multiple of 4.

7.3 sdla (Deallocates a split area.)

Function
This command deallocates an area allocated by “sdfa.”
Format
sdla△aname [△option]
Explanation
aname Name of the area to be deallocated
Options
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be processed by the allocator. If this option is omitted,
processing is performed for the default site set in advance.

Notes
If a secondary partition area for a task or subprogram is allocated in the specified split area, an
error will result. For a global area with or without initial values, the secondary partition areas
in a specified split area therein are also deallocated.

7 ALLOCATOR

- 41 -

7.4 sdfs (Allocates a secondary partition area [sarea].)

Function
This command allocates a global secondary partition area (sarea) in the area that has already
been allocated by “sdfa.”
Format
sdfs△aname/sname△size [△option]
Explanation
aname Name of a split area
sname Global name of the external area to be allocated
size Size of the secondary partition area to be allocated (in bytes)
Options
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be acted on by the allocator. If this option is omitted,
processing is performed for the default site set in advance.

-l△n Address (location) of the secondary partition area to be allocated. Use a
multiple of 4 to specify a byte address relative to the beginning of the split area.
If the specified number is not a multiple of 4, a warning message appears and
that number is rounded up to the nearest whole multiple of 4 to continue
processing. If this option is omitted, the first free area found is automatically
allocated.

-a△n Alignment value for use in allocating an secondary partition area. Specify the
nth power of 2, where 0 ≤ n ≤ 12. If this option is omitted, a 2 is assumed.

Notes
• The -a option is valid only when the -l option is omitted.
• The -a and -l options are mutually exclusive. When both are specified, an error will result.
• The alignment value specified by the -a option must be from 2 to 12. The number may be a

0 or 1 only for special purposes. Usually, do not specify a 0 or 1.
• Table 7-2 shows the permitted combinations of allocated areas, arguments, and options.
• LIB68K may display a warning message when this command is used. However, that

presents no problem.

7 ALLOCATOR

- 42 -

Table 7-2 Permitted Combinations of Areas Allocated by “sdfs,” Arguments, and Options

Global Area type

Parameter
Task Subprogram

With initial values With no initial values
aname Name of split area
sname Name of secondary partition area
size Number of bytes

-S
(uppercase)

 Specifiable when the access privilege level is
“system.” (If this option is omitted, the default
privilege level is used.)

-u site Site name. (If this option is omitted, the default site
name is used.)

-l n Byte address relative to the beginning of the split area.
(If this option is omitted, an area is automatically
allocated.)

O
pt

io
ns

-a n Number of alignment boundaries (0 ≤ n ≤ 12).
(If this parameter is omitted, a 2 is assumed.)

Note: No values may be specified in the cases indicated by . If a value is given, an error will
result.

7.5 sdls (Deallocates a secondary partition area [sarea].)

Function
This command deallocates a secondary partition area (sarea) allocated by “sdfs.”
Format
sdls△sname [△option]
Explanation
aname External name of the area to be deallocated
Options
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be acted on by the allocator. If this option is omitted,
processing is performed on the default site set in advance.

7 ALLOCATOR

- 43 -

7.6 sdfv (Defines a VAL.)

Function
This command registers external reference information for values.
Format
sdfv△ename△value [△option]
Explanation
ename External name
value Value to be assigned to the external name
Options
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be acted on by the allocator. If this option is omitted,
processing is performed on the default site set in advance.

Notes
• A negative decimal number may be specified in the following format as the value to be

assigned to an external name.
-123
Explanation: The decimal number -123 is specified.

• The value to be specified as “value” must be in the following range:
-231 ≤ value ≤ 231-1

• LIB68K may display a warning message when this command is used. However, that
presents no problem.

7 ALLOCATOR

- 44 -

7.7 sdlv (Deletes a VAL.)

Function
This command deletes external reference information registered by “sdfv.”
Format
sdlv△ename [△option]
Explanation
ename External name
Options
-S (uppercase) Specifies that the access privilege level is “system.” If this option is omitted,

the default privilege level set in advance is used. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be acted on by the allocator. If this option is omitted,
processing is performed on the default site set in advance.

8 LOADER

8 LOADER

- 46 -

8.1 Execution Environment of the Loader

(1) Input to the loader

Make sure that the load modules to be input to the loader satisfy the conditions listed in Table
8-1.

Table 8-1 Input Conditions of Load Modules

Load module

Option
TEXT DATA BSS

Registration of programs
(*1)

>0
– –

Registration of subprograms and
built-in subroutines

>0 – –

Registration of data –
(*1) (*2)

>0
–

Symbols: TEXT, executable portion; DATA, data with initial values; BSS, area with no
initial values.

(Legend) –: Processing is possible when the size is 0 or greater.
 >0: An error will result when the size is not greater than 0.
(*1) An error will result when a value definition is encountered.
(*2) An error will result when no data with initial values is found in “glb.”

Any load module input to the loader has one of the following structures:

① Text section Data section

② Text section

③ GLB

Data with initial
values

Figure 8-1 Load Module Structures

Explanation of Figure 8-1:
① Load module generated from a program or subprogram that has both a text section and data

section.

8 LOADER

- 47 -

② Load module generated from a program or subprogram that consists of only a text section.
It is loaded in the same way as the load module described in ① above.

③ Load module generated from a program that contains the initial values of a GLB. It is
loaded as data.

(2) Processing by the loader

Loading by the loader is explained below using the load module structures numbered ① and ③
in Figure 8-1 as examples.

 Load module ① Load module ③

Text section Data section
Initial data

glb1_g

Loader

glb1
Text Data (*1)

Initial

text data glb1

Site backup file

section section values

(*1)

(*2)Executable module

(*1) bss area used during programming
(*2) This area actually does not exist as a file. It is shown to help the user understand the

processing.

Figure 8-2 Processing by the Loader

Explanation of Figure 8-2:
① The global initial data in the load module created by “sload” is loaded into the area

corresponding to the secondary partition area registered by “sdfs,” in a split area managed by
the allocator.

8 LOADER

- 48 -

② As an executable module, the text section and data section are loaded into the area specified
by a loader command.

③ As in ① and ②, this load module is loaded into the site backup file.

(3) Unique names
Make sure that no duplicate program name, subprogram name, built-in subroutine name, global
name, or value name appears in the combined system and user domain.

(4) External reference check between the system and user
The system cannot reference user information.
The user can only reference subprograms of the system. Table 8-2 shows the permitted
combinations of externally referencing items and externally referenced items.

Table 8-2 Permitted Combinations of Externally Referencing Items and Externally Referenced Items

Subprogram Global Value Referenced item

Referencing item

S U S U S U

S √ P √ P √ P
Program

U √ √ P √ P √
S √ P √ P √ P

Subprogram
U √ √ P √ P √
S √ P √ P √ P

Global
U √ √ P √ P √

(Legend) √ : Permitted S : System
 P : Prohibited U : User

(5) Reference check by program attribute and allocated area

The loader generates programs that are executable under CPMS. However, they may or may
not be able to reference memory locations outside their addressing spaces, depending on their
program attribute and allocated area. This is because there are no computer instructions
available that enable access to such external locations. Therefore, a check is made to see if they
are referencing only permitted memory locations, according to the decision criteria listed in
Table 8-3.

8 LOADER

- 49 -

Table 8-3 Permitted Combinations of Referencing Programs and Referenced Programs

Referenced side

Referencing side

+P +S, +U +D VAL

+P P √ √ √
+S, +U P √ √ √

+D P √ √ √

(Legend) √ : Permitted P : Prohibited
 +P : Program +S : Subprogram
 +D : Built-in subprogram +D : Data loading

8.2 sload (Loads a program, a subprogram, or data.)

Function
This command stores a program or subprogram in a backup file under a specified name and, at
the same time, creates a program management table in the executable module management file.
The command also performs the same processing for data.
Format
sload△pname [△option]
Explanation
pname Program or subprogram name to be registered in the program management

table. When the +D option is specified for data loading, it needs to be
accompanied by a GLB name. The name specified as “pname” should be
a character string of up to eight characters and should begin with a letter.

Options
-S (uppercase) Specifies that the operational mode is “system.” If this option is omitted,

the default operational mode set in advance is used. (This option is
provided for system programs, and no ordinary users are allowed to use
it.)

-u△site Name of the site to be acted on by the loader. If this option is omitted,
processing is performed on the default site set in advance.

-C△n (uppercase) First address of the program or subprogram. n is a multiple of 4
specified as the first address. If the specified number is not a multiple of
4, a warning message appears and that number is rounded up to the nearest
whole multiple of 4 to continue processing.

8 LOADER

- 50 -

-p△n Relative byte address indicating the loading start location in the area.
This option is effective for a program or subprogram. If this option is
omitted, registration is automatically performed. This option cannot
specified together with -C.
n is a multiple of 4 specified as the relative byte address. If the specified
number is not a multiple of 4, a warning message appears and that number
is rounded up to the nearest whole multiple of 4 to continue processing.

-a△aname Area into which the program or subprogram is to be loaded. This option
may not be omitted when a program or subprogram name is specified.

-f△cmdfile (This option is used for ordinary purposes. It forces “sload” to
automatically set a loading start address.)

 cmdfile specifies a command file containing the object file and library file
to be linked.

Format of cmdfile

load Main object file path

load Subordinate object file path

load Subordinate library file path

load C:\HITACHI\FODU\LIB\site name.LIB

load C:\HITACHI\FODU\LIB\CPMS.LIB

load C:\HITACHI\FODU\LIB\IRAD.LIB

Place the main object file path at the beginning.

Zero or more subordinate object file paths may be written.

Zero or more subordinate library file paths may be written.

When using an IRSUB, insert this line.

When using CPMS macros, insert this line.

When using an “irsubad” or “irglbad,” insert this line.

Add a return code (press the [Enter] key) after the last line

input of cmdfile. When there is no return code in the last

line, cmdfile cannot be recognized correctly but it may

become an error at the time of loading.

-i△n [△m] This option is used for special purposes. It loads the result of executing
LNK68K with a user-specified load address.)

n File name of the absolute load module (S code) file output by LNK68K
m File name of the map file output by LNK68K. If the map file name is

omitted, the program or subprogram is processed, assuming that it consists
of only text. Also, the data is processed, assuming that it contains
nothing other than the data values.
Note: The -f and -i options are mutually exclusive. If neither -f nor -i is

specified, -i a.out is assumed.

: Return code

8 LOADER

- 51 -

-w△n Stack area size in bytes. This option may not be omitted if a program or
subprogram name is specified. The option specifies the size of the stack area
used by the program or subprogram. n is a multiple of 4 within the range of 0
to 4,194,304 (0x400000). If the specified number is not a multiple of 4, a
warning message appears and that number is rounded up to the nearest whole
multiple of 4 to continue processing.

+P (uppercase) Specifies that the thing to be loaded is a program.
+S (uppercase) Specifies that the thing to be loaded is a subprogram.
+U (uppercase) Specifies that the thing to be loaded is a built-in subroutine.
+D (uppercase) Specifies that the thing to be loaded is global data.
 If none of the +P, +S, +U, and +D options is given, +P is assumed.
-m△n Used when multiple tasks need to be created. n is the number of tasks to be

created and is within the range of 2 to 128.

Permitted combinations of options
Table 8-4 shows the permitted combinations of options that may be specified to the loader.

Table 8-4 Permitted Combinations of Options

Option

Type -S -u -C -p -a -i -w -m +P +S +U +D

Program △ △ △ △ √ △ √ △ △ − − −
Subprogram △ △ △ △ √ △ √ M − √ − −
Built-in subprogram △ △ △ △ √ △ √ M − − √ −
Data △ △ M M M △ M M − − − √

(Legend) △: Optional √: Required M: May not be used −: Irrelevant

Notes
• Those which are registered as subprograms cannot be registered as built-in subroutines.

When you want to use them as built-in subroutines, register them in advance using the +U
option (built-in subroutine).

• The stack area for built-in subroutines is allocated in the area reserved for the system.
Make sure that the stack area is not greater than 1 KB.

• LIB68K may display a warning message when this command is used. However, that
presents no problem.

Calculating the stack size
When programs use the stack area, specify its size (D) as follows:

(1) Calculating D
The value of D is the maximum value that can be obtained by adding the stack sizes specific to
the internal subprograms constituting a program according to the parent- child relationships. In
the example below, D is 1200 bytes.

8 LOADER

- 52 -

0

400

800

1000

1200

Wmain

Wsub1

Wsub2

Wsub3

D

(b) Layout of stack areas used by programs

main

sub1 sub2

sub3

(d1 = 400 bytes)

(d2 = 400 bytes)

(d3 = 400 bytes)

(600 bytes)

Each value in parentheses is the stack size specific to
an internal subprogram.

(a) Parent-child relationships of programs

W is the size of the stack specific to
the associated internal subprogram.

In the above example, D = Wmain + Wsbu2 + Wsub3
 = 400 + 400 + 400 = 1200
As in this example, when the size of the stack used by each subprogram is known from, for
instance, the information output by the compiler, the total size of the individual stack areas can
be calculated with ease. If, however, the stack sizes for the individual programs are unknown,
obtain them from the source program, as described below.

(2) Calculating the stack size, “di”, in bytes for each program (main program or subprogram)

① When the program or subprogram does not have the following:
 function call (subroutine call)
 di=56+J
② When the program or subprogram has the following:
 function call (subroutine call)
 di=maxarg+64+J
 (Note) J: Auto variable area size
 maxarg: Maximum argument value × 4
 If the value of J is not determined accurately, T can be used instead of J because of the
 relationship shown below.
 J ≤ T= (number of auto variables) × 4 + (number of variables for double-precision real-
 type data) × 8
 Auto variables include the “struct” and “register” variables.

8 LOADER

- 53 -

Example 1: When there is no “function call” (example in C)
func (i) In this case
int i; 56 + 1 × 4 = 60
{return;} Number of auto variables × 4

Example 2: When there is “function call”

main () { In this case
int i1, i2, i3, i4, i5, i6; 5 × 4 + 64 + 6 × 4 = 108
f1 (i1, i2) ; Number of auto
f2 (i1, i2, i3, i4, i5) ; variables × 4
f3 (i1, i2, i3) maxarg
}

8.3 sdload (Deletes a program or subprogram.)

Function
This command deletes a program or subprogram registered by an “sload” command from the
external name and program/subprogram management file. The backup file is not cleared to 0.
Format
sdload△pname [△option]
Explanation
pname Name of the program or subprogram to be deleted. “pname” is a string of up

to eight characters, starting with a letter. Specifiable characters are
alphanumeric characters and underscores (“_”).

Options
-S (uppercase) Specifies that the operational mode is “system.” If this option is omitted, the

default operational mode set in advance is assumed. (This option is provided
for system programs, and no ordinary users are allowed to use it.)

-u△site Name of the site to be acted on by the loader. If this option is omitted,
processing is performed on the default site set in advance.

+P (uppercase) Deletes a program.
+S (uppercase) Deletes a subprogram.
+U (uppercase) Deletes a built-in subroutine.
 If none of the +P, +S, and +U options is specified, +P is assumed.

8 LOADER

- 54 -

8.4 scomp (Compares a program, a subprogram, or data.)

Function
This command compares the contents of the backup file of a program, subprogram, or global
data with its load module, and edits and outputs the result.
Format
scomp△pname [△option]
Explanation
pname Name of the program or subprogram to be compared. When global data is to

be compared, “pname” is ignored and the global names used in the program
are subjected to processing.

Options
-f△cmdfile
-i△n [m]
-u△site Name of the site to be acted on by the loader. If this option is omitted,

processing is performed on the default site set in advance.
-S (uppercase) Specifies that the operational mode is “system.” If this option is omitted, the

default operational mode set in advance is assumed. (This option is provided
for system programs, and no ordinary users are allowed to use it.)

+P (uppercase) Compares a program.
+S (uppercase) Compares a subprogram.
+D (uppercase) Compares global data.
+U (uppercase) Compares a built-in subroutine.

If none of the +P, +S, +U, and +D options is given, +P is assumed.

Messages output by the “scomp” command are explained below.
z Message format on normal termination
** comp list **
user name=XXXXXXXX mode=XXXX program type=XXXXX
program name=XXXXXXXX
** compare end **

z Message format on abnormal termination
** comp list **
user name=XXXXXXXX mode=XXXX program type=XXXXX
program name=XXXXXXXX
scomp:text size unmatched (No=0095) → Indicates that they differs from

each other in text size.

Same as “sload”

8 LOADER

- 55 -

scomp:data size unmatched (No=0096) → Indicates that they differ from
each other in data size.

** compare error **
<header>
loc=”XXXXXXXX” new=”XXXXXXXX” old=”XXXXXXXX”
<text>
loc=”XXXXXXXX” new=”XXXXXXXX” old=”XXXXXXXX”
<data>
loc=”XXXXXXXX” new=”XXXXXXXX” old=”XXXXXXXX”
** compare error end **
z Explanation

user name Site name
mode Operational mode (sys, user)
program type Program attribute (pgm, sub, ulsub, data)
program name Program name
loc If any discrepancy is found in the comparison, the number of bytes starting

from the beginning of the header, text, or data section is displayed here to
indicate the location of the discrepancy. For global data, the number of
bytes starting from its beginning is displayed.

new Data of the “a.out” file (load module)
old Data of the program registered in the backup file (executable module)

8.5 Program Layout

This section describes how a program is loaded into and arranged in the CPMS system.

(1) Program containing subprograms

 prog data bss stack

Last address of
the program

First address of
the program

8 LOADER

- 56 -

prog Executable program
data Data with initial values to be referenced by the executable program
bss Area with no initial values to be referenced by the executable program
stack Stack area used by the executable program. This stack area includes stack areas used by

subprograms. This field indicates how stacks are used.

(2) Program containing no subprograms

 prog data bss stack

prog, data, bss Same as for a program containing subprograms
stack Stack area used by the executable program

(3) Subprogram

 sub data

sub Subprogram
data Data with initial values to be referenced by the subprogram
Note: Use only reentrant routines as subprograms. When creating subprograms, perform

programming in such a way that the “bss” area is not used.

(4) Built-in subroutine

 sub data bss

sub Built-in subroutine
data Data with initial values to be referenced by the built-in subroutine
bss Data with no initial values to be referenced by the built-in subroutine
Note: The system stack is used.

Last address of
the program

First address of
the program

Last address of
the program

First address of
the program

Last address of the
built-in subroutine

First address of the
built-in subroutine

9 BUILDER

9 BUILDER

- 58 -

9.1 sctask (Creates a task.)

Function
This command creates a task from the executable module stored by the loader.
Format
sctask△pname△tname△-t△n [△option]
Explanation
pname Program name of the executable module to be used as a resource to create a task
tname Name of the task to be created
-t△n Task number. A user task is identified with its task number from 1 to the

maximum user task number 114, and a system task with its task number from 1
to 128. If a task number in use is specified, an error will result. The task
number 128 is reserved for the debugger task, and 127 for FA-BASIC. The
task numbers 115 to 128 are reserved for system tasks. The user cannot use
these task numbers.

Options
-u△site Name of the site to be acted on by the builder. If this option is omitted,

processing is performed on the default site set in advance.
-v△n Execution level of 1 to 4 at the initial start of the task. If this option is

omitted, n is assumed to be 4.
-r△n Number of 1 to 128 for use in creating a work section when multiple tasks are

to be created from the program. This number may not be greater than the
value of the -m option, which specifies the number of tasks to be created from
the program specified by a parameter of the load command. If this option is
omitted, the minimum work section creation number not in use is assumed.

-S (uppercase) Specifies that a system task is to be created. If this option is omitted, the
default task type set in advance is assumed. (This option is provided for
system programs, and no ordinary users are allowed to use it.)

Notes
• Even when the type of the executable module is “u”, a system task can be created by

specifying the -S option.
• Table 9-1 lists the defaults of the options.
• Table 9-2 shows the relationships between types of task created and options used for the

purpose.

9 BUILDER

- 59 -

Table 9-1 Defaults of Options

Option Default Remarks

-u Default name Set in advance
-v 4
-S Default Preset value of the environment

variable RSUTYP
-r Minimum “rmtn” not in use

Table 9-2 Relationships between Types of Task Created and Options Used

Option

Task type

pname tname

-u△site
If this option is
omitted, the
default site is
assumed.

-v△n
If this option is
omitted, n is 4
for “user” or 0
for “system.”

-S
If this option is
omitted, the
default is
assumed.

-t△n

-r△n
If this option is
omitted, the
minimum “rmtn” not
in use is assumed. (*)

Single task ◎ ◎ √ √ √ ◎ M

Multiple tasks ◎ ◎ √ √ √ ◎ √

◎: Required √: Optional M: May not be used

(*) rmtn: Work section creation number

9.2 sdtask (Deletes a task.)

Function
This command deletes an already-created task.
Format
sdtask△tname [△option]
Explanation
tname Name of the task to be deleted
Options
-u△site Name of the site to be acted on by the builder. If this option is omitted,

processing is performed on the default site set in advance.
-S (uppercase) Specifies that a system task is to be deleted. If this option is omitted, the

default task type set in advance is assumed.

9 BUILDER

- 60 -

9.3 sbuild (Creates a built-in subroutine.)

Function
This command creates a system-specific subprogram (built-in subroutine) that performs
processing in the event of an error.
Format
sbuild△subname△-p△n [△option]
Explanation
subname Name of the built-in subroutine to be created
-p△n Place where to include the built-in subroutine:

Place of inclusion n

SDS
CPES
EXS
ABS

PCKS

System Down Subroutine
CPU Error Subroutine
Exit Subroutine
Abort Subroutine
Parameter Check Subroutine

2
3
4
5
8

Option
-u△site Name of the site to be acted on by the builder. If this option is omitted,

processing is performed on the default site set in advance.

9.4 sdbuild (Deletes a built-in subroutine.)

Function
This command deletes an existing built-in subroutine.
Format
sdbuild△subname△-p△n [△option]
Explanation
subname Name of the built-in subroutine to be deleted
-p△n Place where the built-in subroutine is included. For the value of n, see the

description of “sbuild” above.
Option
-u△site Name of the site to be acted on by the builder. If this option is omitted,

processing is performed on the default site set in advance.

9 BUILDER

- 61 -

9.5 sirbld (Creates or deletes an indirectly linked subprogram or table.)

Function
This command creates an indirectly linked subprogram or global data or deletes it for
maintenance purposes. The command also saves the definition information stored in the
current address table to a map information file.
Format
sirbld△irno△name [△option]
Explanation
irno Registration number of the indirectly linked subprogram or indirectly linked

global data (in decimal)
name Name of the indirectly linked subprogram or indirectly linked global data. Up

to eight characters
Options
-g Specifies that indirectly linked global data is to be created or deleted.
-S (uppercase) Specifies that an indirectly linked subprogram is to be created or deleted.
 Either -g or -S must be specified.
-u△site Name of the site to be acted on by the builder. If this option is omitted,

processing is performed on the default site set in advance.
-s△name External name handled by the allocator. This option takes effect only when

the external name handled by the allocator is not specified by a parameter.
-o△n Offset in hexadecimal or decimal. This option takes effect only when an

address is given in the form of “external name + offset.” If the specified value
is preceded with the symbol “0x”, it is handled as a hexadecimal number;
otherwise, it is handled as a decimal number.

-a△n Absolute address in hexadecimal. This option takes effect only when an
absolute value is given as the address.

-d Specifies deletion.
Notes
• If the user requests this command to register or delete an indirectly linked subprogram, the

command registers or deletes the corresponding linkage subprogram (site name.lib) created by
RPDP. The -s and -a options are mutually exclusive on the command line.

• For registration, specify both the -s and -o options.
• LIB68K may display a warning message when this command is used. However, that

presents no problem.

THIS PAGE INTENTIONALLY LEFT BLANK.

10 sdebug
(ONLINE DEBUGGER)

10 sdebug (ONLINE DEBUGGER)

- 64 -

10.1 Starting the Debugger

Start “sdebug” as follows:
Format
sdebug [△option]
++ debugger start --> site (site) ++
*
Options
-i△fname Name of the file to which to output key inputs.
-o△fname Name of the file to which to output operation results.
-r△fname Name of the command file, which may be the file created by the -i option.
-s△command Directly executes a debugger command.
-u△site Name of the site to be acted on by the debugger. If this option is omitted,

processing is performed on the default site set in advance.
-initial Enables a number of C programs to be loaded at a time by the “ld” command.
-debug Specifies debug mode, in which the “smd” command may be used.
Result
Upon normal termination, this command returns a 0. Upon abnormal termination, it returns
a 1. If one of the commands listed in the table below is issued with the -s option specified
and results in an error, this command returns a 255.
Notes
• When more than one option is specified, any option(s) that follow -s are regarded as

commands.
sdebug△-i△fname△-s△command.................-i is regarded as an option.
sdebug△-s△command d△-i△fname..............-i is regarded as part of the command following

the -s option.
• When an asterisk (“*”) is displayed, the debugger is ready to accept any of the commands

listed in the table below.
• Be careful when starting “sdhp” or “sadm” with the -o option specified in this command. If

the file name specified by the -o option in this command matches the file name specified by
the -o option in “sdhp” or “sadm,” the result displayed on the screen will be stored in the file
improperly.

• Do not specify the -o option in “sdhp” or “sadm” when using that command and the -o
option of this command together.

• None of the breakpoint-related commands “br,” “rb,” “rr” (those that change the content of a
register), and “go” can be used together with the -s option of this command.

10 sdebug (ONLINE DEBUGGER)

- 65 -

Online debugger commands

Classification Command Function Remarks
qu Requests a task be started.
ab Inhibits a task from being started.
re Releases a task from the state in which its start is

inhibited.

ta Displays the status of a task.
tm Activates the cyclic start of a task.

Task start/stop

ct Deactivates the cyclic start of a task.
md Displays or changes memory content between

addresses.
Dynamic display is supported. Memory

display/
modification sd Displays or changes memory content between

symbols.
Dynamic display is supported.

br Sets and displays breakpoints. This command cannot be used
together with the -s option.

rb Removes breakpoints. This command cannot be used
together with the -s option.

rd Displays the contents of a register(s).
rr Changes the contents of a register(s). This command cannot be used

together with the -s option.

Breakpoint-
related

go Resumes execution from a breakpoint. This command cannot be used
together with the -s option.

el Displays system errors.
er Clears system errors.

System error
display/clearing

ss Displays the system status.
st Sets the current time. This command can be used only

where an extension memory with a
clock is installed.

Current time
setting/display

gt Displays the current time. This command can be used only
where an extension memory with a
clock is installed.

ld Transfers a backup file to memory in the
S10/2α.

sv Transfers memory content in the S10/2α to its
corresponding backup file.

Uploading/
downloading

cm Compares the backup file with the contents of
memory in the S10/2α.

dr Enables DHP recording. Enabling or
disabling DHP
recording ds Disables DHP recording.

ver Displays version information for CPMS.
smd Displays or modifies the contents of all areas in

memory.

sadm Displays the “sarea” name associated with an
address.

Stand-alone start is supported.

sdhp Displays DHP. Stand-alone start is supported.
help Displays the command menu.
q Terminates the debugger.

Others

! Executes an MS-DOS command.

10 sdebug (ONLINE DEBUGGER)

- 66 -

10.2 Debugger Commands

(1) qu (Starts a task.)

Function
This command starts a specified task.
Format
*qu△tn [,fact]
*qu△tname [,fact]
Explanation
tn Task number (1 to 128)
fact Start factor (0 to 16). If this option is omitted, a 0 is assumed.
tname Task name
Result
OK (0) Normal termination
NG (≠0) Parameter error or macro error (for example, the task to be started is not in idle
 state.)

(2) ab (Inhibits a task from being started.)
Function
This command inhibits a specified task or tasks from being started.
Format
*ab△tn1 [-tn2]
*ab△tname
Explanation
tn1 Task number (1 to 128)
tn2 Last task number (1 to 128)
tname Task name
Result
OK (0) Normal termination
NG (≠0) Parameter error or macro error. If, however, tn1-tn2 is given, this command
 always terminates normally.

(3) re (Releases a task from its start-inhibited state.)
Function
This command releases a specified task or tasks from their start-inhibited state.
Format
*re△tn1 [-tn2]
*re△tname

10 sdebug (ONLINE DEBUGGER)

- 67 -

Explanation
tn1 Task number (1 to 128)
tn2 Final task number (1 to 128)
tname Task name
Result
OK (0) Normal termination
NG (≠0) Parameter error or macro error. If, however, tn1-tn2 is given, this command
 always terminates normally.

(4) ta (Displays the status of a task.)
Function
This command displays the status of a specified task.
Format
*ta△tn1
*ta△tname
Explanation
tn1 Task number (1 to 128)
tname Task name
Result
tn=*** (0x**) tname=******** task state=***...* (0x********)
tcb top=0x***...*
task top=0x***...* stack=0x***...* level=**
tn Task number
tname Task name
task state Task status. (The values of the status bits are presented in hexadecimal.)
 dormant, idle, ready, timer wait, break stop, running

 R Q A C W B 0 0

R: The task is being executed.
Q: The task is waiting for execution.
A: The starting of the task is inhibited.
C: The task is waiting for processing by the CPU.
W: The task is waiting for a time to expire.
B: The task is stopped at a breakpoint.

tcb top First address of the TCB
task top First address of the task

15 LSB MSB 0

10 sdebug (ONLINE DEBUGGER)

- 68 -

stack First address of the task stack pointer
level Initial start level of the task

(5) tm (Activates the cyclic start of a task.)
Function
This command activates the cyclic start process for a specified task.
Format
*tm△tn, cyct [,fact]
*tm△tname, cyct [,fact]
Explanation
tn Task number (1 to 128)
tname Task name
cyct Start interval in ms (1 to 86400000)
fact Start factor (1 to 16)
 If this option is omitted, a 0 is assumed.
Result
OK (0) Normal termination
NG (1) The timer table is full.

(6) ct (Deactivates the cyclic start of a task.)
Function
This command deactivates the cyclic start process for a specified task.
Format
*ct△tn [,fact]
*ct△tname [,fact]
Explanation
tn Task number (1 to 128)
tname Task name
fact Start factor to be canceled (0 to 16)
 If this option is omitted, a 0 is assumed.
Result
OK (0) Normal termination
NG (1) A timer is not yet registered.

10 sdebug (ONLINE DEBUGGER)

- 69 -

(7) md (Displays or changes memory content between addresses.)
Function
This command displays or modifies the contents of memory specified by addresses.
Format
*md
1 strage (s,m,) : {s}
 {m}
 {*}
 {e}
 {nothing}
*2 addr : {addr1[{-addr2}]} {-h} {[-1]}
 {addr1[{,len}]} {-d} {[-w]}
 {[-b]}
 {-f}
 {e}
0xaaaaaaaa-0xdddddddd : {[0x]data}
 {nothing}
 {e}
Explanation
1 strage (s,m,)

s Specifies that the backup file be modified or displayed.
m,{nothing} Specifies that memory in the actual machine be modified or displayed.
* Specifies that both the backup file and memory in the actual machine be
 modified or displayed.
e Terminates this command.

*2 addr
addr1-addr2 Specifies that data between first address addr1 and final address addr2 be
 displayed.
addr1,len Specifies that data starting from first address addr1 be displayed by the number
 of bytes specified by “len.”
-h Specifies that data be output in hexadecimal.
-d Specifies that data be output in decimal.
-f Specifies that data be output in single-precision floating-point format.
-l Specifies that the data length be four bytes.
-w Specifies that the data length be two bytes.
-b Specifies that the data length be one byte.
e Terminates this command.

10 sdebug (ONLINE DEBUGGER)

- 70 -

0xaaaaaaaa 0xdddddddd
[0x]data New data. When it is preceded with the symbol “0x”, it is handled as a

 hexadecimal number.
{nothing} Specifies that none of the data should be changed.
e Specifies that control be returned to “*2addr” for address input.

Note
If both a data output format and data length are omitted, those specified by the last “md”
command take effect. By default, -h (hexadecimal) and -l (four bytes) are assumed. No data
in memory in the actual machine can be changed in units of one byte.
z Dynamic memory display

Dynamic memory display is enabled by the following operation.

(8) sd (Displays or changes memory content between symbols.)

Function
This command displays or modifies the contents of memory specified by a symbol(s) such as a
program name.
Format
*sd
*1 name:name [-t]
 [-s]
 [-g]
2 strage (s,m,): {s}
 {m}
 {*}
 {*n}
 {e}
 {nothing}
*3 baddr: {addr [{-h} [{-1}]]]}
 { [{-d} [{-w}]] }}
 { [[{-b}]] }}

Press f.1.

Press f.1.

Dynamic display starts. The memory contents at addresses
specified in advance are read in successively and monitored.
During monitoring, only the f.1 key can be accepted.

Dynamic display ends. (Ordinary keys can be operated.)

10 sdebug (ONLINE DEBUGGER)

- 71 -

 { [{-f}]}
 {*n}
 {e}
*4 raddr: {addr1 [{-addr2}]}
 { [{,len}]}
 { [{,* }]}
 { [{-* }]}
 {*}
 {*n}
 {e}
0xaaaaaaaa (0x11111111) 0xdddddddd: {[0x]data}
 {nothing}
 {*n}
 {e}
Explanation
*1 name

name Name of the area to be modified or displayed
-t Specifies that the name is a program name.
-s Specifies that the name is a subprogram name.
-g Specifies that the name is a global name.
Note: If none of -t, -s, and -g is given, -g is assumed.

2 strage (s,m,)
s Specifies that the backup file be modified or displayed.
m,{nothing} Specifies that memory in the actual machine be modified or displayed.
* Specifies that both the backup file and memory in the actual machine be

modified or displayed.
*n Prompt number to return control to previous processing (only n=1 may be
 specified).
e Terminates this command.

*3 baddr
addr Address relative to the beginning of the area to be acted on.
*n Prompt number to return control to previous processing (n must be 1 or 2).
-h Specifies that data be output in hexadecimal.
-d Specifies that data be output in decimal.
-f Specifies that data be output in single-precision floating-point format.
-l Specifies that the data length be four bytes.
-w Specifies that the data length be two bytes.

10 sdebug (ONLINE DEBUGGER)

- 72 -

-b Specifies that the data length be one byte.
e Terminates this command.

*4 raddr
addr1-addr2 Specifies that data between the first address addr1 and the final address addr2 is
 displayed. (These addresses are relative to “addr” of “baddr.”)
addr1, len Specifies that as many data bytes as specified by “len” be displayed, starting
 from the address addr1. (This address is relative to “addr” of “baddr.”)
addr1,* Specifies that the data in the area indicated by a specified symbol be displayed,
 starting from the address addr1 and continuing up to the end of the area. (This
 address is relative to “addr” of “baddr.”)
addr1-* Specifies that the data in the area indicated by a specified symbol be displayed,

starting from the address addr1 and continuing up to the end of the area. (This
address is relative to “addr” of “baddr.”)

* Specifies that all data in the area be displayed.
*n Prompt number to return control to previous processing (n must be 1, 2, or 3).
e Terminates this command.
0xaaaaaaaa (0x11111111) 0xdddddddd

[0x]data New data. If it is preceded with the symbol “0x”, it is handled as hexadecimal
data.

{nothing} Specifies that none of the data be modified.
e Specifies that control be returned to *4raddr relative-address input.

Note
If both a data output format and data length are omitted, those specified by the last “md”
command take effect. By default, -h (hexadecimal) and -l (four bytes) are assumed.
This command also supports dynamic display.
For information on how to start dynamic display, see item (7) above.
No data in memory in the actual machine can be modified in units of one byte.

(9) br (Sets and displays breakpoints.)
Function
This command sets breakpoints or displays those currently set.
Format
*br [△pname△break1△......△break5]
Explanation
pname Name of the program in which to set breakpoints.
break1 to break5 Breakpoints (relative addresses in the program).

10 sdebug (ONLINE DEBUGGER)

- 73 -

Result
When breakpoints are set correctly, the following message appears:
break reset
name=program name radder=relative address in the program
object=machine language instruction code
If neither “pname” nor “break” is given, all breakpoints currently set are displayed as shown
below.

break point
name=program name radder=relative address in the program
object=machine language instruction code
*

Note
Up to five breakpoints can be set for each S10/2α. When a set breakpoint is reached, the
following message appears:

break!!
tn=task number name=program name radder=relative address in the program

If a command such as “rb,” “rd,” “rr,” or “go” fails, issue “br” without parameters to check the
status of the breakpoints. If a mismatch is found in the information on breakpoints between the
personal computer and S10/2α, change the information in the personal computer so that it
matches that in the S10/2α.

(10) rb (Removes breakpoints.)
Function
This command deletes the breakpoints currently set.
Format
*rb [△pname△break1△......△break5]
Explanation
pname Name of the program from which to delete breakpoints.
break1 to break5 Breakpoints (relative addresses in the program).
Result
If neither “pname” nor “break” is given, all breakpoints currently set are deleted. When they
are deleted correctly, the following message appears:

break reset
name=program name radder=relative address in the program
object=machine language instruction code

10 sdebug (ONLINE DEBUGGER)

- 74 -

(11) rd (Displays the contents of registers.)
Function
This function displays the contents of registers that have been existent since a breakpoint was
reached.
Format
*rd
Result
OK (0) Upon normal termination, the contents of registers are displayed as shown below.
NG (1) No breakpoint interruption is in progress.
pc=0x******** sr=0x****
d0=0x******** d1=0x******** d2=0x******** d3=0x********
d4=0x******** d5=0x******** d6=0x******** d7=0x********
a0=0x******** a1=0x******** a2=0x******** a3=0x********
a4=0x******** a5=0x******** a6=0x******** a7=0x********

(12) rr (Changes the contents of registers.)
Function
This command changes the contents of registers while a breakpoint interruption is in progress.
Format
*rr
register name [d0-d7] :data register
 [a0-a6] :address register
 [pc] :program counter
 [sr] :status register
*rx
data:datax
Explanation
rx Register abbreviation (d0 to d7, a0 to a6, pc, or sr)
datax New data
Result
OK (0) Normal termination
NG (1) No breakpoint interruption was in progress. Or, an invalid register abbreviation

was given.
NG (3) A breakpoint interruption from another terminal was in progress.
Notes
This command takes effect only when a task is halted at a breakpoint.
The high-order five bits of the status register cannot be changed. Any attempt to change these
bits is ignored.

10 sdebug (ONLINE DEBUGGER)

- 75 -

(13) go (Resumes execution from a breakpoint.)
Function
This command resumes a task from the address of a breakpoint at which the task has been halted.
Format
*go
Result
OK (0) Normal termination
NG (1) The task in which a breakpoint interruption was in progress was at a stop. Or,

the breakpoints were already deleted.
NG (2) No breakpoint interruption was in progress.
NG (3) A breakpoint interruption from another terminal was in progress.
Notes
This command takes effect only when the task is halted at a breakpoint.
If the result is NG(1), issue a “br” command with no parameters to display the breakpoints
currently set.

(14) el (Displays system errors.)
Function
This command displays the error log in memory in the S10/2α.
Format
*el
Note
For details of errors, refer to the manual supplied with CPMS.

10 sdebug (ONLINE DEBUGGER)

- 76 -

z Output format 1 (other than address errors and bus errors; for 2α)

+++ cpms cpu error (errmsg) +++

tn= task name= nno= spc= .
register data

d0= a0= sr=
d1= a1= pc=
d2= a2= ssp=
d3= a3= usp=
d4= a4=
d5= a5=
d6= a6=
d7= a7=

Example

*el
+++ cpms cpu error (standard memory protect error) +++
tn=0x80 task name=fmcdbgt nno=0x00 spc=0x0e01
register data
d0=0x00000000 a0=0x000f0c38 sr=Z
d1=0x00000001 a1=0x00001324 pc=0x00100a00
d2=0x000fa480 a2=0x00000080 ssp=0x000f8778
d3=0x2204000f a3=0x00000200 usp=0x00100f8c
d4=0x000f0c38 a4=0x00101368
d5=0x000f9220 a5=0x00101328
d6=0x000f466c a6=0x00100fdc
d7=0x00000000 a7=0x00100f8c

10 sdebug (ONLINE DEBUGGER)

- 77 -

z Output format 2 (other than address errors and bus errors; for 2α)

+++ cpms cpu error (errmsg) +++

tn= task name= nno= spc= .
register data

d0= a0= fc=
d1= a1= aa=
d2= a2= ir=
d3= a3= sr=
d4= a4= pc=
d5= a5= ssp=
d6= a6= spc=
d7= a7=

tn: Task number
task name: Task name (not displayed when tn = 0)
nno: N-coil number
spc: Sequence program counter
fc:

aa: Accessed address
ir: Instruction address
errmsg: CPU error message (See page 79.)

Function code
= 1: Instruction
= 0: Other than an instruction

4 3 2 1 0

fc I/WR/W

= 1: Read
= 0: Write

10 sdebug (ONLINE DEBUGGER)

- 78 -

z Output format 3 (for 2αE)

+++ cpms cpu error (errmsg) +++

tn= task name= nno= spc= .
register data

d0= a0= sr=
d1= a1= pc=
d2= a2= usp=
d3= a3= msp=
d4= a4= isp=
d5= a5= vo= vbr=
d6= a6= sfc= dfc=
d7= a7= carc= caar=

Formats of error-specific messages
• Exception handling interrupt after execution of an instruction; for coprocessor

insa =

• Exception handling interrupt during execution of an instruction; for coprocessor

insa =
ir =

• Short bus cycle fault

ir = ssw = ispc= ipsb=
dcfa = ir =
dbc = ir =

Error-specific message (displayed in one of the formats shown below)

10 sdebug (ONLINE DEBUGGER)

- 79 -

• Long bus cycle fault

ir = ssw = ispc= ipsb=
dcfa = ir =
dob = ir =
sba = ir = dib=
ir =

CPU error messages

No. Error message Explanation
1 bus error (Self-explanatory)
2 odd address access error Attempt to access a word or long word at an odd-

numbered address
3 illegal instruction Attempt to execute an illegal instruction
4 zero divide Attempt to execute a division instruction for

division by zero
5 privilege violation Attempt to execute a privileged instruction in user

mode
6 nesting error (Self-explanatory)
7 extension ram project error Protection error with extension RAM
8 extension ram parity error Parity error with extension RAM
9 S_mode illegal instruction Illegal instruction in S-mode
10 standard memory protect error Protection error with standard memory
11 S_ram parity error Parity error with S_RAM
12 OS_ram parity error Parity error with OS_RAM
13 wdt error Watchdog timer error
14 ssp stack fence over SSP limit exceeded
15 invalid interrupt (Self-explanatory)

Example
*el
+++ cpms cpu error (odd address access error) +++
tn=0x7c task name=pdbsend nno=0x00 spc=0x0e01
register data
d0=0x00000000 a0=0x00ff00ff fc=0x0012
d1=0x00000002 a1=0x00114ebc aa=0x00ff00ff
d2=0x00000000 a2=0x00000000 ir=0x04e75

10 sdebug (ONLINE DEBUGGER)

- 80 -

d3=0x00000201 a3=0x0011baa0 sr=Z
d4=0x00000004 a4=0x0017bb2a pc=0x001400da
d5=0c00000000 a5=0x00111ce8 ssp=0x000f8770
d6=0x00000000 a6=0x00ff00ff usp=0x0017ba50
d7=0x00000001 a7=0x0017ba50

z Output format 4 (for SVC errors)

+++ cpms cpu error (svcmsg) +++

tn= task name= macro =
register data

0= pc= usp=
sr=

svcmsg: SVC error message

No. Error message Explanation
1 SVC code error Invalid SVC code
2 parameter error Invalid parameter
3 parameter odd address error Odd-numbered address specified in a parameter

macro CODE: Macro code (displayed when the error message “SVC code error” appears)
macro name: Macro name (displayed when an error message other than “SVC code error”
 appears)

Example
*el
+++ cpms svc error (parameter error) +++
tn=0x7e task name=cvtest macro name=rleas
register data

a0=0x00000000 pc=0x00140090 usp=0x0017466c
sr=

(15) er (Clears system errors.)
Function
This command clears error information.
Format
*er
Result
OK (0) This result is always returned.

CODE
name

10 sdebug (ONLINE DEBUGGER)

- 81 -

(16) ss (Displays the system status.)
Function
This command displays the status of the system.
Format
*ss
Result
The command displays the system status in the following format:
CPU status=****
****: RUN, SIMU, or STOP

(17) st (Sets the current time.)
Function
This command sets a new current time for the current time being managed by the controller.
Format
*st
YYYY.MM.DD.HH:MT:SS: yyyy.mm.dd.hh:mt:ss
Explanation
yyyy Year (four digits of the calendar year)
mm Month
dd Day of month
hh Hours
mt Minutes
ss Seconds
Note
A new current time can be set only where an extension memory with a clock is used.

(18) gt (Displays the current time.)
Function
This command displays the current time being managed by the controller.
Format
*gt
Result
yyyy.mm.dd.hh:mt:ss
yyyy Year (four digits of the calendar year)
mm Month
dd Day of month
hh Hours
mt Minutes
ss Seconds

10 sdebug (ONLINE DEBUGGER)

- 82 -

Note
The current time can be displayed only where an extension memory with a clock is used.

(19) ld (Transfers the backup file to memory in the controller.)
Function
This command transfers the contents of the backup file to memory in the controller.
Format
*ld△ {-C}
 {-t△pname}
 {-s△sname}
 {-g△gname}
 {-a△aname}
 {-m△addr,len}
 {-T△tno}
 {-U△uno}
 {-S△sno}
 {-G△gno}
 {-f△fname}
Explanation
-C Specifies batch loading. (Batch loading is enabled only when “sdebug” with the

“initial” option specified is started.)
-t△pname Specifies that only the program specified by “pname” be loaded.
-s△sname Specifies that only the subroutine specified by “sname” be loaded.
-g△gname Specifies that only the global data specified by “gname” be loaded.
-a△aname Specifies that only the contents of the split area specified by “aname” be loaded.
-m△addr,len Specifies that loading be performed according to a specified first address (addr)

and a specified number of bytes (len).
-T△tno Specifies that “tcb” for a task number (tno) be loaded.
-U△uno Specifies that “uslcb” for a point number (uno) be loaded.
-S△sno Specifies that the indirectly linked subroutine’s address table corresponding to an

indirectly linked subroutine number (sno) be loaded.
-G△gno Specifies that the indirectly linked global data’s address table corresponding to an

indirectly linked global number (gno) be loaded.
-f△fname Specifies that the file (fname) output by the sv command be loaded.
Result
The addresses indicating the loaded range are displayed in the following format:

address:0x********-0x********

10 sdebug (ONLINE DEBUGGER)

- 83 -

Note
When an indirectly linked subroutine or indirectly linked global data is loaded, its management
table is also loaded. In addition, when a task or user built-in subroutine is loaded, the
appropriate “tcb” or “uslcb” is also loaded.
Before loading into memory in the controller, make sure that the task is in the dormant state.

(20) sv (Transfers the contents of memory in the controller to the backup file.)
Function
This command transfers the contents of memory in the controller to the backup file.
Format
*sv△ {-C}
 {-t△pname}
 {-s△sname}
 {-g△gname}
 {-a△aname}
 {-m△addr,len}
 {-f△fname}
Explanation
-C Specifies that a batch transfer be performed.
-t△pname Specifies that only the program specified by “pname” be transferred.
-s△sname Specifies that only the subroutine specified by “sname” be transferred.
-g△gname Specifies that only the global data specified by “gname” be transferred.
-a△aname Specifies that only the contents of the split area specified by “aname” be

transferred.
-m△addr,len Specifies that a transfer be performed according to a specified first address (addr)

and a specified number of bytes (len).
-f△fname Specifies that a transfer be performed to the file specified by “fname.” If this

option is omitted, a transfer to the backup file is assumed.
 If an error is detected during a transfer, the specified file is deleted, terminating the

command.
Result
The addresses indicating the address space of a transfer destination are displayed in the following
format:

address:0x********-0x********

10 sdebug (ONLINE DEBUGGER)

- 84 -

(21) cm (Compares the backup file with the contents of memory in the controller.)
Function
This command compares the backup file with the contents of memory in the controller.
Format
*cm△ {-C}
 {-t△pname}
 {-s△sname}
 {-g△gname}
 {-a△aname}
 {-m△addr,len}
 {-f△fname}
Explanation
-C Specifies that a batch comparison be performed.
-t△pname Specifies that only the program specified by “pname” be compared.
-s△sname Specifies that only the subroutine specified by “sname” be compared.
-g△gname Specifies that only the global data specified by “gname” be compared.
-a△aname Specifies that only the contents of the split area specified by “aname” be

compared.
-m△addr,len Specifies that a comparison be performed according to a specified first address

(addr) and a specified number of bytes (len).
-f△fname Specifies that a comparison be performed between the file specified by “fname”

and memory in the controller. (Only the file specified by “sv” command may be
used.)

 If this option is omitted, a comparison with the backup file is assumed.
 A file format that can be specified is the same as for the “ld” command (i.e., the

a.out file format).
Result
• Upon normal comparison, the address range is displayed in the following format:

address:0x********-0x********
++ compare OK +++

• If any discrepancy is found during comparison, the unlike data is displayed in units of two
bytes(word).
address:0x********-0x********
address=0x******** memory data=0x**** backup data=0x****

10 sdebug (ONLINE DEBUGGER)

- 85 -

(22) dr and ds (Enable or disable DHP recording.)
Function
These commands are started by “sdebug” and toggle between DHP recording enable mode and
DHP recording disable mode.
Format
*dr{-a}
*ds
Explanation
dr Enters DHP recording enable mode.
-a Records detailed DHP information.
ds Enters DHP recording disable mode.

(23) ver (Displays version information.)
Function
This command displays the version number and revision number of CPMS.
Format
*ver
Result
CPMS 3.0

(24) smd (Displays or modifies the contents of all areas in memory.)
Function
This command displays or modifies the contents of all areas in memory in the actual machine,
without checking the specified address range. The command also accepts an address range
which would otherwise result in an access error.
Format
*smd
The subsequent format is the same as that of the “md” command, which displays or modifies the
content of the memory area specified by addresses, except that the target to be accessed is not
specified by “strage.”
Notes
• Accessing memory in the CPU using the “smd” command will affect the operation of the CPU.

Be sure to understand fully the functions of the S10/2α before using this command. (Do not
access memory carelessly.)

• This command has an effect only when the “sdebug” command with the -debug option
specified has been initiated. In any other case, the command will result in an error.

10 sdebug (ONLINE DEBUGGER)

- 86 -

(25) help (Displays a debugger menu.)
Function
This command lists the commands supported by “sdebug.”
Format
*help
Explanation
This command displays the abbreviations of the “sdebug” commands apnd provides a brief
description of those commands, as shown below.

<Command> <Function>
 qu ⋅⋅⋅⋅⋅ task queue
 ab task abort
 re task release

When <next> appears, press any key to view the subsequent text.

(26) q (Terminates the debugger.)
Function
This command terminates the debugger. If breakpoints are set, the command displays them and
prompts the user to make a key input.
Format
*q
Note
When a message indicating breakpoints are set appears, execute the “rd” or “go” command to
delete them. Then, reissue this command.

(27) ! (Executes an MS-DOS command.)
Function
This command enables the user to use an MS-DOS command during execution of “sdebug.”
Format
*![MS-DOS command]

10 sdebug (ONLINE DEBUGGER)

- 87 -

10.3 sdhp (Displays CPMS trace information.)

Function
This command displays CPMS trace information, called the debugging helper (DHP). It can
be started alone or from “sdebug.”
Format
sdhp [△option]

DHP for one screen is displayed.

{p}
{-}
{nothing}
{q}

Options
-f△file Name of the file to store the displayed DHP.
-u△site Name of the site to be acted on. If this option is omitted, processing is

performed on the default site set in advance.
-o△file Name of the file to store the image data being displayed on the screen. (*)
 If a file having the same name as specified is already existent, it is deleted and a

new file is created under the specified name.
Explanation
p,nothing Displays the next page.
- Displays the previous page.
q Terminates the displaying of DHP.
The items displayed by “sdhp” are explained below.

0x0000 ad dr xx xx xx xx* xx xx xx xx xx xx xx xx xx xx
0x0010 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
0x0020 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

0x0070 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx
ad dr: Relative address of the oldest data
*: Delimiter between the oldest data and newest data
xx: DHP in hexadecimal
(*) If this command is started with the -o option given to the “sdebug” command, and the

file name specified by that -o option is the same as the one specified by the -o option of
this command, then integrity of the file contents is unpredictable.

Note: For DHP, refer to the manual supplied with CPMS.

∼
∼

⋅⋅⋅⋅

⋅⋅⋅⋅

10 sdebug (ONLINE DEBUGGER)

- 88 -

10.4 srpl (Loads programs.)

Function
This command loads all C programs into an actual machine.
Format
srpl [△option]
Option
-u△site: Name of the site to be acted on. If this option is omitted, processing is

performed on the default site set in advance.
Explanation
To stop the CPU, the user should operate the key switch on the controller.
Operate it as instructed by messages displayed on the screen.

11 MANAGEMENT TOOLS

11 MANAGEMENT TOOLS

- 90 -

11.1 smap (Displays map information.)

Function
This command lists various information items managed and maintained by the allocator.
Format
smap [△[option]⋅⋅⋅]
Options
-a Lists split area information.
-e Lists secondary partition area information.
-g Lists global area information.
-p Lists program information.
-s Lists subprogram information.
-t Lists task information.
-u△site Name of the site to be acted on. If this option is omitted, processing is

performed on the default site set in advance.
+a Lists information in the order of addresses.
+g△name Lists information on the specified name.
+n Lists information in the alphabetical and numerical order of names.

Table 11-1 shows the allowed combinations of options. Information displayed by the
“smap” command is described in items (1) to (7) below.

11 MANAGEMENT TOOLS

- 91 -

Table 11-1 Permitted Combinations of Options

+ options - options No. What is displayed
g a n g a e p s t

1 Hierarchy map for a specified “garea” 0 0 0
2 Hierarchy map for a specified “area” 0 0 0
3 Entire hierarchy map for a specified “garea” 0 0 0 0

4 Hierarchy map for a specified “garea” in the order
of addresses 0 0 0 0

5 Hierarchy map for a specified “area” in the order
of addresses 0 0 0 0

6 Entire hierarchy map for a specified “garea” in the
order of addresses 0 0 0 0 0

7 Hierarchy map for a specified “garea” in the order
of names 0 0 0 0

8 Hierarchy map for a specified “area” in the order
of names 0 0 0 0

9 Entire hierarchy map for a specified “garea” in the
order of names 0 0 0 0 0

10 List of requested information on a specified name 0 (01 0 0 0 0 0)

11 List of requested information in the order of
addresses 0 (02 0 0 × × ×)

12 List of requested information in the order of names 0 (03 0 0 0 0 0)
13 All lists of requested information (04 0 0 0 0 0)

01: Select one of the options marked “0” in parentheses.
02: Specify the options marked “0” in parentheses. Options marked “×” may not be specified.
03: Specify 0 to 6 options marked “0” in parentheses.
04: Specify 0 to 6 options marked “0” in parentheses.

Nothing needs to be specified in blank fields.
If all options other than “-u” are omitted, all the lists are output in the order of addresses for “garea,”
“area,” and “sarea.” For programs and subprograms, the lists are output in the order of names; and
for tasks, they are output in the order of task numbers.

(1) Global area map

** allocator map ** site=site name

day mon dd hh:mm:ss yyyy

<garea>

 gname paddr lsn laddr uno saddr size

it /gggggggg/ bbbbbbbb cccc/ llllllll uuuu/ oooooooo jjjjjjjj

** map end **

11 MANAGEMENT TOOLS

- 92 -

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Type (o: os, t: task, s: subprogram, r: read-only global data, w: read/write global data,

 a, c: global data with or without initial values for the device connected to system bus,
 x: extension memory after site extension)

g: “garea” name
b: Physical address (relative address in site backup file, “{*******” when type is b or d)
c: Logical space number (*)
l: Logical address
u: Unit address (unit number of the auxiliary storage device; “{***” when the system has only

main memory installed)
o: Sector address (sector address of the auxiliary storage device; “{*******” when the system

has only main memory installed)
j: Size (in bytes)
(*) The logical space number is represented by the position of dedicated bits. (For example, the

bits correspond to LS0, LS1, and so on, starting from the MSB, and the LSB corresponds to
LS15.) In this system, LS0 is always used.

 When the bit is set: Existent in the LS
 When the bit is reset: Nonexistent in the LS

(2) Split area map

** allocator map ** site=site name

day mon dd hh:mm:ss yyyy

<area>

 gname/aname raddr size lsn laddr uno saddr

itkff/gggggggg/aaaaaaaa/rrrrrrrr/jjjjjjjj cccc/llllllll uuuu/oooooooo bbbbbbb

bbbbbbb

** map end **

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Type (o: os, t: task, s: subprogram, r: read-only global data, w: read/write global data,

a, c: global data with or without initial values for the device connected to system bus,
b, d: global data without initial values for the device connected to system bus,
x: extension memory after site extension)

k: Area type (p: program, s: subprogram, d: global data with initial values, w: global data
 without initial values)

f: “ipl” flag (*1)
g: “garea” name

11 MANAGEMENT TOOLS

- 93 -

a: “area” name
r: Relative address (byte address indicating the position of the split area relative to the

beginning of the global area)
j: Size
c: Logical space number (*2)
l: Logical address
u: Unit address (*3) (unit number of the auxiliary storage device; “{{{{” or “{***” when the
 system has only main memory installed)
o: Sector address (*3) (sector address of the auxiliary storage device; “{{{{{{{{” or

 “{*******” when the system has only main memory installed)
b: Backup file name
(*1)

rp = 1: Start on powering up
rc = 1: IPL start
rl = 1: Restart
In this system, these bits are fixed as follows:
rp = 0
rc = 0
rl = 0

(*2) The logical space number is represented by the position of dedicated bits. In this system,
LS0 is always used. (For example, the bits correspond to LS0, LS1, and so on, starting
from the MSB, and the LSB corresponds to LS15.)

 When the bit is set: Existent in the LS
 When the bit is reset: Nonexistent in the LS
(*3) “{{⋅⋅⋅{” is displayed when the split area is allocated by the “sdfa” command. When the

area is allocated by another command, “{**⋅⋅⋅*” is displayed.

(3) Secondary partition area map

** allocator map ** site=site name

day mon dd hh:mm:ss yyyy

<sarea>

 gname/aname/sname raddr size lsn laddr uno saddr

 ext-name

d itk /gggggggg/aaaaaaaa/ssssssss/rrrrrrrr/jjjjjjjj cccc/llllllll uuuu/oooooooo

vvvv/eeeeeeee[yyyy/mn/dd hh:mm:ss yyyy/mn/dd hh:mm:ss yyyy/mn/dd hh:mm:ss]

** map end **

0 7

rl rc rp Not used

① (*3) ② (*3) ③ (*3)

11 MANAGEMENT TOOLS

- 94 -

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
d: Loaded state (△: loaded into actual machine, *: loaded into backup file, @: not loaded into

either)
i: Mode (s: system, u: user)
t: Type (o: os, t: task, s: subprogram, r: read-only global data, w: read/write global data,
 a, c: global data with or without initial values for the device connected to system bus,
 b, d: global data without initial values for the device connected to system bus,

x: extension memory after site extension)
k: Area type (p: program, s: subprogram, d: global data with initial values, w: global data

 without initial values)
g: “garea” name
a: “area” name
s: “sarea” name
r: Relative address (byte address indicating the position of the secondary partition area

relative to the beginning of the split area)
j: Secondary partition area size (in bytes)
c: Logical space number (*1)
l: Logical address
u: Unit address (*2) (unit number of the auxiliary storage device; “{{{{” or “{***” when
 the system has only main memory installed)
o: Sector address (*2) (first sector address of the secondary partition area when the area is

 non-resident; first sector address of the split area when the area is
 resident; or “{{{{{{{{” or “*******” when the system has only main
 memory installed)
v: Number of characters of an external name
e: External name (variable length)
yyyy, year; mn, month; dd, day; hh, hours; mm, minutes; ss, second (*3)
(*1) The logical space number is represented by the position of dedicated bits. (For examples,

the bits correspond to LS0, LS1, and so on, starting from the MSB, and the LSB
corresponds to LS15.) In this system, LS0 is always used.

 When the bit is set: Existent in the LS
 When the bit is reset: Nonexistent in the LS
(*2) “{...{” is displayed when the split area is allocated by the “sdfa” command. When the area

is allocated by another command, “{*...” is displayed.

11 MANAGEMENT TOOLS

- 95 -

(*3) ① Date and time of loading into the backup file. (Date and time of execution of “sdfs”
 for global data without initial values; data and time of execution of “sload” in other
 cases. If no “sload” is executed after “sdload,” “△⋅⋅⋅⋅⋅⋅ △” is displayed.)
② Date and time of loading into the actual machine. (Date and time of execution of

“debug ld.” If no “ld” is executed, “△⋅⋅⋅⋅⋅⋅ △” is displayed.)
③ Date and time of saving data in the actual machine. (Data and time of execution of

“debug sv.” If no “sv” is executed, “△⋅⋅⋅⋅⋅⋅ △” is displayed.)

(4) Secondary partition area map (for VAL)

** allocator map ** site=site name
day mon dd hh:mm:ss yyyy

<sarea>

ext-name vl name

itk/{{/{{/{{/ ll/vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

{{{{/{{{{{{{{ {{{{/{{{{{{{{ nnnn

/e⋅⋅⋅⋅⋅⋅⋅⋅⋅e
** map end **

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Value classification (e: value)
k: Value type (v: value)
l: Value length (number of bytes in the value)
v: Value
n: Number of characters of an external name
e: External name (variable length)

(5) Program map

** allocator map ** site=site name
day mon dd hh:mm:ss yyyy

<program>

 rmtn text data bss stack twork lsn laddr(cbn) sp

 uno saddr ldmid pgm-name

itary q/kkkk mmmmmmmm dddddddd bbbbbbbb wwwwwwww eeeeeeee cccc/hhhhhhhh/zzzzzzzz

 uuuu/oooooooo nnnn/l⋅⋅⋅l vvvv/p⋅⋅⋅p
** map end **

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Type (o: operating system, t: task)
a: Absolute classification (a: absolute, r: relocatable)

11 MANAGEMENT TOOLS

- 96 -

r: Reentrant classification (r: reentrant, n: non-reentrant)
y: Overlay classification (o: overlay; s: simple)
q: Task classification (c: already created, d: not already created)
k: Point number (*1) (ulsub), registration number (irsub), or subprogram; “{***” for others
m: Procedure length
d: Data length
b: bss length
w: Stack length
e: Task work area length
c: Logical space number (*2)
h: First address in the program
z: Last address in the program + 1 (stack pointer)
u: Unit address (unit number of the auxiliary storage device; “{{{{” when the system has
 only main memory installed)
o: Sector address (sector address of the auxiliary storage device; “{{{{{{{{” when the

 system has only main memory installed)
n: Number of characters of a load module name
l: Load module name (variable length)
v: Number of characters of a program name
p: Program name (variable length)
(*1) The point number is represented by the position of dedicated bits. (For example, the bits

correspond to point number 1, point number 2, and so on, starting from the MSB, and the
LSB corresponds to point number 16.)
When the bit is set: Registered at the point.
When the bit is reset: Not registered at the point.

(*2) The logical space number is represented by the position of dedicated bits. (For example,
the bits correspond to LS0, LS1, and so on, starting from the MSB, and the LSB
corresponds to LS15.) In this system, LS0 is always used.

 When the bit is set: Existent in the LS
 When the bit is reset: Nonexistent in the LS

11 MANAGEMENT TOOLS

- 97 -

(6) Subprogram map

** allocator map ** site=site name

day mon dd hh:mm:ss yyyy

<sub program>

 rmtn text data bss stack lsn laddr sp uno

saddr ldmid sub-name

itary q/kkkk mmmmmmmm dddddddd bbbbbbbb wwwwwwww cccc/hhhhhhhh/zzzzzzzz uuuu/ooo

ooooo nnnn/l⋅⋅⋅l vvvv/p×××p
** map end**

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Type (o: operating system, s: subprogram)
a: Absolute classification (a: absolute, r: relocatable)
r: Reentrant classification (r: reentrant, n: non-reentrant)
y: Overlay classification (o: overlay; s: simple)
q: Subprogram (u: user built-in subroutine, i: indirectly linked subprogram, r: resident

 subprogram)
k: Point number (*1) (ulsub), registration number (irsub), or subprogram; “{***” for others
m: Procedure length
d: Data length
b: bss length
w: Stack length
c: Logical space number (*2)
h: First address in the program (main memory address)
z: Last address in the program + 1 (main memory address)
u: Unit address (unit number of the auxiliary storage device; “{{{” when the system has

only main memory installed}
o: Sector address (sector address of the auxiliary storage device; “{{{{{{” when the system

has only main memory installed)
n: Number of characters of a load module name
l: Load module name (variable length)
v: Number of characters of a subprogram name
p: Subprogram name (variable length)

11 MANAGEMENT TOOLS

- 98 -

(*1) The point number is represented by the position of dedicated bits. (For example, the bits
correspond to point number 1, point number 2, and so on, starting from the MSB, and the
LSB corresponds to point number 16.)
When the bit is set: Registered at the point.
When the bit is reset: Not registered at the point.

(*2) The logical space number is represented by the position of dedicated bits. (For example,
the bits correspond to LS0, LS1, and so on, starting from the MSB, and the LSB
corresponds to LS15.) In this system, LS0 is always used.

 When the bit is set: Existent in the LS
 When the bit is reset: Nonexistent in the LS

(7) Task map

** allocator map ** site=site name

day mon dd hh:mm:ss yyyy

<task>

tn rmtn tname lvl eid s wdl pgm-name

i tttt mmmm ssssssss fru ll ee gg wwww nnnn p⋅⋅⋅p

day: day of week, mon: month, dd: day, hh: hours, mm: minutes, ss: seconds, yyyy: year
i: Mode (s: system, u: user)
t: Task number
m: Multi-task number (stack position of the stack when a multi-task is used; “0000” in other

 cases)
s: Task name
f: Refreshable classification (s: serial or reusable, r: refreshable)
r: Resident classification (r: resident, n: non-resident)
u: Saving (When the task is non-resident: s: saved task, n: non-saved task. When the task is

 resident: [blank space])
l: Task level
e: Error ID
g: Saved group number (“**” when the task is non-resident and not saved; “00” when the task

 is resident)
w: Watchdog timer
n: Number of characters of a program name
p: Program name (variable length)

11 MANAGEMENT TOOLS

- 99 -

11.2 sirmap (Displays indirectly linked map information.)

Function
This command displays map information on indirectly linked subprograms or indirectly linked
global data.
Format
sirmap [△option]
Options
-g: Specifies that indirectly linked global data should be acted on.
-s: Specifies that indirectly linked subprograms should be acted on.
 Both -g and -s may not be omitted.
-u△site Name of the site to be acted on. If this option is omitted, processing is

performed on the default site set in advance.
Output result
< op no, list site (site name)>
irno= irno name= name la= daddr (salname + offset)
 op Distinction between indirectly linked global data (irglobal) or indirectly linked

subprogram (irsub)
 irno Registration number of an indirectly linked global data or indirectly linked

subprogram
name Name of an indirectly linked global data or indirectly linked subprogram
 taddr First address
 salname External name registered by the allocator
 offset Offset from an external name registered by the allocator
Note
“salname” is displayed only when the -s option is specified in the “sirbld” command to
register an indirectly linked subprogram or indirectly liked global data. “offset” is displayed
only when the -a option is specified for the same purpose.

11 MANAGEMENT TOOLS

- 100 -

11.3 sadm (Displays the name corresponding to an address.)

Function
This command displays the name and other information corresponding to a specified logical
address.
Format
sadm [△option]
++ address information display start → site (site name) ++
*addr: {addr}
 {q}
+++ address information display end ++
Explanation
addr Address from which to get information
q Terminates this command.
Options
-u△site Name of the site to be acted on. If this option is omitted, processing is

performed on the default site set in advance.
-o△file Name of the file to which to output the operation result
The information displayed by “sadm” is explained below.
name=xxxxxxxx type=xxx raddr=xxxxxxxx
or
gname=xxxxxxxx external name is not defined
name External name (sarea, program, subprogram) including the specified address
type Attribute of the external name
 data: sarea (global data)
 pgm: Program
 sub: subprogram
raddr Address relative to the beginning of the area identified with the external name
gname “garea” name containing the specified address -- only when no such external name is

defined.
Note
If this command is started in “sdebug,” and the -o option is specified in both “sdebug” and
“sadm,” then the output file may be destroyed. When starting “sadm” in “sdebug” with the
-o option specified, do not specify the -o option in “sadm.”

12 MEMORY MAP

12 MEMORY MAP

- 102 -

12.1 HITACHI S10/2α Memory Map

Address
/000000

System
table

OS-ROM
/010000

SQET
(LPET) System

hardware
area Data register,

DW000 to DWFFF
(4 k words)

T000 to T1FF
U000 to U07F

Sequence
RAM

C000 to C07F

PI/O
bit type

Ladder
program area
(28 k steps)

PI/O
word type

OS
RAM

Extension memory I
(1 MB)

Extension memory
for use in processing

by the computer

Extension memory II
(1 MB)

Extension memory
for use in processing

by the computer

/060000

/080000

/0A0000

/0C0000

/0E0000

/0F0000

/0FFFFE

/100000

/1FFFFE

/200000

/2FFFFE

Address
LSB MSB

/060000

/060BF0

/061000

/063000

/063400

/063600

/063800

/07FFFE

/0F0000

/0F0400

/0F0600

Se
tti

ng
s

U000 to U07F
C000 to C07F C

ou
nt

s T000 to T1FF

12 MEMORY MAP

- 103 -

12.2 PI/O Bit Form Area

� This memory area is accessed on a word form (1 word = 2 bytes).
� In this memory area, only the LSB (least significant bit) is available.
� The byte (8-bit) form is used for addressing this memory area.

<Example of byte addressing>

Symbol Address
X000 /0A0000
X001 /0A0002
X002 /0A0004
X003 /0A0005

X00E /0A001C
X00F /0A001E

/0A0000

/0A2000

/0A4000

/0A6000

/0B8000 /0B0000/0A8000

/0B8800

/0B9000 /0B2000

/0BA000
/0B3000
/0B2800

/0B3800

/0B4000

/0BC000 /0B4800

/0B5000

/0BE000
/0B5800
/0B6000

/0BE800 /0B6800

/0B7000

/0B7800

/0AA000

/0AC000

/0AE000

Address Address Address Address

X000 and later
Contacts

Reserved for
the system

Y000 and later
Contacts, coils

Reserved for
the system

N000 to NOFF
Contacts, coils

N000 to NOFF
For master control

K000 and later
Contacts, coils

G000 and later
Contacts, coils

P001 to P080
Contacts, coils

T000 and later
Coils

Reserved for the system

T000 and later
Contacts V000 and later

Contacts Reserved for the system

U000 and later
Coils

U000 and later
Previous coil values E000 and later

Contacts
U000 and later

Contacts

Reserved for the system

Z000 and later
Contacts, coils

CU000 and later
Up coils

CD000 and later
Down coils

S000 and later
Contacts

C000 and later
Contacts

CR000 and later
Reset coils

Reserved for
the system

R000 and later
Contacts, coils

Reserved for
the system

⋅⋅⋅

LSB MSB
20 28 27 215

:Available bit

Lower byteUpper byte

⋅⋅⋅

1 word

12 MEMORY MAP

- 104 -

12.3 PI/O Word Form Area

� This memory area is accessed on a word form (1 word = 2 bytes).
� The byte (8-bit) form is used for addressing this memory area.

<Example of byte addressing>

Symbol Address
XW000 /0E0000
XW001 /0E0002
XW002 /0E0004
XW003 /0E0005

XW00E /0E001C
XW00F /0E001E

<Correspondence between word and bit>

 XW000 /0E0000 X000 X001 X002 X003 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ X00D X000E X00F

 XW010 /0E0002 X010 X011 X012 X013 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ X01D X01E X01F

/0E1300

/0E0000

/0E0200

/0E0400

/0E0500

Address

XW000 and
later

Contacts

Reserved for
the system

YW000 and
later

Contacts, coils

Reserved for
the system

/0E0800

/0E0A00

/0E0C00

/0E0E00

Address

GW000 and
later

Contacts, coils

Reserved for
the system

RW000 and
later

Contacts, coils

Reserved for
the system

/0E1000

/0E1280
/0E1200

/0E1400
/0E1380

/0E1480
/0E1500

/0E1580
/0E1600

/0E1700
/0E1680

/0E1780

Address

KW000 and later
Contacts, coils

UW000 and later
Contacts

Not used

Not used

Not used
Not used

EW000 and later

Contacts, coils

ZW000 and later
Contacts, coils

SW000 and later
Contacts

/0E1800

/0E1880
/0E1900

/0E1A00

/0E1C00

/0E1E00

/0E1E80

Address

NW000 and later
Contacts, coils

PW000 and later
Contacts, coils

TW000 and later
Contacts

Reserved for the system

Reserved for the system

Not used

Not used

Not used

Not used

CW000 and later
Contacts

Not used

MSB LSB

20 215

2028 27 215

Lower byteUpper byte

1 word

⋅⋅⋅

⋅⋅⋅

LSBMSB

12 MEMORY MAP

- 105 -

12.4 User Work Area

� This memory area is accessed on a word form (1 word = 2 bytes).
� The byte (8-bit) form is used for addressing this memory area.

<Example of byte addressing>

D register F register
(1 point equal to the length of 1 word) (1 point equal to the length of 1 word)

/062FFE

/061000 /0E2000

/0E37FE

D register

function data
register

DW000 to DWFFF

F register

function work
register

FW000 to FWBFF

LSB MSB LSB MSB
Symbol Address Symbol Address
DW000 /061000 FW000 /0E2000
DW001 /061002 FW001 /0E2002
DW002 /061004 FW002 /0E2004
DW003 /061006 FW003 /0E2005

DWFFE /062FFC FWSFE /0E37FC
DWFFF /062FFE FWBFE /0E37FE

215 20 28 27

Upper
byte

Lower
byte

215 20 28 27

Upper
byte

Lower
byte

1 word 1 word

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIXES

APPENDIXES

- 108 -

APPENDIX A LIBRARIES

A.1 Conditions for specifying libraries

Libraries specified in a command are accepted only when the conditions shown in Table A-1
are fulfilled.

Table A-1 Conditions for Specifying Libraries

Condition Library name Remarks

Created program uses
CPMS macros. cpms.lib Refer to the CPMS

General Description.

Indirectly linked
addresses are referenced. irad.lib

See “A. 3 Indirectly
linked address reference
subroutines,” below.

An Indirectly linked
subroutine is referenced. site name.lib

A library specific to the
user is used. User library name

A.2 Order of specifying libraries

When using “sload” with library references, note the following points:
• Specify a library containing common subroutines later as far as possible.
• If some of the libraries specified contain the same name, specify before any other library the

one that contains the object file the user wants to link.

A.3 Indirectly linked address reference subroutines

A.3.1 irglbad

Function
This subroutine fetches the global address value corresponding to a specified indirectly linked
table number.
Format
int no;
int *irglbad (no)
Result
• When “no” is within the range of 1 to the maximum number, the corresponding global

address is returned.
• When “no” is 0, the address of the global address management table is returned.

 APPENDIXES

- 109 -

A.3.2 irsubad
Function
This subroutine fetches the subroutine address value corresponding to a specified indirectly
linked subroutine number.
Format
int no;
int *irsubad (no)
Result
• When “no” is within the range of 1 to the maximum number, the corresponding subroutine

address is returned.
• If the subroutine having a specified number is not yet loaded, a 0 is returned.

APPENDIX B NAMES AND STATEMENTS USABLE IN PROGRAMS

This chapter describes three restrictions that apply to programming in C language, assembly language,
and other programming languages.
These restrictions are as follows:
• Reserved names of each programming language
• Statements that cannot be used in other operating systems
• Same names as subprograms provided by the system

B.1 Reserved names

Reserved names are those symbolic names which are set aside for special purposes according to
the syntax of a programming language. No reserved names can be used for purposes other
than the specified.

B.1.1 Assembly language
In assembly language, the user cannot use symbolic names contained in machine language
instructions and assembly language instructions.
For the usable names, refer to the manual supplied with the crossing C compiler.

B.1.2 C language
The user cannot use symbolic names reserved according to the syntax of the C language. For
these names, refer to the manual supplied with the crossing C compiler.

B.1.3 Reserved names in other programming languages
For the reserved names in each programming language other than the above, refer to the
manual describing it.

APPENDIXES

- 110 -

B.2 Unusable statements
In CPMS, some statements that are used in other operating systems cannot be used in C
standard functions.

B.2.1 Assembly language
In assembly language, there are no restrictions applied to the use of statements that are used in
other operating systems.

B.2.2 C language
Functions that are used as system calls or I/O functions cannot be used.

B.3 Names used in the system

Users should be careful when using programs identified with the same name as that of a
subroutine provided as standard in the system. All the subroutines provided as standard are
contained in library files. If a user program to be used has the same name as a system
subroutine, specify as the command file (-f option of sload) the object file in which the user
program is defined. Otherwise, the subroutine stored in the library file under the same name is
linked.
Listed below are the library files of the system and the names defined therein. In
programming, take care so that names do not duplicate already defined names. If it is
unavoidable to use a duplicate name, specify the object file to be linked and then the library file.
This prevents a linkage with the subroutine from the library file.
Table B-1 lists subroutines provided in the system. (Subroutine names reserved for future
extension are also listed in the table.)

Names defined in the cpms.lib file (Each attribute is folowed by a name.)
T abort T chap T chmod T ctime T cwake
T deley T exit T free T gfact T gtime
T mvmem T queue T rleas T rserv T sfact
T stime T timer T uspchk
(*) T: Name defined in the text section.

 APPENDIXES

- 111 -

APPENDIX C RECOVERY FROM FAILURES BY THE SYSTEM MANAGER

z Eliminating discrepancies

The allocator keeps the history of a series of file accesses in the “wkcb.a” file (allocator work area
control block) in the work directory (allocator work directory). In addition, the user can learn
whether a series of file accesses is completed by checking whether the “cmpf.a” file is present.
When a utility that accesses the file managed by the allocator causes either of the following
allocator errors, correct the error by performing the procedure shown below.
Errors that must be eliminated
• Error number 0003
• Error number 0004
• Error number 0005
• Error number 0007
Procedure for error recovery

>cd C:\HITACHI\ALC
>dir site name
>dir site name\work

>cd site name\work
>type wkcb.a

Is the cmpf.a file
present in the work
directory?

No

Yes

Delete all files, except cpms.map,
from the work directory.

Perform operation by referring to the
history stored in the wkcb.a file.

Delete all files, except cpms.map,
from the work.a directory.

APPENDIXES

- 112 -

Structure of the work directory
The following variables are supported as “wkcb.a” structures:
• cf. path name
• df. path name
• cd. path name
• dd. path name
Explanation
(1) cf. path name

This path name indicates that the file specified by the path name will be created. The file to
be created is prepared in a completed form in the work directory. Re-link the file to the
location specified by the path name. If the file is not prepared in the work directory, it
indicates that the file is already re-linked.

(2) df. path name
Delete the file specified by the path name. If no such file is existent, this indicates that the
file is already deleted.

(3) cd. path name
Create a directory as specified by the path name. If such a directory is existent, this indicates
that one is already created.

(4) dd. path name
Delete the directory specified by the path name. If no such directory is existent, this
indicates that the directory is already deleted.

Example
cf. C:\HITACHI\ALC\PCS01\EMF\SALMT.A

Operation
Execute DIR. If “SALMT.A” is found in C:\HITACHI\ALC\PCS01\WORK, execute the
following:
CD△C:\HITACHI\ALC\PCS01\WORK
COPY△SALMT.A△..\EMF
DEL△SALMT.A
DEL△WKCB.A

 APPENDIXES

- 113 -

APPENDIX D SITE MANAGEMENT FILES

The directory containing site management files has a structure as shown below.

(*1)

1

2

16

5

6

(*2)

(*3)

17

C:\ hitachi site namealc emf galmt.a

alcmt.a

tskmt.a

salmt.a
7

8

9

10

submt.a

pgmmt.asysdef

* .a

sysmt.a

ctcb.a

tcb.a

uslcb.a

12

13

14

11

sysbus.a
18

15

usalmt.lib

ssalmt.lib 19

usubmt.lib

ssubmt.lib

20

21

3ir$s.map
4

ir$g.map

work

RPDP commandbins10 c

fodu lib site name.lib

22
cpms.lib

irad.lib 23

sgen

srpl

sgeneh

ms-dos

s10hosts

rpdps10_ver
26

25

site
24

Batch address
definition file

Initial data for
system generation

Initial data for
system generation

(*1) Defined by an environment
variable RSSDIR

(*2) Defined by an environment
variable FX_LIB_DIR

(*3) Defined by an environment
variable FODUDIR

APPENDIXES

- 114 -

Table D-1 Site Management Files (1/2)

No. Abbreviation Name Contents Initial setting Read Write
1 area name.A Backup file Backup copy of

main memory or
extension
memory

sdfa “scomp” and
“sdebug”
commands

Load this file with the
“sload,” “sctask,”
“sdtask,” or “sbuild”
command.

2 sysdef Site
information
definition file

Input data for the
“sgen” command
(other than the
site name).

Created by the
“sgen”
command.

“ssi”
command

Register an additional
system bus card with the
“sgen” command.

3 ir$s.map “irsub” map
information file

“isrub” map
information

Created by the
“sirbld”
command.

“sirmap”
command

Edit the file with the
“sirbld” command.

4 ir$g.map “irglobal” map
information file

“irglobal” map
information

Created by the
“sirbld”
command.

“sirmap”
command

Register the file with the
“sirbld” command.

5 galmt.a “garea”
management
file

“garea”
management
information

Created by the
“sgen”
command.

“smap”
command

Register an additional
system bus card with the
“sgen” command.

6 alcmt.a “area”
management
file

“area”
management
information

Created by the
“sgen”
command.

“smap”
command

Use the “sdfa” or “sdla”
command to register or
delete the file.

7 salmt.a External
(“sarea,”
program,
subprogram,
and VAL)
name
management
file

External name
management
information

Created by the
“sgen”
command.

“smap,”
“sload,” and
“scomp”
commands

Use the “sdfs,” “sdls,”
“sdfv,” “sdlv,” “sload,”
or “sdload” command to
register or delete the file.

8 submt.a Subprogram
management
file

Subprogram
management
information

Created by the
“sgen”
command.

“scomp,”
“smap,” and
“sload”
commands

Use the “sload,”
“dload,” “sbuild,” or
“dbuild” command to
register or delete the file.

9 pgmmt.a Main program
management
file

Main program
management
information

Created by the
“sgen”
command.

“scomp,”
“load,” and
“smap”
commands

Use the “sload,”
“sdload,” “sctask,” or
“sdtask” command to
register or delete the file.

10 tskmt.a Task
management
file

Task
management
information

Created by the
“sgen”
command.

“smap”
command

Use the “sctask” or
“sdtask” command to
register or delete the file.

11 sysmt.a System
management
file

System
management
information

Created by the
“sgen”
command.

All allocator
commands

12 ctcb.a Task control
block for the
actual machine

Task control
block loaded into
the actual
machine

Created by the
“sgen”
command.

 Use the “sctask” or
“sdtask” command to
register or delete the file.

13 tcb.a Task control
block for
development

Control block to
display maps

Created by the
“sgen”
command.

“smap”
command

Use the “sctask” or
“sdtask” command to
register or delete the file.

14 uslcb.a User built-in
subroutine
control block

User built-in
subroutine
control block

Created by the
“sgen”
command.

“sbuild” and
“sdbuild”
commands

Use the “sbuild” or
“sdbuild” command to
register or delete the file.

 APPENDIXES

- 115 -

Table D-1 Site Management Files (2/2)

No. Abbreviation Name Contents Initial setting Read Write
15 sysbus.a System bus card

management file
System bus card
management
information

Created by the
“sgen”
command

“sgen”
command

Register the file with
the “sgen” command.

16 work Work directory Work files are
created during
command
execution. Upon
normal
termination, these
files are deleted.

Created by the
“sgen”
command.

17 site name.lib Library to link
“irsub”

 Created by the
“sirbld”
command.

 Register or delete the
file with the “sirbld”
command.

18 usalmt.lib Library to define
user “sarea” and
“value”
addresses

Module to define
the addresses of
“sarea” and
“value” resources
for which the user
type is “user”

“sdfs” and
“sdfv”
commands

“sload”
command

Use the “sdfs,”
“sdls,” “sdfv,” or
“sdlv” command to
register or delete the
file.

19 ssalmt.lib Library to define
system “sarea”
and “value”
addresses

Module to define
the addresses of
“sarea” and
“value” resources
for which the user
type is “system”

“sdfs” and
“sdfv”
commands

“sload”
command

Use the “sdfs,”
“sdls,” “sdfv,” or
“sdlv” command to
register or delete the
file.

20 usubmt.lib Library to define
user subprogram
addresses

Module to define
the addresses of
subprograms for
which the user type
is “user”

“sgen”
command

“sload”
command

Use the “sload” or
“sdload” command to
register or delete the
file.

21 ssubmt.lib Library to define
system
subprogram
addresses

Module to define
the addresses of
subprograms for
which the user type
is “system”

“sload”
command

“sload”
command

Use the “sload” or
“sdload” command to
register or delete the
file.

22 cpms.lib CPMS macro
linkage library

CPMS macro
linkage module

 “sload”
command

23 irad.lib Indirectly linked
address reference
library

Module to
reference indirectly
linked addresses

 “sload”
command

24 site Default site name
file

Default site names “ssi” command All
commands
other than
“sgen”

Update the file with
the “ssi” command

25 s10hosts RPDP/S10 host
definition file

IP address of the
S10 and host name

Network
administrator

“sdebug”
command

26 rpdps10_ver Version file Version
information on the
RPDP/S10

APPENDIXES

- 116 -

APPENDIX E ALLOCATOR ERROR MESSAGES

The allocator displays error messages in the format shown below.
(1) Errors in command lines

usage: command format (NO=XXXX)
① ②

① Command format
② Error number

(2) Errors during processing
alloc: error message (NO=XXXX)

① ②
① Error message
② Error number
Error messages are listed below.

Error Messages (1/4)

Error
No. Message Nature of error System’s action User’s response

1 abnormal allocator
master directory

Information managed by the allocator
contained an error.

Terminates the processing and
performs postprocessing.

See Appendix C.

2 abnormal allocator
directory (permission
denied)

Information managed by the allocator
contained an error. (Failure to make
an “in” mode access)

Terminates the processing and
performs postprocessing.

See Appendix C.

3 abnormal allocator
directory (failed to
continue)

Information managed by the allocator
contained an error. (When an error
was detected, processing could not be
continued.)

Terminates the processing and
performs postprocessing.

See Appendix C.

4 abnormal allocator
directory (failed to
recover)

Information managed by the allocator
contained an error. (Recovery from
the error failed.)

Terminates the processing and
performs postprocessing.

See Appendix C.

5 file access error
(continue processing)

An error was detected during access
to a file. (After the cause of the error
is corrected, postprocessing is
continued.)

Terminates the processing and
performs postprocessing.

See Appendix C.

6 successfully recovered An error was detected during access
to a file. (The system was restored
to the condition that existed before
the start of the allocator.)

Terminates normally. None

7 file access error
(continue recovering)

An error was detected during access
to a file. (After the cause of the error
is corrected, the system is restored to
the condition that existed before the
start of the allocator.)

Terminates the processing and
performs postprocessing.

See Appendix C.

8 internal logic error Internal logic error Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

9 MAPIB illegal An inconsistency was found in
mapping information.

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

 APPENDIXES

- 117 -

Error Messages (2/4)

Error
No. Message Nature of error System’s action User’s response

10 file access error File access error Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

11 file access error File access error Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

12 file access error File access error during processing for
‘a.open.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

13 file access error File access error during error handling
for ‘a.open.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

14 file access error File access error during processing for
‘a.move.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

15 file access error File access error during error handling
for ‘a.move.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

16 file access error File access error during processing for
‘a.clos.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

17 file access error File access error during error handling
for ‘a.clos.’

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

18 internal logic error
(signal)

Error during signal processing
(internal logic error)

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

19 abnormal allocator
directory

File access error during fault
condition check.

Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

20 abnormal RALB Invalid STTUP information Terminates the processing and
restores the condition that existed
before the allocator was started.

See Appendix C.

101 specified site is
undefined

An undefined site name was given. Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the site
name.

102 specified site is busy
or undefined

The site was being locked by another
process. Or the site was not yet
defined.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the site
name or retry the
command.

103 specified garea is
undefined

An undefined global area was
specified.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the “garea”
name.

104 specified area is
undefined

An undefined split area was specified. Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the “area”
name.

105 specified sarea is
undefined

An undefined secondary partition area
was specified.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the “sarea”
name.

106 specified external
name is undefined

An undefined external name was
given.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Check the
external name.

107 specified area is
already defined

An already-defined split area was
specified

Terminates the processing and
restores the condition that existed
before the allocator was started.

Change the “area”
name.

APPENDIXES

- 118 -

Error Messages (3/4)

Error
No. Message Nature of error System’s action User’s response

108 specified sarea is
already defined

An already-defined secondary
partition area was specified.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Change the “sarea”
name.

109 specified external
name is already
defined

An already-defined external name
was given.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Change the external
name.

110 specified area is
already used

An area already in use was specified. Terminates the processing and
restores the condition that existed
before the allocator was started.

Change the position
specification.

111 not enough space Insufficient free space Terminates the processing and
restores the condition that existed
before the allocator was started.

Delete areas that are
no longer needed.

112 permission denied Illegal access privilege level Terminates the processing and
restores the condition that existed
before the allocator was started.

Specify the -S
option. Or specify
the -d or -w option
to allocate a split
area.

113 specified garea is
universal space

GM space limit exceeded. Terminates the processing and
restores the condition that existed
before the allocator was started.

Specify the -d or -w
option.

114 can not align non-
resident garea

Alignment was specified for a non-
resident area.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Specify the -d or -w
option.

115 specified sarea is
neither global nor
bulk

An attempt was made to delete a
secondary partition area other than
for global data.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Specify the -d or -w
option to allocate a
split area.

116 sarea is defined for
the specified area

An attempt was made to delete a
split area in which a program or
subprogram was loaded or a split
area that was divided into secondary
partition areas.

Terminates the processing and
restores the condition that existed
before the allocator was started.

Execute “sdload” or
“sdls” before
deleting a split area.

117 mapping table
overflow

A mapping table overflowed. Terminates the processing and
restores the condition that existed
before the allocator was started.

Delete areas that are
no longer needed.

120 STTUP table
overflow

A startup table overflowed. Terminates the processing and
restores the condition that existed
before the allocator was started.

Delete areas that are
no longer needed.

201 specified options go
not agree with one
another

Both the XX option and the YY
option were given. They are
mutually exclusive.

Terminates the processing. Check whether the
options were
specified correctly.

202 protection code must
be from 0 to 7

The specified protection code was
not within the range of 0 to 7.

Terminates the processing. Check the -k option.

203 align parameter must
be from 0 to 12

The value specified in the “align”
parameter was not within the range
of 0 to 12.

Terminates the processing. Check the -a option.

204 too many characters
in specified name

A name consisting of too many
characters was given.

Terminates the processing. Shorten the name to
eight characters or
less.

205 illegal character is
found

An invalid special character was
contained in the specified name.

Terminates the processing. Check the name.

 APPENDIXES

- 119 -

Error Messages (4/4)

Error
No. Message Nature of error System’s action User’s response

206 illegal option is foung An invalid option was given. Terminates the processing. Check the option.

207 the same option is
specified twice or
more

The same option was defined
twice.

Terminates the processing. Do not define the
same option two or
more times.

208 value extent out of
range

Too large a value was given as a
VAL.

Terminates the processing. Check the range of
VAL values.

209 illegal format of
numeric value

Numeric data was specified in an
invalid format.

Terminates the processing. Check the format of
the specified
numeric data.

301 sdfa gname/aname
size [option]

A command (sdfa) was specified
incorrectly.

Terminates the processing. Check the command
specification.

302 sdla aname [option] A command (sdla) was specified
incorrectly.

Terminates the processing. Check the command
specification.

303 sdfs aname/sname size
[option]

A command (sdfs) was specified
incorrectly.

Terminates the processing. Check the command
specification.

304 sdls sname [option] A command (sdls) was specified
incorrectly.

Terminates the processing. Check the command
specification.

305 sdlv ename value
[option]

A command (sdfv) was specified
incorrectly.

Terminates the processing. Check the command
specification.

306 sdlv ename [option] A command (sdlv) was specified
incorrectly.

Terminates the processing. Check the command
specification.

APPENDIXES

- 120 -

APPENDIX F LOADER ERROR MESSAGES

The loader displays error messages in the format shown below.

(1) Errors in command lines
usage: command format (NO=XXXX)

① ②
① Command format
② Error number

(2) Errors during processing
Command name: error message (NO=XXXX)

① ②
alloc: error message (NO=XXXX)

③ ④ (Note)
① Error message displayed by the loader
② Number of an error message displayed by the loader
③ Error message displayed by the allocator
④ Number of an error message displayed by the allocator
(Note) The allocator displays error messages for recovery from faults. It may not display

error messages for some faults.

Error messages are listed below.

Error Messages (1/7)

Error
No. Message Nature of error System’s action User’s response

0 system error System error Terminates the command after
displaying this error message.

(*)

2 specified area is not
found

An undefined area was specified to
register a program in it. (An
undefined split area was specified
by the -a option.)

Terminates the command after
displaying this error message.

Check the split area
name specified by
the -a option. Then
enter the command
again.

3 abnormal allocator
directory

There was an error detected in the
management table used by the
allocator. (This message is
displayed by “sload” or “scomp.”)

Terminates the command after
displaying this error message.

See Appendix C.

4 abnormal allocator
directory

There was an error detected in the
management table used by the
allocator. (This message is
displayed by “sdload.”)

Terminates the command after
displaying this error message.

See Appendix C.

5 file copy error An error was detected while a file
was being copied.

Terminates the command after
displaying this error message.

See Appendix C.

 APPENDIXES

- 121 -

Error Messages (2/7)

Error
No. Message Nature of error System’s action User’s response

6 too many characters in
specified name

A name longer than eight character
was given in an option. (This
message is displayed by “sload” or
“scomp.”)

Terminates the command after
displaying this error message.

Shorten the name to
eight characters or
less. Then enter the
command again.

7 specified area is
already used

An area already in use was specified
by the -C (upper- case) or -p option.

Terminates the command after
displaying this error message.

Check the address
specified by the -C
(uppercase) option
or the relative
address specified by
the -p option. Then
enter the command
again.

8 specified core block is
not found

No such core block was existent. Terminates the command after
displaying this error message.

Specify an existing
core block. Then
enter the command
again.

9 executable program
name is already
registered

An already-registered executable
program name was given.

Terminates the command after
displaying this error message.

Change the program
name. Then enter
the command again.

10 undefined external
name

External reference information was
undefined.

Terminates the command after
displaying this error message.

Correct the
undefined reference
name. Then enter
the command again.

11 alloc file open or close
error

An error was detected while the
management table used by the
allocator was being opened or closed.

Terminates the command after
displaying this error message.

See Appendix C.

12 management table
operation error

An error was detected while the
management table used by the
allocator was being operated on.

Terminates the command after
displaying this error message.

See Appendix C.

13 too many characters in
specified name

A name longer than eight character
was given in an option. (This
message is displayed by “sdload.”)

Terminates the command after
displaying this error message.

Shorten the name to
eight characters or
less. Then enter the
command again.

14 sload pname -S -u ⋅⋅⋅⋅⋅⋅ An option was specified incorrectly.
(For example, an invalid option was
given, a required option was omitted,
or an option already in use was
specified.)

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

15 illegal character if
found

A character not allowed in an option
was specified. Or no “pname” was
specified. (This message is
displayed by “sload” or “scomp.”)

Terminates the command after
displaying this error message.

Remove the
characters other than
alphanumerics and
underscores or
specify “pname.”
Then enter the
command again.

APPENDIXES

- 122 -

Error Messages (3/7)

Error
No. Message Nature of error System’s action User’s response

16 illegal character is
found

A character not allowed in an option
was given. Or no “pname” was
specified. (This message is
displayed by “sdload.”)

Terminates the command after
displaying this error message.

Remove the
characters other than
alphanumerics and
underscores or
specify “pname.”
Then enter the
command again.

17 logical space number
is not between 0 and
14

The specified logical space number
was not within the range of 0 to 14.

Terminates the command after
displaying this error message.

Specify the logical
space number within
the range of 0 to 14.
Then enter the
command again.

18 core block range over The operation range of a program was
greater than the range of the specified
block.

Terminates the command after
displaying this error message.

Extend the range of
the core block.
Then enter the
command again.

19 incorrect loading
address

The operation range of a subprogram
was greater than the range of the split
area.

Terminates the command after
displaying this error message.

An absolute address
was specified
incorrectly. Check
the address, then
enter the command
again. Or the -C
option was specified
incorrectly.
Correct it.

20 not enough area for
loading

There was no free space large enough
to load a program or subprogram.

Terminates the command after
displaying this error message.

Increase the split
area size. Then
enter the command
again.

21 system error Although a request to allocate an area
in main memory was made
dynamically during processing by the
loader, it failed. (System error)

Terminates the command after
displaying this error message.

(*)

22 undefined external
name

An undefined external name was
detected. (The “system” or “user”
type was specified incorrectly.)

Terminates the command after
displaying this error message.

Check the
classification of
“system” and “user.”
Then enter the
command again.

23 undefined external
name

An undefined external name was
detected. (The registered external
name was not for global data.)

Terminates the command after
displaying this error message.

Check the external
name. Then try
again from
compilation.

24 specified position is
out of range

A position beyond the boundaries of
the area was specified for registration.

Terminates the command after
displaying this error message.

Check the position.
Then enter the
command again.

 APPENDIXES

- 123 -

Error Messages (4/7)

Error
No. Message Nature of error System’s action User’s response

25 illegal area type An incorrect area type (program or
subprogram) was specified.

Terminates the command after
displaying this error message.

Check the area type.
Then enter the
command again.

26 illegal combination
of options

An option was specified incorrectly. Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

27 sload -S -u site ⋅⋅⋅
+P

An option for loading a program was
specified incorrectly.

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

28 sload -S -u site ⋅⋅⋅
(+S, +U)

An option for loading a subprogram
or built-in subroutine was specified
incorrectly.

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

29 sload -S -u site ⋅⋅⋅
+D

An option for loading global data was
specified incorrectly.

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

30 sdload -S -u pnaml
site ⋅⋅⋅⋅⋅⋅

An option was specified incorrectly.
(For example, an option was specified
incorrectly in “sdload,” or a duplicate
definition was made.)

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

31 specified program
or subprogram is
not found

A request was made to delete an
unregistered program or subprogram.

Terminates the command after
displaying this error message.

Check the program
or subprogram name.
Then enter the
command again.

32 can not delete a
program registered
as a task or uslsub

A request for deleting a program
failed because the program had been
registered as a task or built-in
subroutine.

Terminates the command after
displaying this error message.

Execute “sdtask” or
“sdbuild” before
executing “sdload.”

33 file close error An error was detected during an
attempt to close a file.

Terminates the command after
displaying this error message.

See Appendix C.

34 undefined input file
name

An undefined input file was specified. Terminates the command after
displaying this error message.

Check the input file
name. Then enter
the command again.

35 can not open the
file; undefined

An attempt was made to open an
undefined file.

Terminates the command after
displaying this error message.

(*)

36 can not open the
file; busy

An attempt was made to open a file
being locked by another process.

Terminates the command after
displaying this error message.

(*)

37 file open error An error was detected while a file was
being opened.

Terminates the command after
displaying this error message.

(*)

38 write error An error was detected while a file was
being written.

Terminates the command after
displaying this error message.

(*)

40 read error An error was detected while a file was
being read.

Terminates the command after
displaying this error message.

(*)

APPENDIXES

- 124 -

Error Messages (5/7)

Error
No. Message Nature of error System’s action User’s response

41 specified initialized
glb is not found

An attempt was made to delete
undefined global data.

Terminates the command after
displaying this error message.

(*)

42 glb data is not loaded An attempt was made to delete global
data not yet loaded.

Terminates the command after
displaying this error message.

(*)

60 system error A specified number of words could
not be written to a file.

Terminates the command after
displaying this error message.

(*)

61 a.out format is
abnormal

A load module was in an invalid
format.

Terminates the command after
displaying this error message.

Try again from
compilation (or
assembling).

62 specified text or data
is not found

An attempt was made to load a
program, subprogram, or built-in
subroutine that had no text. Or an
attempt was made to load global data
having text.

Terminates the command after
displaying this error message.

For the former, add a
text or data section.
For the latter,
remove the text
section.

63 global or bulk data is
found

A definition of global data with initial
values, or a value definition, appeared
in a load module.

Terminates the command after
displaying this error message.

Remove the
definition.

64 illegal load module
format as a glb or bulk
data

A load module was in an invalid
format when an attempt was made to
load global data.

Terminates the command after
displaying this error message.

Define global data.
Then try again from
compilation (or
assembling).

65 there is no data to be
loaded

Data registration was specified, but
there was no global data to be
registered.

Terminates the command after
displaying this error message.

Define global data.
Then try again from
compilation (or
assembling).

70 illegal character found Non-numerical data was specified in
an option.

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

71 illegal core block
format

A core block was specified
incorrectly.

Terminates the command after
displaying this error message.

Check the core block
number. Then
enter the command
again.

72 data size is larger than
glb or bulk size

A data size larger than that of the area
for global data was specified.

Terminates the command after
displaying this error message.

Check the data.
Then enter the
command again.

 APPENDIXES

- 125 -

Error Messages (6/7)

Error
No. Message Nature of error System’s action User’s response

73 specified area is not
found

A secondary partition area in which to
load the specified global data was
undefined.

Terminates the command after
displaying this error message.

Allocate a secondary
partition area.
Then enter the
command again.

74 illegal loading address
format

A loading destination location was
specified incorrectly.

Terminates the command after
displaying this error message.

Check the
destination location.
Then enter the
command again.

75 specified area is not
found

A secondary partition area not
intended for data loading was
specified for loading global data.

Terminates the command after
displaying this error message.

Change the
definition of the
secondary partition
area so that data can
be loaded into it.
Then enter the
command again.

77 -s option is not valid The -c option was specified for a
program.

Terminates the command after
displaying this error message.

Remove the -c
option. Then enter
the command again.

78 too large stack length A stack length was specified
incorrectly. (An area of the
specified stack length could not be
allocated.)

Terminates the command after
displaying this error message.

Check the stack
length. Then enter
the command again.

79 number of task which
share the same main
program is limited
from 2 to 160

The specified number of tasks for
multitasking was not within the range
of 2 to 160.

Terminates the command after
displaying this error message.

Specify the number
of such tasks within
the range of 2 to
160. Then enter
the command again.

80 specified address or
size is not on a
longword boundary

A value other than a multiple of 4 was
given as the stack length.

Terminates the command after
displaying this error message.

Specify a multiple of
4 as the stack length.
Then enter the
command again.

83 illegal task data length A task data length was specified
incorrectly.

Terminates the command after
displaying this error message.

Check the task data
length. Then enter
the command again.

84 glb data is already
loaded

Global data already loaded was
specified.

Terminates the command after
displaying this error message.

Execute “sdload”
before executing
“sload.”

87 specified program is
not found

An unregistered executable program
was specified. (This message is
displayed by “scomp.”)

Terminates the command after
displaying this error message.

Check the executable
program name.
Then enter the
command again.

88 internal logic error Internal logic error. (This message is
displayed by “scomp.”)

Terminates the command after
displaying this error message.

(*)

APPENDIXES

- 126 -

Error Messages (7/7)

Error
No. Message Nature of error System’s action User’s response

89 undefined input file
name

An undefined load module was
specified by the -i option. (This
message is displayed by “scomp.”)

Terminates the command after
displaying this error message.

Check the load
module name.
Then enter the
command again.

90 scomp pname -S -u
site ⋅⋅⋅⋅⋅⋅

An option was specified incorrectly.
(This message is displayed by
“scomp.”)

Terminates the command after
displaying this error message.

Check the option.
Then enter the
command again.

91 file open or copy error An error was detected while a file was
being opened or copied. (This
message is displayed by “scomp.”)

Terminates the command after
displaying this error message.

(*)

92 file read error An error was detected while a file was
being read. (This message is
displayed by “scomp.”)

Terminates the command after
displaying this error message.

(*)

93 too many characters in
specified name

A name longer than eight character
was specified by an option. (This
message is displayed by “scomp.”)

Terminates the command after
displaying this error message.

Shorten the name to
eight characters or
less. Then enter the
command again.

94 illegal character is
found

A character not allowed in an option
was specified. (This message is
displayed by “scomp.”)

Terminates the command after
displaying this error message.

Remove the
characters other than
alphanumerics and
underscores. Then
enter the command
again.

95 text size unmatched A mismatch was found in text length
between an executable program and
load module. (This message is
displayed by “scomp.”)

Continues processing even
after displaying this error
message.

There is a difference
from the load
module. Check the
executable module
against the load
module.

96 data size unmatched A mismatch was found in data length
between an executable program and a
load module. (This message is
displayed by “scomp.”)

Continues processing even
after displaying this error
message.

There is a difference
from the load
module. Check the
executable module
against the load
module.

97 abnormal allocator
directory

There was an error in the management
table used by the allocator. (This
message is displayed by “scomp.”)

Terminates the command after
displaying this error message.

(*)

98 file access error
(a.backup)

An error was detected during access
to a backup file. (This message is
displayed by “scomp.”)

Terminates the command after
displaying this error message.

(*)

(*) ① Check if the free memory capacity and free hard disk capacity of your PC are enough.

② When your PC is Windows® 2000 or Windows® XP, check the contents of the event log.
③ If the above items ① and ② are OK, reinstall the RPDP/S10 and the Crossing C compiler

(MCC68K).

 APPENDIXES

- 127 -

APPENDIX G BUILDER ERROR MESSAGES

The builder displays error messages in the format shown below.

(1) Errors in command lines
usage: command format (NO=XXXX)

① ②
① Command format
② Error number

(2) Errors during processing
Command name: command format (NO=XXXX)

① ②
allod: error message (NO=XXXX) (Note)

③ ④
① Error message displayed by the builder
② Number of an error message displayed by the builder
③ Error message displayed by the allocator
④ Number of an error message displayed by the allocator
Note: The allocator displays error messages for recovery from faults. It may not display

error messages for some faults.

Error messages are listed below.

Error Messages (1/5)

Error
No. Message Nature of error System’s action User’s response

1 operand syntax error An operand was specified incorrectly. Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

2 operand combination
error

Operands were combined incorrectly. Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

3 too many or missing
operands

There were too many or missing
operands.

Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

4 numeric value out of
range

Out-of-range data was entered. Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

APPENDIXES

- 128 -

Error Messages (2/5)

Error
No. Message Nature of error System’s action User’s response

7 no executable module
exists

There was no executable module that
creates a task.

Terminates the command after
displaying this error message.

Check the executable
module name.
Then retry the
command.

8 task already defined A name already in use was specified
as the name of a task to be created.

Terminates the command after
displaying this error message.

Change the task
name. Or delete
the existing task if it
is no longer needed.
Then retry the
command.

9 core block number out
of range

A specified core block was not within
the range of 1 to the maximum core
block number.

Terminates the command after
displaying this error message.

Specify a core block
within the range of 1
to the maximum core
block number.
Then retry the
command.

10 different core block
number for load
command

A specified core block number was
not the same as had been specified in
loading the program.

Terminates the command after
displaying this error message.

Specify the same
core block number
as had been specified
in loading the
program.

11 top core block number
is greater than last
core block number

An out-of-sequence core block
number was specified.

Terminates the command after
displaying this error message.

Specify a core block
number between the
first and last core
block numbers.

12 can not define core
block number for -r
option

The -r option was specified together
with a core block number.

Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

14 user task number out
of range

The task number specified for a user
task was not within the range of 1 to
the maximum task number (114).

Terminates the command after
displaying this error message.

Specify a task
number within the
range of 1 to the
maximum task
number (114).

15 system task number
out of range

A task number other than 128 was
specified for a system task.

Terminates the command after
displaying this error message.

Specify the task
number 128. Then
retry the command.

 APPENDIXES

- 129 -

Error Messages (3/5)

Error
No. Message Nature of error System’s action User’s response

16 task number is already
used

A task number already in use was
specified.

Terminates the command after
displaying this error message.

Change the task
number. Or delete
the task in use if it is
no longer needed.
Then retry the
command.

17 can not find undefined
TCB

There was no free TCB available. Terminates the command after
displaying this error message.

Delete tasks that are
no longer needed.
Then retry the
command.

18 can not find undefined
PCB

There was no free PCB available. Terminates the command after
displaying this error message.

Delete tasks that are
no longer needed.
Then retry the
command.

19 value of error -
processing ID out of
range (0-15)

The specified error handling ID was
not within the range of 0 to 15.

Terminates the command after
displaying this error message.

Specify an error
handling ID within
the range of 0 to 15.
Then retry the
command.

21 work number out of
range with multi-task

During creation of multiple tasks, the
specified work section creation
number was not within the range of 1
to the maximum work section creation
number.

Terminates the command after
displaying this error message.

Specify a number
within the range of 1
to the maximum
work section
creation number.

22 can not define work
number, 0 is set on
load command

Although a 0 had been specified in a
load command as the work section
creation number, another work section
creation number was given.

Terminates the command after
displaying this error message.

Supply a multi-task
specification. Then
rerun from “sload.”

23 can not find undefined
work number for
multi-task

During creation of multiple tasks,
there was no free work section
available.

Terminates the command after
displaying this error message.

If there is a work
section that is no
longer needed,
execute “sdtask” and
then retry the
command. If not,
execute “sload” and
then retry the
command.

24 work number is
already defined for
multi-task

During creation of multiple tasks, the
specified work section creation
number was already in use.

Terminates the command after
displaying this error message.

Find a work section
creation number not
in use. Then retry
the command.

25 can not define work
number for non-
resident task

Although no multitasking was
specified, a work section creation
number was specified.

Terminates the command after
displaying this error message.

Delete the -r option.
Then retry the
command.

APPENDIXES

- 130 -

Error Messages (4/5)

Error
No. Message Nature of error System’s action User’s response

26 program is already
defined as resident
task

A program already in use as a resident
task was specified.

Terminates the command after
displaying this error message.

When creating the
specified task as
another task, delete
the program and
reload the task as
one of the multiple
tasks. Then retry
the command.

27 watch dog timer out of
range (0, 2-65535)

The specified time to monitor
execution was not 0 or it was not
within the range of 2 to 65,535.

Terminates the command after
displaying this error message.

Set the time to 0 or
within the range of 2
to 65,535.

28 save area group
number out of range

The specified area group number was
out of range.

Terminates the command after
displaying this error message.

Specify the save area
number within the
range of 1 to the
maximum save area
group number.
Then retry the
command.

29 can not set -c, -a, -g, -f
option except for
resident task

An invalid option was given for a
resident task.

Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

31 priority level of user
task out of range (0-4)

The level specified for a user task was
not within the range of 0 to 4.

Terminates the command after
displaying this error message.

Specify a correct
level. Then retry
the command.

32 priority level of
system task out of
range (0-4)

The level specified for a system task
was not within the range of 0 to 4.

Terminates the command after
displaying this error message.

Make sure what is
the acceptable data.
Then retry the
command.

33 the task is already
deleted or undefined

A task to be deleted was not
registered.

Terminates the command after
displaying this error message.

Specify a registered
task name or register
such a task. Then
retry the command.

34 user can not delete
system task

The user attempted to delete a system
task.

Terminates the command after
displaying this error message.

Do not attempt to
delete system tasks.

35 point number out of
range

The point number specified for a
built-in subroutine was out of range.

Terminates the command after
displaying this error message.

Specify a correct
point number for a
built-in subroutine.
Then retry the
command.

 APPENDIXES

- 131 -

Error Messages (5/5)

Error
No. Message Nature of error System’s action User’s response

36 point number is
already used

The point number specified for a
built-in subroutine was already in use.

Terminates the command after
displaying this error message.

Find a point number
not in use. The
retry the command.

37 subprogram is not
defined

A subroutine not yet created was
specified.

Terminates the command after
displaying this error message.

Specify the name of
a created subroutine.
Then retry the
command.

39 monitor task number
out of range

The number specified for the task to
be monitored was out of range.

Terminates the command after
displaying this error message.

Specify a valid task
number. Then retry
the command.

40 monitor task is not
defined

A non-existing task was specified to
monitor it.

Terminates the command after
displaying this error message.

Register the task to
be monitored.
Then retry the
command.

41 user can not define
system task

The user attempted to delete a system
task.

Terminates the command after
displaying this error message.

Specify the -S
option. Then retry
the command.

43 the subroutine is
already deleted or
undefined

A subroutine to be deleted was not
registered.

Terminates the command after
displaying this error message.

Check the names of
the created
subroutines. Then
retry the command.

44 the point number is
not defined

A point number to be deleted was not
registered.

Terminates the command after
displaying this error message.

Check the point
numbers in use.
Then retry the
command.

50 abnormal allocator
management table

There was an error in the management
table used by the allocator.

Terminates the command after
displaying this error message.

Check the
management file
used by the
allocator. Then
retry the command.

APPENDIXES

- 132 -

APPENDIX H COMMUNICATION (Ethernet, GP-IB, AND RS-232C)

The RPDP/S10 supports the Ethernet, GP-IB bus, and RS-232C interface for connection between the
personal computer and PCs.

H.1 Ethernet-based Communication

To perform communication using the Ethernet, the personal computer must be ready for
connection to the Ethernet. The following sections describe settings required for the
RPDP/S10 and PCs.

H.1.1 Setting the S10Hosts File

The RPDP/S10 identifies PCs with host names. The following file is used to make host
names correspond to IP addresses:

C:\HITACHI\FODU\S10Hosts
In the S10Hosts file, set host names (PCs’ names) and their corresponding IP addresses in the
following format:

H.1.2 Configuring at MS-DOS Prompts

The RPDP/S10 uses environment variables to set up a method of communication. Set
ETHER in the environment variable RSCOM. Also set the host name of the remote PC to be
connected to the Ethernet in the environment variable RSHOST.

Example:
C:\>set RSCOM=ETHER
C:\>set RSHOST=pcs01

3
characters

3
characters

3
characters

3
characters

CR

CR

CR

CR

CR

CR

CR

CR

CR

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Host nameBlank IP address

 APPENDIXES

- 133 -

H.2 GP-IB based Communication
To enable GP-IB based communication, use the PCMCIA-GPIB card from National
Instruments Corporation. Also install the supplied software to make the RPDP/S10 ready for
GP-IB based communication. The following section describes settings required for the
RPDP/S10 and PCs.

H.2.1 Configuring at an MS-DOS Prompt

The RPDP/S10 uses an environment variable to set up a method of communication. Set
GPIB in the environment variable RSCOM.

Example:
C:\>set RSCOM=GPIB

H.3 RS-232C based Communication
No particular hardware or software is required for RS-232C based communication. Usually,
use the COM1 port to connect to the PC.

H.3.1 Configuring at an MS-DOS Prompt

The RPDP/S10 uses an environment variable to set up a method of communication. Set
RS232C in the environment variable RSCOM or delete RSCOM. If the environment variable
RSCOM is undefined or it is not set to ETHER or GPIB, then the RPDP/S10 enables
RS-232C-based communication.

Example:
C:\>set RSCOM=RS232C
or
C:\>set RSCOM=

APPENDIXES

- 134 -

APPENDIX I C LANGUAGE PROGRAM DEVELOPMENT ENVIRONMENT
AND SYSTEM EXECUTION ENVIRONMENT

(1) Setting MS-DOS prompt properties

The RPDP/S10 uses many environment variables. For this reason, if the MS-DOS prompt is
activated without changing properties to start the RPDPE or RPDP command, the message “Out
of environment space” may appear. If this happens, set the value 2048 or greater as the initial
size of the environment variable in the memory tab for MS-DOS prompt properties.
In the program tab for MS-DOS prompt properties, specify a batch file. Then, just activating
the MS-DOS prompt enables the desired environment to be automatically set up. Where
shortcuts are created for multiple MS-DOS prompts to set up different environments, the user
can get the desired environment with ease.

<Changing the initial memory size set in an environment variable>

Set 2048 or more

 APPENDIXES

- 135 -

<Example of automatically setting environment variables>

<Sample “C:\Mydir\sample.bat” file>

call rpdpe
set RSCOM=ETHER
set RSHOST=pcs01
set RSSITE=site01

(2) Operation from multiple MS-DOS prompts

Activate multiple MS-DOS prompts and specify different sites at them. Then, the user can
perform programming for multiple sites. However, the same site cannot be subjected to
simultaneous programming.

Configuration program
(The “sample.bat” file is
automatically opened.)

Work directory

Do not change the “rpdpe.bat” and “rpdp.bat”
files as much as possible. Create a batch file
that opens the “rpdpe.bat” or “rpdp.bat” file as
shown on the left. Change environment
variables in the batch file, as necessary.

APPENDIXES

- 136 -

APPENDIX J SAMPLE OPERATION

C:\>rpdpe or rpdp (configuration)

rpdp: for the H-S10/2α
rpdpe: for the H-S10/2αE, 2αH, and 2αHf

C:\>sgen (generation)

site: uf3
type: S10/2A
size: 384
addr: 0x140000
tsize: 192
ssize: 64
irsmax: 1024
grsize: 64
grwsize: 64
irgmax: 1024

 0x140000 0x150000 0x160000 0x190000

garea os sub glbr task glbrw ems
area a3 a5 al a2 a6 a10 a11

sarea

rpdp
Not managed
by RPDP a4 s1 s2 s3 s4 s10 s11

C:\>ssi uf3
C:\>sdfa task/a1 32768 -p
C:\>demo (compilation and task creation)
C:\>srpl (loading into the actual machine)

 APPENDIXES

- 137 -

Contents of the file
DEMO.BAT

mcc68k -c -f -s -Fsm demo.c (-f is set if floating-point operations are supported.)
asm68k -l -f “case, -t” > demo.lst demo.src

sdtask demo

sdload demo +p

sload demo -a al -f cmddemo -w 1024 +p

sctask demo demo -t 2 -v 3

CMDDEMO

load c:\test\demo\demo.obj

load c:\hitachi\fodu\lib\cpms.lib

load c:\hitachi\fodu\lib\irad.lib

APPENDIXES

- 138 -

<Accessing PI/O units>
• Defining VALs

C:\>sgen
C:\>ssi uf3
C:\>sdfa task/al 32768-p
C:\>pio (Defines a VAL.)
C:\>demo
C:\>srpl

• Deleting VALs
C:\>dpio (Deletes a VAL.)

Contents of the file
PIO.BAT

sdfv XW 0xE0000
sdfv FW 0xE2000

DEMO.C
extern short XW_v [0x100];
extern short FW_v [0x100];
main()
{
 short w;
 w=XW_v [0]+XW_v [1];
 FW_v [0]=w;
}

DPIO.BAT
sdlv XW
sdlv FW

Defines a VAL.

Deletes a VAL.

	Cover
	Copyright
	LIMITED WARRANTY
	SAFETY PRECAUTIONS
	PREFACE
	CONTENTS
	FIGURES
	TABLES
	1 OVERVIEW
	1.1 RPDP/S10
	1.2 Sites
	1.3 Crossing C Compiler

	2 PROGRAM DEVELOPMENT PROCEDURES
	2.1 Overall Flow
	2.2 Dividing Memory
	2.3 Loading Programs and Creating Tasks
	2.4 Resident Subprograms
	2.5 Values
	2.6 Programming Guide for GLBs, VALs, and RSUBs
	2.7 Restrictions on Program Creation under CPMS

	3 OUTLINE OF COMMANDS
	3.1 Commands
	3.2 Environment Variables
	3.3 Installation Procedure

	4 COMPILER
	4.1 Required Option
	4.2 Outline of Options

	5 LIBRARIES
	5.1 Libraries
	5.2 Librarian

	6 GENERATOR
	6.1 sgen (System Generation)
	6.2 ssi (Sets and displays the site to be acted on.)

	7 ALLOCATOR
	7.1 Command Language Specification
	7.2 sdfa (Allocates a split area.)
	7.3 sdla (Deallocates a split area.)
	7.4 sdfs (Allocates a secondary partition area [sarea].)
	7.5 sdls (Deallocates a secondary partition area [sarea].)
	7.6 sdfv (Defines a VAL.)
	7.7 sdlv (Deletes a VAL.)

	8 LOADER
	8.1 Execution Environment of the Loader
	8.2 sload (Loads a program, a subprogram, or data.)
	8.3 sdload (Deletes a program or subprogram.)
	8.4 scomp (Compares a program, a subprogram, or data.)
	8.5 Program Layout

	9 BUILDER
	9.1 sctask (Creates a task.)
	9.2 sdtask (Deletes a task.)
	9.3 sbuild (Creates a built-in subroutine.)
	9.4 sdbuild (Deletes a built-in subroutine.)
	9.5 sirbld (Creates or deletes an indirectly linked subprogram or table.)

	10 sdebug (ONLINE DEBUGGER)
	10.1 Starting the Debugger
	10.2 Debugger Commands
	10.3 sdhp (Displays CPMS trace information.)
	10.4 srpl (Loads programs.)

	11 MANAGEMENT TOOLS
	11.1 smap (Displays map information.)
	11.2 sirmap (Displays indirectly linked map information.)
	11.3 sadm (Displays the name corresponding to an address.)

	12 MEMORY MAP
	12.1 HITACHI S10/2α Memory Map
	12.2 PI/O Bit Form Area
	12.3 PI/O Word Form Area
	12.4 User Work Area

	APPENDIXES
	APPENDIX A LIBRARIES
	A.1 Conditions for specifying libraries
	A.2 Order of specifying libraries
	A.3 Indirectly linked address reference subroutines
	A.3.1 irglbad
	A.3.2 irsubad

	APPENDIX B NAMES AND STATEMENTS USABLE IN PROGRAMS
	B.1 Reserved names
	B.1.1 Assembly language
	B.1.2 C language
	B.1.3 Reserved names in other programming languages

	B.2 Unusable statements
	B.2.1 Assembly language
	B.2.2 C language

	B.3 Names used in the system

	APPENDIX C RECOVERY FROM FAILURES BY THE SYSTEM MANAGER
	APPENDIX D SITE MANAGEMENT FILES
	APPENDIX E ALLOCATOR ERROR MESSAGES
	APPENDIX F LOADER ERROR MESSAGES
	APPENDIX G BUILDER ERROR MESSAGES
	APPENDIX H COMMUNICATION (Ethernet, GP-IB, AND RS-232C)
	H.1 Ethernet-based Communication
	H.1.1 Setting the S10Hosts File
	H.1.2 Configuring at MS-DOS Prompts

	H.2 GP-IB based Communication
	H.2.1 Configuring at an MS-DOS Prompt

	H.3 RS-232C based Communication
	H.3.1 Configuring at an MS-DOS Prompt

	APPENDIX I C LANGUAGE PROGRAM DEVELOPMENT ENVIRONMENT
AND SYSTEM EXECUTION ENVIRONMENT
	APPENDIX J SAMPLE OPERATION

