

Software Manual

SEE-3-121(A)

Programming

Ladder Diagram System
for Windows®

Software Manual
Programming

First Edition, May 2020, SEE-3-121 (A)

All Rights Reserved, Copyright © 2020, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Printed in Japan.

IC (FL-MW2007)

S-1

 WARNING

NOTICE

SAFETY PRECAUTIONS

 Read this manual thoroughly and follow all the safety precautions and instructions given in this

manual before operations such as system configuration and program creation.
 Keep this manual handy so that you can refer to it any time you want.
 If you have any question concerning any part of this manual, contact your nearest Hitachi branch

office or service engineer.
 Hitachi will not be responsible for any accident or failure resulting from your operation in any

manner not described in this manual.
 Hitachi will not be responsible for any accident or failure resulting from modification of software

provided by Hitachi.
 Hitachi will not be responsible for reliability of software not provided by Hitachi.
 Make it a rule to back up every file. Any trouble on the file unit, power failure during file access

or incorrect operation may destroy some of the files you have stored. To prevent data destruction
and loss, make file backup a routine task.

 Furnish protective circuits externally and make a system design in a way that ensures safety in
system operations and provides adequate safeguards to prevent personal injury and death and
serious property damage even if the product should become faulty or malfunction or if an
employed program is defective.

 If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it must be
positioned external to the programmable controller. If you do not observe this precaution,
equipment damage or accident may occur when this programmable controller becomes defective.

 Before changing the program, generating a forced output, or performing the RUN, STOP, or like
procedure during an operation, thoroughly verify the safety because the use of an incorrect
procedure may cause equipment damage or other accident.

 This manual contains information on potential hazards that is intended as a guide for safe use of
this product. The potential hazards listed in the manual are divided into four hazard levels of
danger, warning, caution, and notice, according to the level of their severity. The following are
definitions of the safety labels containing the corresponding signal words DANGER,
WARNING, CAUTION, and NOTICE.

: This safety label identifies precautions that, if not heeded, will result in
death or serious injury.

: Identifies precautions that, if not heeded, could result in death or serious
injury.

: Identifies precautions that, if not heeded, could result in minor or moderate
injury.

: This safety label without a safety alert symbol identifies precautions that,
if not heeded, could result in property damage or loss not related to
personal injury.

Failure to observe any of the CAUTION and NOTICE statements used in this manual
could also lead to a serious consequence, depending on the situation in which this product is used.
Therefore, be sure to observe all of those statements without fail.

 DANGER

 CAUTION

S-2

The following are definitions of the phrases “serious injury,” “minor or moderate injury,” and
“property damage or loss not related to personal injury” used in the above definitions of the safety
labels.

Serious injury: Is an injury that requires hospitalization for medical treatment, has aftereffects,
and/or requires long-term follow-up care. Examples of serious injuries are as follows: vision loss,
burn (caused by dry heat or extreme cold), electric-shock injury, broken bone, poisoning, etc.

Minor or moderate injury: Is an injury that does not require either hospitalization for medical
treatment or long-term follow-up care. Examples of minor or moderate injuries are as follows: burn,
electric-shock injury, etc.

Property damage or loss not related to personal injury: Is a damage to or loss of personal
property. Examples of property damages or losses not related to personal injury are as follows:
damage to this product or other equipment or their breakdown, loss of useful data, etc.

The safety precautions stated in this manual are based on the general rules of safety applicable to
this product. These safety precautions are a necessary complement to the various safety measures
included in this product. Although they have been planned carefully, the safety precautions posted
on this product and in the manual do not cover every possible hazard. Common sense and caution
must be used when operating this product. For safe operation and maintenance of this product,
establish your own safety rules and regulations according to your unique needs. A variety of
industry standards are available to establish such safety rules and regulations.

S-3

NOTICE

 If the power to the PLC is turned on during the sequence cycle in which the
counter coil is being energized from OFF to ON level, the counter coil will be
energized normally, but the count may not be incremented. To avoid this,
observe the following rules:
[1] Shut off the power to the PLC only when the coil is in a stable condition.

Never change the coil’s condition from OFF to ON during the power shut-off
operation.

[2] Use an uninterruptible power supply (UPS) for protection against power
outages.

(See page 1-35.)

 Master control might experience the following two problems when the same N
coil exists multiple times in the same ladder sheet and the ON and OFF states
of the N coil coexist.
 Regarding edge contacts, rising-edge contacts might always be detected, or

edge contacts remain OFF and falling-edge contacts might never be
detected. For this reason, do not use edge contacts when you place multiple
N coils.
 Normal coils are energized or de-energized in one sequence depending on

the status of the N coil. Even if a coil is energized, it seems de-energized
when you use a circuit monitor or the MCS to reference the value of the coil if
the last N coil is not executed yet.

(See page 1-39.)

 The number of a rising-edge contact and the number of a falling-edge contact

must be different in the same program. If not, the program does not operate
normally.

(See page 1-45.)

S-4

Revision History

Revision No. History (revision details) Issue date Remarks

A First edition May 2020

i

PREFACE

This manual describes a variety of instructions that are used when creating ladder programs.
The instructions used in ladder programs may be classified into two major groups: ladder
instructions and arithmetic function instructions. Ladder instructions are used to control relay
circuits, whereas arithmetic function instructions are used to perform arithmetic operations, such as
addition, subtraction, multiplication, and division.

<Related manual>

S10VE Software Manual Operation Ladder Diagram System for Windows® (manual number
SEE-3-131)

<Trademarks>
 Microsoft® and Windows® are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.
 Ethernet® is a registered trademark of Xerox Corp.

ii

CONTENTS

CHAPTER 1 LADDER INSTRUCTIONS ... 1-1
1.1 Ladder Programs .. 1-1
1.2 Operation Sequence of Ladder Programs .. 1-4
1.3 Ladder Program Instructions .. 1-5

1.3.1 Ladder program instructions .. 1-5
1.3.2 a-contacts ... 1-8
1.3.3 b-contacts ... 1-9
1.3.4 Rising-edge and falling-edge contacts ... 1-10
1.3.5 Operation result push, read, and pop ... 1-11
1.3.6 Operation result push + a-contact, read + a-contact, and pop + a-contact 1-11
1.3.7 Operation result push + b-contact, read + b-contact, and pop + b-contact 1-12
1.3.8 Block union -- parallel connection (ORB) ... 1-12
1.3.9 NOT ... 1-13
1.3.10 Coils ... 1-14
1.3.11 Set and reset coils .. 1-14
1.3.12 Comparison instructions .. 1-15
1.3.13 Specifying indices in ladder instructions ... 1-18
1.3.14 Circuits and steps ... 1-20

1.4 Register Statuses at a Reset, Power Recovery, and State Transition between STOP
and RUN ... 1-21

1.5 Registers ... 1-22
1.5.1 Registers usable in ladder instructions .. 1-22
1.5.2 Register numbers ... 1-24

1.6 Ladder Watchdog Timer .. 1-63
1.6.1 An outline of the ladder watchdog timer’s operation .. 1-63
1.6.2 Range of settable monitoring time values ... 1-64
1.6.3 Error information presented upon ladder WDT errors .. 1-64

CHAPTER 2 ARITHMETIC FUNCTIONS ... 2-1
2.1 Functional Overview .. 2-1
2.2 Functional Specifications ... 2-3
2.3 Registers Used in Arithmetic Functions .. 2-7

2.3.1 Registers usable in arithmetic functions .. 2-7
2.3.2 Handling of bit registers .. 2-10
2.3.3 Relationships between bit registers and word registers ... 2-11

2.4 Inputs to Arithmetic Functions .. 2-12
2.5 Arithmetic Functions .. 2-17
2.6 Details on the Instructions .. 2-22
2.7 Ethernet Communication Instructions ... 2-173

2.7.1 Functional overview .. 2-173
2.7.2 Usage ... 2-175
2.7.3 Details on the instructions ... 2-185
2.7.4 Sample programs ... 2-206

SUPPLEMENT A CHECKING OUT THE AVERAGE SCAN TIME Z-1

A.1 Check-out using the LADDER DIAGRAM SYSTEM/S10VE Z-1
A.2 Check-out using a ladder program .. Z-2

iii

FIGURES

Figure A-1 Scan Time-Indicating Circuit ... Z-2

TABLES

Table 1-1 Basic Instructions .. 1-5
Table 1-2 Comparison Instructions .. 1-7
Table 1-3 Arithmetic Function Instructions ... 1-7
Table 1-4 Usable Registers .. 1-22
Table 1-5 Register Numbers .. 1-24
Table 1-6 System Registers .. 1-46
Table 2-1 Registers Usable in Arithmetic Functions ... 2-7

This Page Intentionally Left Blank

1. LADDER INSTRUCTIONS

1-1

CHAPTER 1 LADDER INSTRUCTIONS

1.1 Ladder Programs
The ladder program is a program that is created as a combination of ladder instructions
(instructions relating to a- or b-contacts) and arithmetic function instructions (instructions for
such operations as addition or subtraction).
Any ladder program is constructed from one or more units of programming each called a
nesting coil or, simply, N-coil. Up to 256 N coils, numbered 00 through FF, may be created in
a single ladder program. The N coil number 00 is called the master N coil and is executed as
the main routine every time a sequence cycle occurs for the execution of the ladder program.
Each of the N coil numbers 01 through FF is called a sub-N coil and is initiated as a
subroutine from the master N coil or another sub-N coil.

The ladder program can operate only when it contains a proper combination of ladder
instructions and arithmetic function instructions. Its operation starts from the left reference
line in the ladder diagram and ends at the connection with the right reference line therein. The
only ladder instruction that can be connected directly to the right reference line is an output
instruction (i.e., a coil or arithmetic function instruction). The smallest unit of programming
that can run as a ladder program is called a circuit. The maximum allowable size of circuit is
1000 rows times 12 columns (11 contacts plus 1 output).

Circuit

…………

：
：
：
：

11 contacts 1 coil

1000 rows

Left reference line Right reference line

N coil No. FF

N coil No. 01

Ladder program

N coil No. 00

・ ・

1. LADDER INSTRUCTIONS

1-2

If 11 or more contacts need to be AND-connected, the circuit may be wrapped around as
shown below, provided that the circuit meets the restrictions described below.

<Restriction 1>

No parallel logic path in a circuit may be wrapped around and then AND-connected. As
shown below, branch paths may not be formed before the asterisked (*) points.

*…………

：
：
：
：

11 contacts

*

*…………

：
：
：
：

11 contacts

*

*

*

Prohibited

1. LADDER INSTRUCTIONS

1-3

<Restriction 2>
As shown below, branch paths may not be formed after the asterisked (*) point.

*…………

：
：
：
：

11 contacts

*

Prohibited

1. LADDER INSTRUCTIONS

1-4

1.2 Operation Sequence of Ladder Programs
Ladder programs run in the (ascending) order of specified circuit numbers.

Ladder program example:

The operation sequence in circuits is exemplified below. The operation sequence in any circuit
proceeds from left to right. If a circuit contains a set of parallel logic paths, the operation
sequence will not proceed to the next logic path until all the parallel paths have been
processed.
The figure below shows the operation sequence that occurs in a sample circuit.
The thick arrows in the circuit indicate the operation sequence.

X0000 X0001 X0002 X0003 X0004

X0005 X0006 X0007

X0008 X0009

R000

～～ ～～

(0001)

～ ～

X0000
(0001)

(0002)
X000A R001

～ ～ ～ ～

X0010
(0010)

～ ～

X0001 X0002

X0005 X0006

X0003 X0004

X0007

X0008 X0009

Circuit number

R009

R000

1. LADDER INSTRUCTIONS

1-5

1.3 Ladder Program Instructions

1.3.1 Ladder program instructions
Table 1-1 is a list of all basic ladder instructions that can be used in ladder programs.
(1) Basic instructions

One single basic instruction forms one single step in the ladder program, except when an
index is specified as the register name. In the latter case, one single basic instruction
forms two steps in the ladder program.

Table 1-1 Basic Instructions
(1/2)

Instruction
name

Symbol
Operation

code
Function

a-contact start LD Denotes the start of an a-contact. (The a-contact becomes
ON when the value of a specified register is 1.)

a-contact
series-
connection

 LAND Denotes the series connection of an a-contact with the
preceding instruction.

b-contact start LDN Denotes the start of a b-contact. (The b-contact becomes
ON when the value of a specified register is 0.)

b-contact
series-
connection

 LANDN Denotes the series connection of a b-contact with the
preceding instruction.

Rising-edge
contact

 EGP Remains ON only during the sequence cycle in which the
rising edge of an input is detected.

Falling-edge
contact

 EGF Remains ON only during the sequence cycle in which the
falling edge of an input is detected.

Operation
result push

 SPS Stores the result of the previous operation performed.

Operation
result read

 SRD Reads the operation result stored by an operation result
push.

Operation
result pop

 SPP Reads the operation result stored by an operation result
push and then resets (clears) the stored operation result.

Operation
result push +
a-contact

 SPSAND Stores the result of the previous operation performed and
executes the a-contact.

Operation
result read + a-
contact

 SRDAND Reads the operation result stored by an operation result
push and executes the a-contact.

Operation
result pop + a-
contact

 SPPAND Reads the operation result stored by an operation result
push, executes the a-contact with the obtained operation
result, and then resets the stored operation result.

Operation
result push +
b-contact

 SPSANDN Stores the result of the previous operation performed and
executes the b-contact.

1. LADDER INSTRUCTIONS

1-6

Table 1-1 Basic Instructions
(2/2)

Instruction
name

Symbol
Operation

code
Function

Operation
result read +
b-contact

 SRDANDN Reads the operation result stored by an operation result
push and executes the b-contact.

Operation
result pop + b-
contact

 SPPANDN Reads the operation result stored by an operation result
push, executes the b-contact with the obtained operation
result, and then resets the stored operation result.

Block union
(parallel
connection)

 ORB Connects two logical blocks in parallel.

NOT LNOT Inverts an input and outputs the result.

Coil OUT Produces an output in a specified register. The function of
this coil varies with specified registers, as follows:

T: ON-delay timer; U: One-shot timer;
C: Up-down counter; N: Nesting coil;
P: Process initiation coil.

Set coil OUTS When the set coil is energized, it maintains the ON
condition of the keep relay until the reset coil is energized.
Only a keep relay, whose generic register name is K, may
be specified for the set or reset coil.

Reset coil OUTR

 S

 R

1. LADDER INSTRUCTIONS

1-7

(2) Comparison instructions
One single comparison instruction forms three steps in the ladder program, except when
an index is specified as the register name. In the latter case, one single comparison
instruction forms four or five steps in the ladder program.

Table 1-2 Comparison Instructions

Instruction
name

Symbol
Operation

code
Function

Equal (EQU)

 LEQU Compare the registers specified as word, long word, or
floating. When the condition is true, ON is output. When
the condition is false, OFF is output.
 Constants may be specified as the comparison data.
 The most significant bit of a specified constant or

variable (register content) is treated as the sign bit
during comparison.

Note that you cannot specify odd-number words for
registers specified as long word or floating.
(Example: XL0010, FL001)

Not equal
(NEQ)

 LNEQ

Greater than
(GT)

 LGT

Greater than or
equal (GE)

 LGE

Less than (LT)

 LLT

Less than or
equal (LE)

 LLE

(3) Arithmetic function instructions
One single arithmetic function instruction forms one to 54 steps in the ladder programs.
For details on the arithmetic function instructions, see CHAPTER 2, “ARITHMETIC
FUNCTIONS.”

Table 1-3 Arithmetic Function Instructions

Instruction
name

Symbol
Operation

code
Function

Arithmetic
function

 – Each of a variety of available arithmetic instructions is
executed using registers and/or constants specified as
word, long word, or floating.

 F

 =

 ≠

 >

 <

 ≤

 ≥

1. LADDER INSTRUCTIONS

1-8

1.3.2 a-contacts
Any a-contact becomes ON when the value of a specified register is 1 (ON).
(1) a-contact start (LD)

The a-contact start instruction becomes ON when the value of a specified register is 1
(ON). For example, in the circuit shown below, if the value of X0000 is 1 (ON), R000
will be set to 1 (ON).

(2) a-contact series-connection (LAND)
The a-contact series-connection instruction performs an AND operation on the value of a
specified register and the result of the previous operation performed and, if the AND
operation results in 1 (ON), becomes ON. For example, in the circuit shown below, if the
values of X0000 and X0001 are both 1 (ON), R000 will be set to 1 (ON).

(3) a-contact parallel-connection (LD + ORB)
The a-contact parallel-connection instruction performs an OR operation on the value of a
specified register and the result of the previous operation performed and, if the OR
operation results in 1 (ON), becomes ON. For example, in the circuit shown below, if the
value of X0000 or X0001 is 1 (ON), R000 will be set to 1 (ON).

X0000 R000

X0000 R000 X0001

X0000 R000

X0001

1. LADDER INSTRUCTIONS

1-9

1.3.3 b-contacts
Any b-contact becomes ON when the value of a specified register is 0 (OFF).
(1) b-contact start (LDN)

The b-contact start instruction becomes ON when the value of a specified register is 0
(OFF). For example, in the circuit shown below, if the value of X0000 is 0 (OFF), R000
will be set to 1 (ON).

(2) b-contact series-connection (LANDN)
The b-contact series-connection instruction performs an AND operation on the inverted
value of a specified register and the result of the previous operation performed and, if the
AND operation results in 1 (ON), becomes ON. For example, in the circuit shown
below, if the values of X0000 and X0001 are both 0 (OFF), R000 will be set to 1 (ON).

(3) b-contact parallel-connection (LDN + ORB)
The b-contact parallel-connection instruction performs an OR operation on the inverted
value of a specified register and the result of the previous operation performed and, if the
OR operation results in 1 (ON), becomes ON. For example, in the circuit shown below,
if the value of X0000 is 1 (ON) or that of X0001 is 0 (OFF), then R000 will be set to 1
(ON).

X0000 R000

X0000 R000 X0001

X0000 R000

X0001

1. LADDER INSTRUCTIONS

1-10

1.3.4 Rising-edge and falling-edge contacts
The rising-edge contact (┤↑├) and falling-edge contact (┤↓├) remain ON only during
the sequence cycle in which the rising edge or falling edge (respectively) of the previous
operation’s result is detected.
For details, see the description under “V -- edge contacts” in Section 1.5, “Registers.”

Note: Any circuit in which an edge contact precedes another edge contact (as exemplified

below) will result in an error during compilation and hence may not be created.

<Example>

X0000 V000 V001 Y0000
↑ ↑ Compilation error

1. LADDER INSTRUCTIONS

1-11

1.3.5 Operation result push, read, and pop

(1) Operation result push (SPS)

The SPS instruction stores the result of the previous operation performed.
(2) Operation result read (SRD)

The SRD instruction reads the operation result stored by an SPS, SPSAND, or
SPSANDN instruction.

(3) Operation result pop (SPP)
The SPP instruction:
 Reads the operation result stored by an SPS, SPSAND, or SPSANDN instruction; and

then
 Clears the stored operation result.

1.3.6 Operation result push + a-contact, read + a-contact, and pop + a-contact

(1) Operation result push + a-contact (SPSAND)

The SPSAND instruction stores the result of the previous operation performed and
executes the subsequent a-contact with that result.

(2) Operation result read + a-contact (SRDAND)
The SRDAND instruction reads the operation result stored by an SPS, SPSAND, or
SPSANDN instruction and executes the subsequent a-contact with the operation result
read out.

(3) Operation result pop + a-contact (SPPAND)
The SPPAND instruction:
 Reads the operation result stored by an SPS, SPSAND, or SPSANDN instruction and

executes the subsequent a-contact with the operation result read out; and then
 Clears the stored operation result.
In the above example circuit, when the values of X0000 and X0010 are both 1 (ON),
R000 will be set to 1 (ON). When the values of X0000 and X0020 are both 1 (ON),
R001 will be set to 1 (ON). When the values of X0000 and X0030 are both 1 (ON),
R002 will be set to 1 (ON).

X0000 R000

R001

R002

SPS

SRD

SPP

X0000 X0010

X0020

X0030

R000

R001

R002

SPSAND

SRDAND

SPPAND

1. LADDER INSTRUCTIONS

1-12

1.3.7 Operation result push + b-contact, read + b-contact, and pop + b-contact

(1) Operation result push + b-contact (SPSANDN)

The SPSANDN instruction stores the result of the previous operation performed and
executes the subsequent b-contact with that result.

(2) Operation result read + b-contact (SRDANDN)
The SRDANDN instruction reads the operation result stored by an SPS, SPSAND, or
SPSANDN instruction and executes the subsequent b-contact with the operation result
read out.

(3) Operation result pop + b-contact (SPPANDN)
The SPPANDN instruction:
 Reads the operation result stored by an SPS, SPSAND, or SPSANDN instruction and

executes the subsequent b-contact with the operation result read out; and then
 Clears the stored operation result.
In the above example circuit, when the value of X0000 is 1 (ON) and that of X0010 is 0
(OFF), R000 will be set to 1 (ON). When the value of X0000 is 1 (ON) and that of
X0020 is 0 (OFF), R001 will be set to 1 (ON). When the value of X0000 is 1 (ON) and
that of X0030 is 0 (OFF), R002 will be set to 1 (ON).

1.3.8 Block union -- parallel connection (ORB)
The ORB instruction performs an OR operation on parallel blocks in a multi-block circuit.
For example, in the circuit shown below, when an OR operation on any given two of blocks
1 through 3 results in 1 (ON), R000 will be set to 1 (ON).

X0000 X0010

X0020

X0030

R000

R001

R002

SPSANDN

SRDANDN

SPPANDN

X0000 R000

X0011

X0001

X0010

Block 1

Block 2

X0020 Block 3

1. LADDER INSTRUCTIONS

1-13

1.3.9 NOT
The NOT instruction inverts a given input and outputs the result.
<When the input is 1 (ON)>

<When the input is 0 (OFF)>

The instruction that can be specified as an input to the NOT instruction is one of the
following: the a-contact, b-contact, edge contact, comparison, and parallel connection. A
NOT instruction with no input symbol may also be used.

<Inverting the result of an a-contact>

<Inverting the result of a b-contact>

<Inverting the result of an edge contact>

<Inverting the result of a comparison>

<Inverting the result of a parallel connection>

<NOT instruction with no input symbol>

=

ON

[Input] [Output]

OFF

OFF

[Input] [Output]

ON

↑

Always outputs a 0 (OFF).

Left reference line

1. LADDER INSTRUCTIONS

1-14

1.3.10 Coils
Coils are used to output the result (ON or OFF) of the previous operation performed to a
specified register. If a timer (T-register), one-shot timer (U-register), or a counter (C-
register) is specified as the coil, it will operate as described under “T -- ON-delay timers,”
“U -- one-shot timers,” or “C -- up-down counters,” respectively, in Section 1.5,
“Registers.”

<When the condition remains ON right before a coil>

<When the condition remains OFF right before a coil>

1.3.11 Set and reset coils

Set coils turn on a given keep relay when the result of the previous operation performed is
1 (ON). The keep relay remains ON thereafter even if the operation result becomes 0
(OFF). Reset coils, on the other hand, turn off the keep relay that has been turned on by a
set coil.
For more information, see the description under “K -- keep relays” in Section 1.5,
“Registers.”

X0000 Y0000 This coil outputs a value
of 1 (ON) to Y0000.

Assume that the value
of X0000 is 1 (ON).

This coil outputs a value
of 0 (OFF) to Y0000.

Assume that the value
of X0000 is 0 (OFF).

X0000 Y0000

1. LADDER INSTRUCTIONS

1-15

1.3.12 Comparison instructions
There are the following six types of comparison instructions available:
 Equal (EQU)
 Not equal (NEQ)
 Greater than (GT)
 Greater than or equal (GE)
 Less than (LT)
 Less than or equal (LE)
(1) Equal (EQU)

The EQU instruction outputs a value of 1 (ON) if the value of operand 1 equals that of
operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

(2) Not equal (NEQ)
The NEQ instruction outputs a value of 1 (ON) if the value of operand 1 does not equal
that of operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

(3) Greater than (GT)
The GT instruction outputs a value of 1 (ON) if the value of operand 1 is greater than
that of operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

=
DW000, DW001

Operand 1

Operand 2

≠
DW000, DW001

Operand 1

Operand 2

>
DW000, DW001

Operand 1

Operand 2

1. LADDER INSTRUCTIONS

1-16

(4) Greater than or equal (GE)
The GE instruction outputs a value of 1 (ON) if the value of operand 1 is greater than or
equal to that of operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

(5) Less than (LT)
The LT instruction outputs a value of 1 (ON) if the value of operand 1 is less than that
of operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

(6) Less than or equal (LE)
The LE instruction outputs a value of 1 (ON) if the value of operand 1 is less than or
equal to that of operand 2. Otherwise, it outputs a value of 0 (OFF).

For the operands, you can specify registers and constants of the word, long word, or
floating type. (*)

≧

DW000, DW001

Operand 1

Operand 2

＜

DW000, DW001

Operand 1

Operand 2

≤
DW000, DW001

Operand 1

Operand 2

1. LADDER INSTRUCTIONS

1-17

(*) You can specify a constant for operand 2 only.
The range of constants (integers) is -32768 to 32767 for the word type.
The range is -2147483648 to 2147483647 for the long word type.
The range is 2-126 to 2128 for the floating point type.
The instructions compare the constants and the contents of registers assuming they
are signed numbers.

Note 1: No comparison instruction may be connected directly to the right reference line
(output).

<Example of a direct connection to the right reference line (output)>

Note 2: If the value of an operand is the floating point type and a denormalized number
(-1.175494E-038 (0x807FFFFF) to 1.175494E-038 (0x007FFFFF) except for
0.0), the instructions assume the value of the operand as 0.0.

Note 3: You cannot specify odd-number words for registers of the long word or floating

type.
Example: XL0010, FL001

X0000
=

DW000, DW001

Prohibited

1. LADDER INSTRUCTIONS

1-18

1.3.13 Specifying indices in ladder instructions
Of the ladder instructions available, such instructions as a-contact, b-contact, rising-
/falling-edge contact, coil, and comparison accept specified indices.
 Indexing using the “base register (index register)” format

Execution register address = base register number + index register content (expressed in
units of words)
This indexing method uses as the execution address the location that is identified by the
content of the index register relative to the register number of the base register.
The only register type that may be specified as the base register is bit in such
instructions as a-contact, b-contact, edge contact, and coil, and is word in comparison
instructions.
The index registers specified in the above mentioned types of instructions are all word-
type registers.
Example: X0020 (FW000)

In this example, if the content of FW000 is the value H0020, the resulting
execution address is as follows: X0020 + H0020 -> X0040.

Note 1: If the content of FW000 is such a value as H0FF0 or H1200, which will result in
a value greater than XFFFF (i.e., the maximum value of X) when added to the
number X0020, the normal operation of the instruction using the index is not
guaranteed.

Note 2: The execution register address is calculated for instructions other than
comparison instructions in the following way:
Execution register address = base register number + index register content
For comparison instructions, it is calculated as follows:
Execution register address = base register number + index register content ×
H0010 (hexadecimal)

Example: XW0000 (FW001)
In this example, if the content of FW001 is the value H0040, the execution
register address is calculated as follows:
0000 (base register number) + H0040 (index register content) × H0010 =
XW400

[Note on compilation]
If the same base register is used for different coils, the coils are treated as the same coil
even if the indices are different, resulting in a compilation error.

1. LADDER INSTRUCTIONS

1-19

[Restrictions]
If one of the register names listed below is used as the coil, an index may not be specified.
Disregarding this rule will result in an input error.

Function name Register name
ON-delay timer T
One-shot timer U
Up-down counter C
Nesting N
Process register P

1. LADDER INSTRUCTIONS

1-20

1.3.14 Circuits and steps
It should be noted that, although the circuit shown below apparently consists of 14 steps in
terms of the instructions, it actually consists of 15 steps because a start instruction is
automatically added to the beginning of the circuit during compilation. In addition, the
program below is stored and executed in the order of the encircled numbers given. The
program portion enclosed in each box forms a step.

[1] [2] [3]

[4] [5]

[6] [7]

[8]

[12]

[13]

[11]

[10] [14]

[9]

1. LADDER INSTRUCTIONS

1-21

1.4 Register Statuses at a Reset, Power Recovery, and State Transition between STOP and
RUN

 Register name
Status at a reset or

power recovery

Status at a transition
between STOP and

RUN
Bit registers T-/U-contact and coil Cleared Remaining unchanged

C-contact and coil Remaining unchanged Remaining unchanged
K Remaining unchanged Remaining unchanged
S Initialized

(with initial value)
Remaining unchanged

X, Y, R, M, A, N, P, E, V, Z, J,
Q, LB, LR, LV

Cleared Remaining unchanged

Word and long-
word registers

T-/U-set value Remaining unchanged Remaining unchanged
T-/U-count value Cleared Remaining unchanged
C-set value and count value Remaining unchanged Remaining unchanged
FW, DW, BD, LX, LM, LG Remaining unchanged Remaining unchanged
LW, LL, LF, IW, OW, HH Cleared Remaining unchanged

1. LADDER INSTRUCTIONS

1-22

1.5 Registers

1.5.1 Registers usable in ladder instructions
Table 1-4 is a list of all registers usable in ladder instructions.

Table 1-4 Usable Registers

(1/2)

Function name
Register

name

Ladder symbols Status after
reset or
power

recovery

I/O
External input X ● – – – ● ● Cleared

External output Y ● – ● – ● ● Cleared

In
te

rn
al

 a
ux

il
ia

ry
 f

un
ct

io
ns

Internal register R ● – ● – ● ● Cleared

Extension internal register M, A ● – ● – ● ● Cleared

Keep relay K ● – –  ● ● Remaining
unchanged

ON-delay
timer

Contact, coil T ● – ● – ● ● Cleared

Set value TS – – – – ● ● Remaining
unchanged

Count value TC – – – – ● ● Cleared

One-shot
timer

Contact, coil U ● – ● – ● ● Cleared

Set value US – – – – ● ● Remaining
unchanged

Count value UC – – – – ● ● Cleared

Up-down
counter

Contact, coil CU – – ● – – – Remaining
unchanged

CD – – ● – – – Remaining
unchanged

CR – – ● – – – Remaining
unchanged

C0 ● – – – ● ● Remaining
unchanged

Count value CS – – – – ● ● Remaining
unchanged

Count value CC – – – – ● ● Remaining
unchanged

Global link register G ● – ● – ● ● Cleared

Nesting coil NM – – ● – – – Cleared

NZ – – ● – – – Cleared

N0 ● – － – ● ● Cleared

Process register P ● – ● – ● ● Cleared

Event register E ● – ● – ● ● Cleared

Edge contact V – ● – – ● ● Cleared

Zee register Z – (*1) – – (*1) – – (*1) – (*1) Cleared

System register S ● – – – ● ● Initialized

Shared-data register between
HI-FLOW and ladder

J ● – – – ● ● Cleared

Q ● – ● – ● ● Cleared

: Usable register.
–: Non-usable register.

 S

R
F Compa-

rison

1. LADDER INSTRUCTIONS

1-23

Table 1-4 Usable Registers
(2/2)

Function name
Register

name

Ladder symbols Status after
reset or
power

recovery

In
te

rn
al

 a
ux

il
ia

ry
 f

un
ct

io
ns

HI-FLOW inter-process
register

HH – – – – – – Cleared

Extension internal register LB ● – ● – ● ● Cleared

Converter-specific internal
register

LR ● – ● – ● ● Cleared

Converter-specific edge
contact register

LV – ● – – ● ● Cleared

Input register (reserved for
future use)

IW – – – – ● ● Cleared

Output register (reserved for
future use)

OW – – – – ● ● Cleared

Internal register BD – – – – – ● Remaining
unchanged

Function data register BW
(*2)

– – – – – ● Depending
on BD

Output register (reserved for
future use)

DW – – – – ● ● Remaining
unchanged

Function work register FW – – – – ● ● Remaining
unchanged

Extension function work
register
Long-word work register

LW – – – – ● ● Cleared

LL – – – – ● ● Cleared

Single-precision floating-
point work register

LF – – – – ● ● Cleared

Backup word work register LX – – – – ● ● Remaining
unchanged

Backup long-word work
register

LM – – – – ● ● Remaining
unchanged

Backup single-precision
floating-point work register

LG – – – – ● ● Remaining
unchanged

: Usable register.
–: Non-usable register.
(*1) Do not use Z-register although it does not result in a compilation error.
(*2) Accessed by indirect addressing.

Do not use Z-register although it does not result in a compilation error.

 S

R
F Compa-

rison

1. LADDER INSTRUCTIONS

1-24

1.5.2 Register numbers
Table 1-5 is a list of all register numbers that can be used in ladder programs. As shown, the
range of usable register numbers depends on the types of registers accessed by their generic
register names.

Table 1-5 Register Numbers
(1/2)

No.
Register

name

Register types accessed

Bit Word Long-word
Single-precision

floating-point
1 X X0000 to XFFFF XW0000 to XWFFF0 XL0000 to XLFFE0 –
2 Y Y0000 to YFFFF YW0000 to YWFFF0 YL0000 to YLFFE0 –
3 R R000 to RFFF RW000 to RWFF0 RL000 to RLFE0 –
4 M M0000 to MFFFF MW0000 to MWFFF0 ML0000 to MLFFE0 –
5 A A000 to AFFF AW000 to AWFF0 AL000 to ALFE0 –
6 K K000 to KFFF KW000 to KWFF0 KL000 to KLFE0 –
7 T T000 to T7FF TW000 to TW7F0 TL000 to TL7E0 –
8 TS – TS000 to TS1FF – –
9 TC – TC000 to TC1FF – –
10 U U000 to U0FF UW000 to UW0F0 UL000 to UL0E0 –
11 US – US000 to US0FF – –
12 UC – UC000 to UC0FF – –
13 CU CU00 to CUFF – – –
14 CD CD00 to CDFF – – –
15 CR CR00 to CRFF – – –
16 C0 C000 to C0FF CW000 to CW0F0 CL000 to CL0E0 –
17 CS – CS000 to CS0FF – –
18 CC – CC000 to CC0FF – –
19 G G000 to GFFF GW000 to GWFF0 GL000 to GLFE0 –
20 NM NM01 to NMFF – – –
21 NZ NZ01 to NZFF – – –
22 N0 N001 to N0FF NW000 to NW0F0 NL000 to NL0E0 –
23 P P001 to P080 PW000 to PW080 PL000 to PL060 –
24 E E0000 to EFFFF EW0000 to EWFFF0 EL0000 to ELFFE0 –
25 V V000 to VFFF VW000 to VWFF0 VL000 to VLFE0 –
26 Z (*1) – – – –
27 S S0000 to SBFFF SW0000 to SWBFF0 SL0000 to SLBFE0 –

–: Not accessible.

1. LADDER INSTRUCTIONS

1-25

Table 1-5 Register Numbers
(2/2)

No.
Register

name

Register types accessed

Bit Word Long-word
Single-precision

floating-point
28 J J000 to JFFF JW000 to JWFF0 JL000 to JLFE0 –
29 Q Q0000 to QFFFF QW0000 to QWFFF0 QL0000 to QLFFE0 –

30 LB
LB0000 to LBFFFF LBW0000 to

LBWFFF0
LBL0000 to
LBLFFE0

–

31 LR
LR0000 to LR0FFF LRW0000 to

LRW0FF0
LRL0000 to LRL0FE0 –

32 LV
LV0000 to LV0FFF LVW0000 to

LVW0FF0
LVL0000 to
LVL0FE0

–

33 IW – IW000 to IWFFF IL000 to ILFFE –
34 OW – OW000 to OWFFF OL000 to OLFFE –
35 BD – – BD000 to BD1FE –

36
BW
(*2)

– BW000 to BW1FE BL000 to BL1FE –

37 DW – DW000 to DWFFF DL000 to DLFFE –
38 FW – FW000 to FWBFF FL000 to FLBFE –

39 LW
– LWW0000 to

LWWFFFF
LWL0000 to
LWLFFFE

–

40 LL – – LLL0000 to LLL1FFF –

41 LF
– – – LF0000 to

LF1FFF

42 LX
– LXW0000 to

LXW3FFF
LXL0000 to
LXL3FFE

–

43 LM
– – LML0000 to

LML1FFF
–

44 LG
– – – LG0000 to

LG1FFF
–: Not accessible.
(*1) Do not use Z-register although it does not result in a compilation error.
(*2) Accessed by indirect addressing.

1. LADDER INSTRUCTIONS

1-26

X, Y EXTERNAL INPUT AND OUTPUT
Each external input/output register is used to input or output
signals via the external input or output module connected to
the PCs.
X: Receive input signals from external sources via the input

module.
Y: Send operation results from the ladder program to external

destinations via the output module.

 Usage example
The circuit shown below outputs a signal to the Y00D6 of the output module when the X0095
of the input module contains a value of 1 (ON).

Range of numbers 0000 to FFFF
Input/output range
of remote I/O

0000 to 07FF

X0095 Y00D6

X0095

X0022

R000 Y00D6

Input condition Operation result

Numbers
0080 to 008F
0090 to 009F
00A0 to 00AF
00B0 to 00BF
00C0 to 00CF
00D0 to 00DF
00E0 to 00EF
00F0 to 00FF

Input module Output module

External input source External output destination

Limit switch push
button

Lamp solenoid
relay

1. LADDER INSTRUCTIONS

1-27

1R, M, A, LB INTERNAL REGISTERS
These internal registers are used to pass
operation results between ladder
instructions. When the coil of a specified
internal register becomes ON, its contact
will also become ON simultaneously. In
contrast, when the former becomes OFF,
the latter will also become OFF
simultaneously.

 Usage example  Timing chart

All of the R, M, A, and LB registers are functionally the same.

Register
name

R, A M LB

Range of
numbers

000 to FFF 0000 to FFFF 0000 to FFFF

R050

R050

X0000 R050 X0001

X0011 Y100 X0012

X0020 Y200 X0030

X0013 R0050

R0050

1. LADDER INSTRUCTIONS

1-28

K KEEP RELAYS
A keep relay has its contact closed (ON) when
its set coil is energized (ON). This closed (ON)
condition is maintained until its reset coil is
energized (ON). This is true even when the
power to the keep relay is OFF. If the set and
the reset coil are energized at the same time,
whichever coil comes later in the program has
priority.

(1) Reset-first circuit
 Usage example

 Timing chart

Range of numbers 000 to FFF
Settling-pulse width At least 1 sequence cycle
When a set and a
reset signal are input
simultaneously:

Whichever coil comes
later in the program has
priority.

S

R

X0000 K01D

X0001 K01D

If the set and reset coils are energized at the same time, S is executed within the
sequence cycle and the keep relay has its contact closed (ON) until R is executed.

Sequence cycle

K01D

X0000

X0001

S

R

1. LADDER INSTRUCTIONS

1-29

(2) Set-first circuit
 Usage example

 Timing chart

R

S

X0000 K01D

X0001 K01D

Sequence cycle

K01D

X0000

X0001

R

S

If the set and reset coils are energized at the same time, S is executed within the sequence cycle
and the keep relay has its contact open (OFF) until R is executed.

1. LADDER INSTRUCTIONS

1-30

T ON-DELAY TIMERS

100-ms timer
10-ms timer

(used by setting)
Range of numbers 000 to 1FF or 000 to 7FF 000 to 00F
Set value 0 to 65535 (0.0 to 6553.5 seconds) 0 to 65535 (0.0 to 6553.5 seconds)
Error At least 100 ms + 1 sequence cycle At least 10 ms + 1 sequence cycle
Settling-pulse width (*1) At least 100 ms At least 10 ms

(*1) The settling-pulse width stands for the minimum time period in which the contact to energize the coil of
an ON-delay timer must remain closed (ON).

The contact of an ON-delay timer is not closed (ON) until the delay after the energization of its
coil, which is specified by the set value, has elapsed. This set value may be specified in units of
0.1 second in the range 0.0 to 6553.5.
The first 16 registers T000 through T00F can be used as 10-ms timers by settings.
These settings can be made by choosing [Utility] – [PCs edition] – [PCs edition] in the S10VE
programming software product called the LADDER DIAGRAM SYSTEM/S10VE (model S-
7898-02). For information on how to operate the ladder diagram system, refer to the S10VE
Software Manual Operation Ladder Diagram System for Windows® (manual number SEE-3-
131).

 Usage example

In the circuit shown left, the lamp
(Y0200) is not lit until the delay
specified by the set value (two seconds)
has elapsed after the push of the push
button (X0020). Once the lamp is lit by
holding down the push button after the
push, it goes out when the push button
is released

X0020 T020

T020 Y0200

20 Set value

1. LADDER INSTRUCTIONS

1-31

 Timing chart

Notes:
 If the coil is de-energized before the specified delay expires, the contact will not be closed

(ON). In this case, when the coil is energized again, the timer will start counting up from 0.
 The count is incremented from 0 to 65535. When the count reaches 65535, it is reset for

counting from 0 again.
 Where the ON-delay timer is used as a 100-ms timer, the detection of its coil’s ON/OFF

condition is performed at 100-ms intervals asynchronously with the ladder circuit’s execution
cycle, also called the sequence cycle (with 10-ms timers, it is done at 10-ms intervals). If the
coil’s ON condition lasts for less than 100 milliseconds, it will not be detected, resulting in
no operation of the ON-delay timer. To ensure the operation of the timer, create a ladder
circuit in a way that maintains the ON condition of the coil for at least 100 milliseconds.

Specified
delay

Specified
delay

1. LADDER INSTRUCTIONS

1-32

U ONE-SHOT TIMERS
When the coil of a one-shot timer is
energized, its contact is closed (ON). This
ON condition then lasts for the time period
specified by the set value, which can be
specified in units of 0.1 second in the range
0.0 to 6553.5 (0 to 65535 if it is specified
from the PC used as a LADDER DIAGRAM
SYSTEM/S10VE).

 Usage example
In the circuit shown left, the lamp (Y0030) is
lit by pushing the push button. Once the lamp
is lit, it stays ON for the time period specified
by the set value (2 seconds).

 Timing chart

Range of
numbers

000 to 0FF

Set value 0 to 65535 (0.0 to 6553.5 seconds)

Error At least 100 ms + 1 sequence cycle

Settling-pulse
width (*)

At least 100 ms

X0020 U020

U020 Y0030

20

Specified
time period

Specified
time period

(*) The settling-pulse width stands for the minimum
time period in which the contact to energize the coil
of a one-shot timer must remain closed (ON).

1. LADDER INSTRUCTIONS

1-33

Notes:
 Detection of a one-shot coil’s ON/OFF condition is performed at 100-ms intervals

asynchronously with the ladder circuit’s execution cycle, also called the sequence cycle. If
the coil’s ON condition lasts for less than 100 milliseconds, it will not be detected, resulting
in no operation of the one-shot timer. To ensure the operation of the timer, create a ladder
circuit in a way that maintains the ON condition of the coil for at least 100 milliseconds.
 Even if the coil of a one-shot timer is de-energized (OFF) before the time period specified by

the set value expires, its contact (U-register) remains closed (ON) until it expires. That is, the
one-shot timer continues counting up until the specified time period expires, regardless of the
current ON/OFF condition of its coil.

1. LADDER INSTRUCTIONS

1-34

C UP-DOWN COUNTERS
An up-down counter is a combination of an
up counter (CU) and a down counter (CD).
Its count is incremented every time the up
counter’s coil is energized, and decremented
every time the down counter’s coil is
energized.
The counter contact (C0) is closed (ON)
when the count exceeds the set value. The
reset coil (CR) is used to clear the count and
open the counter contact (OFF).

CU: Up counter
CD: Down counter
CR: Reset coil
C0: Counter contact

 Usage example

 In the circuit shown left, the switch A

(X0020) is used to count the number of
balls that drop into the basket, and the
switch B (X0021) is used to count
the balls that drop from the basket; that
is, the circuit is used to count the balls
that are currently in the basket.
 When the number of balls in the basket

reaches 3 or greater, the lamp (Y0020)
is lit. When the push button (X0022) is
pushed, the count is zero-cleared and
the lamp goes out.

Range of numbers CU

00 to FF
CD
CR

 C0
Set value Count in the range 0 to

65535
Settling-pulse width
(*)

At least 1 sequence cycle

When a set and a reset
signal are input
simultaneously:

Reset having priority

In the event of a power
outage:

Non-volatile

A

B

X0020 CU10
3

X0021 CD10
3

C010 Y0020

X0022 CR10

Up-down counter

X0020 CU10 up

X0021 CD10 down

X0022
CR10 zero-
cleared

Count
C

C010 Y0020

Set value

C
om

pa
-

ri
so

n

S= S
C ≥ S

(*) The settling-pulse width stands for the minimum
time period in which the contact to energize the
coil of an up or down counter or a reset coil must
remain closed (ON).

1. LADDER INSTRUCTIONS

1-35

 Timing chart

Notes:
 The up counter continues counting even when its count exceeds the set value. When the

count overflows (i.e., it exceeds the value 0xFFFF), the counter starts counting from 0 again,
the closed counter contact being opened (OFF).
 The down counter stops counting when its count reaches 0.

NOTICE

If the power to the PLC is turned on during the sequence cycle in which the
counter coil is being energized from OFF to ON level, the counter coil will be
energized normally, but the count may not be incremented. To avoid this,
observe the following rules:
[1] Shut off the power to the PLC only when the coil is in a stable condition.

Never change the coil’s condition from OFF to ON during the power shut-off
operation.

[2] Use an uninterruptible power supply (UPS) for protection against power
outages.

6
5
4
3
2
1 Count 2 3 4 3 2 1 1

CU10

CD10

CR10

C010

Sequence cycle

1. LADDER INSTRUCTIONS

1-36

G GLOBAL LINK REGISTERS
A global link register (G-register) is used in cases where
OD.RING modules (option) are installed. These registers are
provided as a means of exchanging interlock information
between the interlocked CPUs.
When the coil of a global link register is energized (ON) (or
de-energized [OFF]) in one such CPU, the contact(s) with the
same register number are closed (ON) (or opened [OFF]) in
the other such CPU(s).

 Usage example (where OD.RING modules are used)

[Operation]
 When the coil of G000 is energized (ON) (or de-energized [OFF]) in CPU#1, the a-contacts

with the same number G000 are closed (ON) (or opened [OFF]) in both CPU#2 and CPU#3.
 When the coil of G100 is energized (ON) (or de-energized [OFF]) in CPU#2, the a-contacts

with the same number G100 are closed (ON) (or opened [OFF]) in both CPU#1 and CPU#3.
 When the coil of G200 is energized (ON) (or de-energized [OFF]) in CPU#3, the a-contacts

with the same number G200 are closed (ON) (or opened [OFF]) in both CPU#1 and CPU#2.

G000

G100 G200

G100

G000 G200

G200

G000 G100

[CPU#1] [CPU#2] [CPU#3]

Range of numbers 000 to FFF

1. LADDER INSTRUCTIONS

1-37

 Operation of the OD.RING modules

 The contents of the G-register area ranging from G000 to G0FF in CPU#1 are transferred to
the same register areas in CPU#2 and CPU#3.
 The contents of the G-register area ranging from G100 to G1FF in CPU#2 are transferred to

the same register areas in CPU#1 and CPU#3.
 The contents of the G-register area ranging from G200 to G2FF in CPU#3 are transferred to

the same register areas in CPU#1 and CPU#2.

: Range of CPU link assignment

G000

G0FF
G100

G1FF
G200

G2FF
G300

G000

G0FF
G100

G1FF
G200

G2FF
G300

G000

G0FF
G100

G1FF
G200

G2FF
G300

●
● ●

●

●

●

●

●

●

CPU#1

OD.RING module

CPU#2

OD.RING module

CPU#3

OD.RING module

(Transfer) (Transfer)

(Transfer) (Transfer)

(Transfer) (Transfer)

1. LADDER INSTRUCTIONS

1-38

N NESTING COILS
Nesting coils serve as a means of dividing one single
sequence program into as many smaller modules as the
number of plants to be controlled by that program. Of the
available nesting coils, N000 is called the master N-coil, and
each of N001 through N0FF is called a sub-N coil.

The master N-coil starts as each sequence cycle begins when the LADDER RUN/STOP switch
on the CPU module is set to RUN. Sub-N coils are called from the master N-coil or other sub-N
coils. For N coils, you can select either of two types of control. One is master control (NM) that
de-energizes the edge contact and the coil that are being used when the N coil makes a transition
from ON to OFF. The other is zone control (NZ) that maintains the previous status. In addition,
N-coils can be nested in up to four levels. Any nesting in more than four levels will result in an
error at the time of a program run.
Unlike other coils, the same N coil can exist more than once in the same ladder sheet.

<An example of master control using more than four levels of nesting>

Note: The master N coil (N-coil number 000) may not be used as a contact or coil. (If so used, the

master N coil will cause an input error.)

Range of numbers 000 to 0FF
Maximum number of
nesting levels usable

4

If this ladder program using more than four nesting
levels is executed, it will stop with the CPU
module’s “ERR” LED indicator lit.

Level 1

Level 2

Level 3

Level 4

Level 0

Level 5

X0000 NM01
N000

N001

X0001 NM02

N002

X0002 NM03

N003

X0003 NM04

N004
X0004 NM05

N005

X0005 Y0001

1. LADDER INSTRUCTIONS

1-39

(1) Master control (NM)
Master control has two operation modes depending on the coil that is de-energized when the
N coil makes a transition from ON to OFF.
<Operation modes of master control>

Normal mode: This mode de-energizes the rising (falling) edge contact and the normal coil
that are nested under the N coil that makes a transition from ON to OFF.

0-output mode: In this mode, the same effect as in normal mode is produced at the time of
the master control coil’s making a transition from ON to OFF state, plus any
set and reset coils become OFF.

To change the operation mode, open LADDER DIAGRAM SYSTEM/S10VE (model: S-
7898-02). Click [Utility], [PCs edition], and then [PCs edition]. For details about the
procedure, refer to the S10VE Software Manual Operation Ladder Diagram System for
Windows® (manual number SEE-3-131).

 Usage example  Timing chart

The following program exerts
master control over N001 from
N000:

(*) This period of execution de-energizes the coil used in N001 when
NM01 makes a transition from ON to OFF.

NOTICE

Master control might experience the following two problems when the same N
coil exists multiple times in the same ladder sheet and the ON and OFF states of
the N coil coexist.
 Regarding edge contacts, rising-edge contacts might always be detected, or

edge contacts remain OFF and falling-edge contacts might never be detected.
For this reason, do not use edge contacts when you place multiple N coils.
 Normal coils are energized or de-energized in one sequence depending on the

status of the N coil. Even if a coil is energized, it seems de-energized when you
use a circuit monitor or the MCS to reference the value of the coil if the last N
coil is not executed yet.

N000
X0000 NM01

N001 Y0010

X0000

Y0010

Execution of
N000
Execution of
N001

ON OFF

(*)

1. LADDER INSTRUCTIONS

1-40

(2) Zone control (NZ)
Zone control has no operation mode.
 Usage example  Timing chart

The following program exerts
zone control over N001 from
N000:

(*) Unlike the case of master control, this period of execution under
zone control maintains the previously initiated condition of the
coil used with N001 when NZ01 makes a transition from ON to
OFF state.

X0000

Y0010

Execution of
N000
Execution of
N001

ON
(*)

N000 X0000 NZ01

N001 Y0010

1. LADDER INSTRUCTIONS

1-41

P PROCESS REGISTERS
A process register is used to initiate a program written
in such a computer language as C or assembly
language (hereinafter called a task) from the ladder
program.
When energized, the coil specified with a process
register (P-coil) triggers the execution of the identified
task, which is identified by its specified number (task
number). The CP of the CPU module executes tasks.
Users can register tasks only in the CP.

<Assignment to process registers>

Classification Number Name Description
User-created P001 Initializing

task
A task that is executed whenever the CPU module is
manually reset or power-on reset. Assign a system
initialization program to this number.

P002 to P080 User task Assign user-written programs to these numbers.

(1) Initiating only once when a given contact is closed (ON)

 Usage example

When X020 makes a transition from OFF to ON state,
the task assigned to P020 is initiated only once.

P020

Task number in hexadecimal. In this example, the
task numbered 32 is initiated.

 Timing chart

Range of numbers 001 to 080

Initiation method
Level start

X0020 P020 V020

X0020

V020

Sequence cycle

Execution of the
task assigned to
P020

1. LADDER INSTRUCTIONS

1-42

(2) Initiating repeatedly while a given contact is closed (ON)
 Usage example

As long as X0020 remains closed (ON), the task
assigned to P020 is initiated repeatedly.

 Timing chart

Notes:
 If an attempt is made to energize the P-coil for which a task is not registered, nothing will

be executed.
 The tasks that can be initiated with a specified P-coil are those whose task numbers are in

the range 1 to 128 (001 to 080 in terms of process register numbers). The tasks numbered
129 through 255 cannot be initiated with a specified P-coil.
 The CP of the CPU module executes tasks.
 If a specified P-coil is energized (ON) more than once during the execution time of the

task registered with the same number as that P-coil’s, these multiple task initiation
requests will be met in the following way:

When the task is waiting for execution on the CPU (i.e., it is already initiated but not
executed yet):

The task will be initiated only a second time after the first initiated execution has
been completed.

When the task is in a state other than waiting for execution on the CPU:
The task will be initiated only a second and a third time, if any, after the first initiated
execution has been completed.

 After the ladder program issues a task startup request to the CP, it continues the operation
even if the task is not started.

X0020 P020

X0020

Sequence cycle

Execution of the
task assigned to
P020

1. LADDER INSTRUCTIONS

1-43

E EVENT REGISTERS
An event register is used to output event information,
such as information on user errors. The event information
output can be monitored by using the BASE
SYSTEM/S10VE’s event register monitoring function.
When the value of one of registers E0000 to E01FF is 1
(ON), the applicable indicator on the CPU module is lit.
When all the values of registers E0000 to E01FF are 0
(OFF), the indicators are extinguished.

However, the range of register numbers that are presented on screen by the above-mentioned
event register monitoring function of the BASE SYSTEM/S10VE (model S-7898-02), and the
range of register numbers that can be used to light the CPU module’s indicator, are both from
E0000 to E01FF.
As for the numbers 0400 through 23FFF, they can be used for input and output with the analog
and pulse counter modules connected for remote I/O operations. To use them, proper settings
must be made in advance by selecting [Utility] – [PCs edition] – [Analog counter] in the
LADDER DIAGRAM SYSTEM/S10VE (model S-7898-02). For information on how to operate
the ladder diagram system, refer to the S10VE Software Manual Operation Ladder Diagram
System for Windows® (manual number SEE-3-131).
Note: Not all types of available analog modules use event registers. For information on which

type of analog module uses event registers, refer to instruction manuals on analog modules.

 Usage example

X0010 E0020

X0020

ON When the value of an event register is 1 (ON), the applicable
indicator on the CPU module is lit. For details about the
indicators to be lit when the values of multiple event
registers are 1 (ON), refer to the S10VE User’s Manual
General Description (manual number SEE-1-001).

Range of numbers 000 to FFFF
Range of indicator
display

000 to 01FF

Range of numbers
usable for 4-channel
analog and pulse counter
I/O operations

0400 to 23FF

LQP600 CPU

C P U R U N

1. LADDER INSTRUCTIONS

1-44

The event information output can be viewed by using the BASE SYSTEM/S10VE’s event
information display function:

Event register monitoring using the BASE SYSTEM/S10VE

1. LADDER INSTRUCTIONS

1-45

V EDGE CONTACTS
An edge contact is classified either as a rising-edge contact
(┤↑├) or a falling-edge contact and remains closed
(┤↓├) only during the sequence cycle in which its rising
edge or falling edge, respectively, is detected.
None of the numbers shown left may be used for both a
rising-edge contact and a falling-edge contact in the same
program.

(1) Rising-edge contact
A rising-edge contact remains closed (ON) only during the sequence cycle in which its rising
edge (a transition from OFF to ON state) is detected.

 Usage example  Timing chart

(2) Falling-edge contact

A falling-edge contact remains closed (ON) only during the sequence cycle in which its
falling edge (a transition from ON to OFF state) is detected.

 Usage example  Timing chart

NOTICE

The number of a rising-edge contact and the number of a falling-edge contact
must be different in the same program. If not, the program does not operate
normally.

X0000 V000 R000
X0000

R000

T T

T: Each is one single sequence cycle.

X0000 V000 R000
X0000

R000

T T
T: Each is one single sequence cycle.

Range of numbers 000 to FFF

1. LADDER INSTRUCTIONS

1-46

S SYSTEM REGISTERS
System registers are read-only registers reflecting the system’s
operation performed or other things relating to the system.

Table 1-6 is a list of all available system registers.

Table 1-6 System Registers

No. Register numbers Register naming
1 S0000 to S000F Arithmetic-function flag registers
2 S0010 to S001F Ladder program control registers
3 S0020 to S002F HI-FLOW application-instruction execution-result flag

registers
4 S0030 to S00FF (Reserved for future use by the system)
5 S0100 to S015F Ladder program control counter
6 S0160 to S01FF (Reserved for future use by the system)
7 S0200 to S020F Time control registers
8 S0210 to S027F (Reserved for future use by the system)
9 S0280 to S02EF Time control registers

10 S02F0 to S02FF (Reserved for future use by the system)
11 S0300 to S047F Remote I/O status registers
12 S0480 to S053F (Reserved for future use by the system)
13 S0540 to S057F Optional-module status registers (D.NET)

14 S0580 to S08BF (Reserved for future use by the system)

15 S08C0 to S08FF Optional-module status registers (ET.NET)
16 S0900 to S093F Sequence cycle time
17 S0940 to S097F Ladder execution-time registers
18 S0980 to S09BF Optional-module status registers (D.NET)
19 S09C0 to S09FF Ethernet communication result flag registers
20 S0A00 to S0ADF Optional-module status registers (J.NET)
21 S0AE0 to S0BEF (Reserved for future use by the system)
22 S0BF0 to S0BFF CPU status registers
23 S0C00 to S0CFF Configuration control registers
24 S0D00 to S0EFF Option module status output
25 S0F00 to S0FFF Optional parameter settings output registers
26 S1000 to S2FFF (Reserved for future use by the system)
27 S3000 to S31FF Optional-module installation status output registers
28 S3200 to SAFFF (Reserved for future use by the system)
29 SB000 to SBFFF For users

Range of numbers 0000 to BFFF

1. LADDER INSTRUCTIONS

1-47

(1) Arithmetic-function flag registers
Arithmetic-function flag registers indicate the set/reset statuses of predefined flags that occur
upon the execution of system arithmetic-function instructions. These registers cannot be
referenced from the ladder circuit monitor and MCS functions (if an attempt is made to do so,
the registers are always displayed as “OFF”).

(MSB) (LSB)

 215 20
SW0000 1/0 1/0 1/0 1/0 1/0 1/0 (Reserved for future extension)

(2) Ladder program control registers

(MSB) (LSB)

 215 20
SW0010 1 0 1/0 1/0 (Reserved for future extension)

Note: None of the above bit registers S0010, S0011, S0012, and S0013 become ON in the event

of a power outage.

S0005: Overflow flag (V)
S0004: Zero flag (Z)
S0003: Negative flag (N)
S0002: Positive flag (P)
S0001: Error flag (E)
S0000: Extend flag (X)

S0013: One sequence cycle pulse at a ladder RUN-to-STOP transition
S0012: One sequence cycle pulse at a ladder STOP-to-RUN transition
S0011: Always-OFF flag
S0010: Always-ON flag

T

S0010

CPU status

T

T: Each is a sequence cycle.

STOP

S0011

S0012

S0013

Timing chart:

Switch operation
RUN (or SIMU) STOP

▽

STOP RUN (or SIMU)

▽

1. LADDER INSTRUCTIONS

1-48

(3) HI-FLOW application-instruction execution-result flag registers
HI-FLOW application-instruction execution-result flag registers indicate the statuses of
predefined flags that occur upon the execution of HI-FLOW application instructions.

(MSB) (LSB)

 215 20
SW0020 1/0 1/0 1/0 1/0 1/0 1/0 (Reserved for future extension)

(4) Ladder program control registers
Ladder program control registers are counters that can be used in sequence control.

(MSB) (LSB)

 215 20
SW0100 10-ms interval counter

SW0110 100-ms interval counter

SW0120 1-second interval counter

SW0140 Sequence cycle counter

SW0150 Remote I/O cycle accumulation counter

 All the above counters start counting from 0 again when they overflow.
 Any of the above counters will have an error of approximately ±10% because their

precision depends on interrupts handled by the operating system (OS).

(5) Time control registers
Time control registers are provided as a means of controlling the setting of current time in the
LPU module. They are used when setting the current time in the CPU module.

(MSB) (LSB)

 215 20
SW0200 1/0 1/0 1/0 (Reserved for future extension)

S0025: Overflow flag (V)
S0024: Zero flag (Z)
S0023: Negative flag (N)
S0022: Positive flag (P)
S0021: Error flag (E)
S0020: Extend flag (X)

S0202: Set data and start (1: Set data and start; 0: Normal use)

S0201: Stop timer (1: Stop request already issued;

0: No stop request needs to be issued)

S0200: Timer updating in process (1: Timer updating in process;

0: Timer updating stopped)

Zero-cleared when the CPU module is
manually reset or power-on reset.

… Zero-cleared when the CPU module makes a STOP-to-RUN transition.

… Zero-cleared when the remote I/O status changes from LADDER STOP
to LADDER RUN.

1. LADDER INSTRUCTIONS

1-49

(6) Time setting registers
Time setting registers are used to store values indicating the year, month, day of month, hours,
minutes, seconds, and day of week. When you make time settings in the CPU module, store
time information in these registers. Data stored in these registers must be in binary format.

(MSB) (LSB)

 215 28 27 20
SW0280 Unused Seconds

SW0290 Unused Minutes

SW02A0 Unused Hours

SW02B0 Unused Day of month

SW02C0 Unused Month

SW02D0 Year

SW02E0 Unused Day of week

Seconds: Must be in the range 0 to 59.
Minutes: Must be in the range 0 to 59.
Hours: Must be in the range 0 to 23.
Day of month: Must be in the range 1 to 31.
Month: Must be in the range 1 to 12.
Year: Must be in the range 1970 to 2069.
Day of week: Must be in the range 1 to 7.

(1: Sun; 2: Mon; 3: Tue; 4: Wed; 5: Thu; 6: Fri; 7: Sat)

1. LADDER INSTRUCTIONS

1-50

(7) Remote I/O status registers
Remote I/O status registers present remote I/O station information, such as station registered
or not, timeout error detected or not, and fuse blown or not.

<Register assignment>

 All stations that are currently connected to the communication
line and that have thus far responded normally at least once
have their associated registers set to 1. (*)

 All registered stations in which a timeout error has been

detected have their associated registers set to 1. (*)

 All registered stations in which a fuse-blown condition (DO

module fuse blown) has been detected have their associated
registers set to 1. (*)
(*) One-to-one correspondence between stations and bits:

No. X- or Y-number Registered station
Timed-out

station
Fuse-blown

station
0
1
2
3
4

124
125
126
127

0000 to 00F
0010 to 01F
0020 to 02F
0030 to 03F
0040 to 04F

07C0 to 7CF
07D0 to 7DF
07E0 to 7EF
07F0 to 7FF

S0300
S0301
S0302
S0303
S0304

S037C
S037D
S037E
S037F

S0380
S0381
S0382
S0383
S0384

S03FC
S03FD
S03FE
S03FF

S0400
S0401
S0402
S0403
S0404

S047C
S047D
S047E
S047F

S0300

Registered
stations

S0380

Timed-out
stations

S0400

S047F

Fuse-blown
stations

1. LADDER INSTRUCTIONS

1-51

(8) Optional-module status registers (ET.NET)
These optional-module status registers are used to store error information on errors detected in
each ET.NET module (main module or submodule). For details, refer to the S10VE User’s
Manual Option ET.NET (LQE260-E) (manual number SEE-1-105).

(MSB) (LSB)

 215 20
SW08C0 MAIN CH1 error information

SW08D0 MAIN CH2 error information

SW08E0 SUB CH1 error information

SW08F0 SUB CH2 error information

(9) Sequence-cycle scan-time registers

Sequence-cycle scan-time registers are used to store the result of measurements of sequence
cycles.

(MSB) (LSB)

 215 20
SW0900 Latest measurement value (ms)

SW0910 Maximum measurement value (ms)

SW0920 Minimum measurement value (ms)

SW0930 Average value of latest 16 measurements (ms) (*)
(*) The above average value is not stored in place until the 16th measurement is completed.

(10) Ladder execution-time registers
Ladder execution-time registers are used to store the result of measurements of ladder
execution times. Where HI-FLOW is used, the ladder and the HI-FLOW execution time are
added together and the result is stored in place.

(MSB) (LSB)

 215 20
SW0940 Latest measurement value (ms)

SW0950 Maximum measurement value (ms)

SW0960 Minimum measurement value (ms)

SW0970 Average value of latest 16 measurements (ms) (*)
(*) The above average value is not stored in place until the 16th measurement is completed.

Cleared to 0 when the LADDER RUN/STOP
switch setting changes from STOP to RUN

Cleared to 0 when the LADDER RUN/STOP
switch setting changes from STOP to RUN

1. LADDER INSTRUCTIONS

1-52

(11) Optional-module status registers (D.NET)
These optional-module status registers are used to store error information on errors detected
in each D.NET module (one of channels 0 through 3). For details, refer to the S10VE User’s
Manual Option D.NET (LQE770-E) (manual number SEE-1-103).

(MSB) (LSB)

 215 20
SW0980 Module 0 channel 0 error information

SW0990 Module 0 channel 1 error information

SW09A0 Module 1 channel 0 error information

SW09B0 Module 1 channel 1 error information

(MSB) (LSB)

 215 20
SW0540 Module 2 channel 0 error information

SW0550 Module 2 channel 1 error information

SW0560 Module 3 channel 0 error information

SW0570 Module 3 channel 1 error information

1. LADDER INSTRUCTIONS

1-53

(12) Ethernet communication result flag registers
Ethernet communication result flag registers are used to store special flags for indicating the
result of execution of Ethernet communication instructions.
Execution results are flagged in the system registers S09C0 through S09EF according to the
management numbers, which are predefined in one-to-one correspondence with all available
sockets. When the execution of an Ethernet communication instruction is terminated
normally or abnormally, the result is flagged by setting the system register associated with
the management number to 0 or 1, respectively.

Register type Management
number

Remarks
Word Bit

SW09C0

S09C0 1

Provided for CPU Ethernet
communications.

S09C1 2

…
…

…
…

S09CE 15

S09CF 16

SW09D0

S09D0 17

Provided for ET.NET
(main module) Ethernet
communications

S09D1 18

…
…

…
…

S09DE 31

S09DF 32

SW09E0

S09E0 33

Provided for ET.NET
(submodule) Ethernet
communications

S09E1 34

…
…

…
…

S09EE 47

S09EF 48

(13) Optional-module status registers (J.NET)
These optional-module status registers are used to store error information on errors detected
in each module (main or submodule). For details, refer to the S10VE User’s Manual Option
J.NET (LQE540-E) (manual number SEE-1-102).

(MSB) (LSB)

 215 20

SW0A00 Module 0 error information

SW0A80 Module 1 error information

SW0AA0 Module 2 error information

SW0AC0 Module 3 error information

1. LADDER INSTRUCTIONS

1-54

(14) CPU status registers
CPU status registers indicates the current state of the CPU.

<CPU status bit configuration>

(MSB) (LSB)

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
SW0BF0 1/0 1/0 * 1/0 1/0 * 1/0 * 1/0 1/0 1/0 1/0 * 1/0 1/0 1/0

Bit No. 0 1 2 3 4 5 6 7 8 9 A B C D E F
* Each of these bits is reserved for future extension.

Bit No. Bit register No.
Meanings of bits

ON (=1) OFF (=0)
0 S0BF0 Currently in ladder STOP state. Currently in ladder RUN state.
1 S0BF1 Simulation currently in process. Currently running normally.
2 S0BF2 (Reserved for future extension)
3 S0BF3 Protection switch currently in ON

state.
Protection switch currently in OFF

state.
4 S0BF4 Remote I/O operation currently in

progress.
Remote I/O operation currently

stopped.
5 S0BF5 (Reserved for future extension)
6 S0BF6 Ladder-rewriting process currently

in progress.
Ladder-rewriting process completed.

7 S0BF7 (Reserved for future extension)
8 S0BF8 The voltage of the primary battery

has dropped.
The primary battery is normal.

9 S0BF9 Timed-out station existent. No timed-out station existent.
A S0BFA Fuse-blown station existent. No fuse-blown station existent.
B S0BFB Optional-module error (*) detected. No optional-module error (*)

detected.
C S0BFC (Reserved for future extension)
D S0BFD Zero-cleared in a general (power-on) reset (GR) or manual/remote reset.
E S0BFE The HP system tasks are inactive. The HP system tasks are being

performed successfully.
F S0BFF CPMS is inactive (the CP went

down).
CPMS is active (the CP is running

normally).

(*) The optional-module error is a parity error detected during accessing the internal memory of the
optional module from the CPU.

1. LADDER INSTRUCTIONS

1-55

(15) Configuration control registers
These registers store the change requests that are handled by configuration control.

<Bit configuration for configuration control>

(MSB) (LSB)

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
SW0C00 1/0 * * 1/0 * * * * * * * * * * * *

SW0C10 1/0 * * * * * * * * * * * 1/0* * * *

Bit No. 0 1 2 3 4 5 6 7 8 9 A B C D E F
* For future expansion

S0C00 to S0C0F

Bit No.
Bit register

No.
Meanings of bits

ON (=1) ON (=1)
0 S0C00 The CP is completely started. The CP is being started.
1 S0C01 For future expansion
2 S0C02 For future expansion
3 S0C03 Clearance of system registers is

completed.
Startup is in progress.

4 S0C04 For future expansion
5 S0C05 For future expansion
6 S0C06 For future expansion
7 S0C07 For future expansion
8 S0C08 For future expansion
9 S0C09 For future expansion
A S0C0A For future expansion
B S0C0B For future expansion
C S0C0C For future expansion
D S0C0D For future expansion
E S0C0E For future expansion
F S0C0F For future expansion

1. LADDER INSTRUCTIONS

1-56

S0C10 to S0C1F (for system use only, not allowed to be rewritten)

Bit No.
Bit register

No.
Meanings of bits

ON (=1) ON (=1)
0 S0C10 The HP tasks stopped due to an error. Normal operation
1 S0C11 For future expansion
2 S0C12 For future expansion
3 S0C13 For future expansion
4 S0C14 For future expansion
5 S0C15 For future expansion
6 S0C16 For future expansion
7 S0C17 For future expansion
8 S0C18 For future expansion
9 S0C19 For future expansion
A S0C1A For future expansion
B S0C1B For future expansion
C S0C1C For future expansion
D S0C1D For future expansion
E S0C1E For future expansion
F S0C1F For future expansion

(MSB) (LSB)

 215 20

SW0C20 Sequence cycle time (ms)

SW0C30 WDT monitor time (ms)

SW0C40 For future expansion

SW0C50 For future expansion

SW0C60 Sequence cycle accumulation counter

SW0C70 For future expansion

： ：

SW0CF0 For future expansion

1. LADDER INSTRUCTIONS

1-57

(16) Option module status output registers
These registers store the operation status of the option modules.

(MSB) (LSB)

 215 20

SW0D00 FL.NET (main)

SW0D10 FL.NET (sub)

SW0D20 OD.RING (LQE510/515) (main)

SW0D30 OD.RING (LQE510/515) (sub)

SW0D40 For future expansion

： ：

SW0EF0 For future expansion

<Bit configuration of the option module status output registers>

(MSB) (LSB)

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

 1/0 * * * * * * * * * * * * * * *

Bit No. 0 1 2 3 4 5 6 7 8 9 A B C D E F
* For future expansion

Bit No.
Meanings of bits

ON (=1) ON (=1)
0 Inactive due to a module error Status other than inactive due to

a module error
1 For future expansion
：
：

：
：

F For future expansion

1. LADDER INSTRUCTIONS

1-58

(17) Option module parameter setting output registers
These registers store the validity of the option module parameter settings and whether the
written settings are normal. Register the validity and correctness of the option module
parameter settings in the option module parameter area in the memory of the CPU module
with one of the preset case numbers by using the applicable tool for the target option module.
You can register a maximum of 10 cases.

<Option module setting parameter area>
Case No.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 5

Parameter 6

Parameter 7

Parameter 8

Parameter 9

Parameter 10

(MSB) (LSB)

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
SW0F00 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 * * * * * *

SW0F10 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 * * * * * *

SW0F20 * * * * * * * * * * * * * * * *

 : :

 : :

SW0FF0 * * * * * * * * * * * * * * * *

Bit No. 0 1 2 3 4 5 6 7 8 9 A B C D E F
* For future expansion

Register a maximum of 10 cases.

1. LADDER INSTRUCTIONS

1-59

S0F00 to S0F0F

Bit No.
Bit register

No.
Meanings of bits

ON (=1) ON (=1)
0 S0F00 Parameter 1 setting is valid. Parameter 1 setting is invalid.
1 S0F01 Parameter 2 setting is valid. Parameter 2 setting is invalid.
2 S0F02 Parameter 3 setting is valid. Parameter 3 setting is invalid.
3 S0F03 Parameter 4 setting is valid. Parameter 4 setting is invalid.
4 S0F04 Parameter 5 setting is valid. Parameter 5 setting is invalid.
5 S0F05 Parameter 6 setting is valid. Parameter 6 setting is invalid.
6 S0F06 Parameter 7 setting is valid. Parameter 7 setting is invalid.
7 S0F07 Parameter 8 setting is valid. Parameter 8 setting is invalid.
8 S0F08 Parameter 9 setting is valid. Parameter 9 setting is invalid.
9 S0F09 Parameter 10 setting is valid. Parameter 10 setting is invalid.
A S0F0A For future expansion
B S0F0B For future expansion
C S0F0C For future expansion
D S0F0D For future expansion
E S0F0E For future expansion
F S0F0F For future expansion

1. LADDER INSTRUCTIONS

1-60

S0F10 to S0F1F

Bit No.
Bit register

No.
Meanings of bits

ON (=1) ON (=1)
0 S0F10 Parameter 1 write error Parameter 1 write is successful
1 S0F11 Parameter 2 write error Parameter 2 write is successful
2 S0F12 Parameter 3 write error Parameter 3 write is successful
3 S0F13 Parameter 4 write error Parameter 4 write is successful
4 S0F14 Parameter 5 write error Parameter 5 write is successful
5 S0F15 Parameter 6 write error Parameter 6 write is successful
6 S0F16 Parameter 7 write error Parameter 7 write is successful
7 S0F17 Parameter 8 write error Parameter 8 write is successful
8 S0F18 Parameter 9 write error Parameter 9 write is successful
9 S0F19 Parameter 10 write error Parameter 10 write is successful
A S0F1A For future expansion
B S0F1B For future expansion
C S0F1C For future expansion
D S0F1D For future expansion
E S0F1E For future expansion
F S0F1F For future expansion

1. LADDER INSTRUCTIONS

1-61

(18) Optional-module installation status output registers
These registers are used to store the implementation status of each option module. For an
optional module that is installed, 1 is output to the corresponding bit.

Optional module Module number Bit register

OD.RING MAIN S3010

SUB S3011

FL.NET MAIN S3020

SUB S3021

J.NET MODULEx S303x

D.NET MODULEx S304x

ET.NET MAIN S30E1

SUB S30E2

x: Module number

1. LADDER INSTRUCTIONS

1-62

LR, LV LADDER CONVERTER-SPECIFIC WORK REGISTERS
These work registers are used by the ladder program
converter during converting S10/2 Series’ or S10mini
Series’ downward-sloping-rung ladder programs into normal-
rung ladder format. Users are advised not to use these
registers. The LADDER DIAGRAM SYSTEM/S10VE does
not have a function that directly converts a ladder program
from the S10/2-series or S10mini-series format to the
S10VE format. However, it can be used for internal registers.
LR: Used for contacts or coils.
LV: Used for edge contacts.

 Usage example

↑

↓
Convert

↑

↓

↑

X0000 V000 X0002 Y0000

X0001 V001 X0003 Y0001

MOV

F

LR0000 V000 X0002 Y0000

LR0000 LV0000 X0003 Y0001

LR0000 V001

X0001

Range of numbers 0000 to 0FFF

1. LADDER INSTRUCTIONS

1-63

1.6 Ladder Watchdog Timer
The ladder watchdog timer is used to monitor whether the execution of a ladder and any HI-
FLOW process is ended within a user-set time period, called a monitoring time. If the
execution is not ended within the monitoring time, it results in a ladder program watchdog
timeout error (hereinafter simply called a ladder WDT error) and the following steps are
automatically performed:
 The CPU’s ERR LED indicator is lit, detailed information on the error is recorded, and then

the CPU is stopped.
 Ladder programs, HI-FLOW, remote I/O communications, and other HP tasks stop.
 The PCsOK signal and the CPU OK signal are set to OFF.

1.6.1 An outline of the ladder watchdog timer’s operation
<Normal operation>

As shown below, as long as a ladder process and, if HI-FLOW is used, a HI-FLOW
process as well are ended within the set monitoring time, no ladder WDT error will occur,
because the ladder WDT is reset when a sequence cycle interrupt is generated.

<Operation when a timeout is detected>

If a ladder process and, if HI-FLOW is used, a HI-FLOW process as well are not ended
within the set monitoring time, due to, for instance, the occurrence of an endless loop, the
ladder WDT signals a timeout and this timeout is detected as a ladder WDT error, resulting
in the immediate termination of the ladder and HI-FLOW processes.

Ladder process

Sequence cycle

HI-FLOW process

Next sequence cycle

Sequence cycle
interrupt

Sequence cycle
interrupt

Ladder process

HI-FLOW process

Ladder WDT’s monitoring time

Ladder process

Sequence cycle Next sequence cycle

Sequence cycle
interrupt

Sequence cycle
interrupt

Ladder WDT’s monitoring time

HI-FLOW process

Ladder WDT error

1. LADDER INSTRUCTIONS

1-64

1.6.2 Range of settable monitoring time values
The WDT’s monitoring time can be set to any value within the range shown below. At
shipment, it is set to the default value 2000 (ms).
Range of settable values: 50 to 10000 (ms)
Notes:
 When you change the length of monitoring time, specify a sufficiently large value

compared to the actually required length of time considering the processing time for the
ladder program and the HI-FLOW program, and the environment that is specific to the
user. The required grace time depends on the configuration of the system.
 The ladder WDT is reset at the end of each sequence cycle. Therefore, if the monitoring

time is set to a value smaller than the set value of sequence cycle, a ladder WDT error
could occur during the normal operation of the ladder. For this reason, you cannot specify
monitoring time that is shorter than a sequence cycle.

1.6.3 Error information presented upon ladder WDT errors
When a ladder WDT error occurs, the ERR LED indicator of the CPU module comes on.
This ladder WDT error can be distinguished from other types of error by using the BASE
SYSTEM/S10VE’s error log display function. A ladder WDT error, when detected, is
always notified by displaying the error code “05C70000” and message “Ladder watchdog-
timer timeout error” on the BASE SYSTEM/XR1000. For information on how to operate
the BASE SYSTEM/S10VE, refer to the S10VE User’s Manual General Description
(manual number SEE-1-001).

2. ARITHMETIC FUNCTIONS

2-1

CHAPTER 2 ARITHMETIC FUNCTIONS

2.1 Functional Overview
If you want to carry out arithmetic operations in a ladder program, use arithmetic functions.
They will simplify your programming work.
 Operation of arithmetic functions

[Example circuit]

[Operation]

The above functions are executed during each sequence cycle as long as the input condition
is met.

X0100
F

F

MOV

ADD

H0000→FW000

FW000+1→FW000

Parameters

Function name

F

F

ADD

SUB

ADD arithmetic
function

processing
X0100

SUB arithmetic
function

processing

X0100

ADD process
Executed while ON

1 Sequence cycle

SUB process
Executed while ON

2. ARITHMETIC FUNCTIONS

2-2

(1) Parameters
Each arithmetic function, assigned a unique name signifying its operation, takes one or
more parameters. Registers and constants can be specified as parameters to arithmetic
functions.

(2) Operation

Arithmetic functions are initiated during each sequence cycle as long as the coil remains
energized (ON). If you want to initiate an arithmetic function only once when the coil
makes a transition from OFF to ON state or from ON to OFF state, use the function in
conjunction with a rising-edge or a falling-edge contact, respectively.

Example 1: Using an arithmetic function together with a rising-edge contact:

Example 2: Using an arithmetic function together with a falling-edge contact:

MOV X0100

0→DW000

V100
F

X010000

MOV process

Executed only once at the rising edge.

1 sequence cycle

ADD X0101

FW000+FW002→FW004

V101
F

X0101

ADD process

Executed only once at the falling edge.

1 sequence cycle

2. ARITHMETIC FUNCTIONS

2-3

2.2 Functional Specifications
(1) General makeup of arithmetic functions

[1] Function name: Name of arithmetic function.
[2] Parameters: Each is a register or constant to be operated on.

(2) Data formats
The types of data that can be used with arithmetic functions are word, long-word, and
floating:
 Word

Each piece of word data is a signed 16-bit single-precision integer.
In the word format, each bit is given a bit number, as shown below.

(MSB) (LSB)

Bit number··· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

The range of allowable word data is as follows:
In decimal: -32768 to +32767
In hexadecimal: H8000 to H7FFF, where the letter “H” denotes that the number

which follows is in hexadecimal notation.

Note 1: Bit registers, such as X0000 and R123, are handled as word data, where only the
LSB (least significant bit) is valid as data. For details, see Subsection 2.3.2,
“Handling of bit registers.”

Note 2: The values (counts) of ON-delay timers (T), one-shot timers (U), and up-down

counters (C) (TC***, UC***, CC***:***=number) are all handled as word
data. The same is true with their set values (TS***, US***,
CS***:***=number).

FW000 + FW001 = FW002 F

ADD [1]

[2]

2. ARITHMETIC FUNCTIONS

2-4

 Long-word
Each piece of long-word data is a signed 32-bit double-precision integer.
In the long-word format, each bit is given a bit number, as shown below.

(MSB) (LSB)

Bit number··· 0 1 2 3 4 5 6 7 8 9 10 11 22 23 24 25 26 27 28 29 30 31

 ・・・

 231 230 229 228 227 226 225 224 223 222 221 220 29 28 27 26 25 24 23 22 21 20

The range of allowable long-word data is as follows:
In decimal: -2147483648 to +2147483647
In hexadecimal: H80000000 to H7FFFFFFF

 Floating
Each piece of floating data is a 32-bit single-precision floating-point number.
Floating data has the following bit configuration:

231 230 229 228 227 226 225 224 223 222 221 220 29 28 27 26 25 24 23 22 21 20

 ・・・

The range of allowable floating data is as follows:
0, ±2-126 to ±2128

If one of the following errors occurs in a floating-point arithmetic operation, it is
notified as described below.
Invalid operation: Of the operation result flag bits provided, the E-bit is set to 1. The

content of the register to store operation results remains unchanged.
Division by zero: Of the operation result flag bits provided, the E-bit is set to 1. The

content of the register to store operation results remains unchanged.
Overflow: The maximum finite number that can be represented internally as an absolute

value (±3.402823E38) is returned.
Underflow: The number 0 with correct sign is returned.

Note: If the input value is a denormalized number (-1.175494E-038 (0x807FFFFF) to

1.175494E-038
(0x007FFFFF) except for 0.0), the function assumes the value as 0.0.

Sign of mantissa
(0: Positive; 1: Negative)

Exponent Mantissa

2. ARITHMETIC FUNCTIONS

2-5

(3) Flag settings
Arithmetic functions set an appropriate operation result flag(s) to report on the result of the
operation performed. The following description deals with the types of flags provided,
where they are set, and the conditions for setting them.

(MSB) (LSB)

 215 20
SW0000 1/0 1/0 1/0 1/0 1/0 1/0 (Reserved for future extension)

Note: The results of floating-point operations are also reflected in these flags.

S0005: Overflow flag (V)
S0004: Zero flag (Z)
S0003: Negative flag (N)
S0002: Positive flag (P)
S0001: Error flag (E)
S0000: Extend flag (X)

2. ARITHMETIC FUNCTIONS

2-6

<Conditions for flag settings>

No. Type
Flags Flag setting condition

X E P N Z V For word: For long-word: For floating:

1 ADD – – – – – 
V: Set to 0 if the operation result is in the range

-32768 to 32767; otherwise, set to 1.
V: Set to 0 if the operation result is in the range

-2147483648 to 2147483647; otherwise, set to 1.

2 ADD
(floating) –  – – – –

 E: Set to 1 if the operation ends up with an error (*);
otherwise, set to 0.

3 SUB – – – – – 
V: Set to 0 if the operation result is in the range

-32768 to 32767; otherwise, set to 1.
V: Set to 0 if the operation result is in the range

-2147483648 to 2147483647; otherwise, set to 1.

4 SUB
(floating) –  – – – –

 E: Set to 1 if the operation ends up with an error (*);
otherwise, set to 0.

5 INC – – – – –  V: Set to 0 if the operation result is in the range
-32768 to 32767; otherwise, set to 1.

V: Set to 0 if the operation result is in the range
-2147483648 to 2147483647; otherwise, set to 1.

6 DEC – – – – – 

7 MUL – – – – – 
V: Set to 0 if the operation result is in the range

-32768 to 32767; otherwise, set to 1.
V: Set to 0 if the operation result is in the range

-2147483648 to 2147483647; otherwise, set to 1.

8 MUL
(floating) –  – – – –

 E: Set to 1 if the operation ends up with an error (*);
otherwise, set to 0.

9 DIV –  – – – 

E: Set to 1 if the divisor is zero (0); otherwise, set to
0.

V: Set to 1 if the quotient is 32768; otherwise, set to
0.

E: Set to 1 if the divisor is zero (0); otherwise, set to
0.

V: Set to 1 if the quotient is 2147483648; otherwise,
set to 0.

10
DIV
(floating) –  – – – –

 E: Set to 1 if the divisor is zero (0); otherwise, set to 0.
Also, set to 1 if the operation ends up with an error
(*); otherwise, set to 0.

11 MOD –  – – – 

E: Set to 1 if the divisor is zero (0); otherwise, set to
0.

V: Set to 1 if the quotient is 32768; otherwise, set to
0.

E: Set to 1 if the divisor is zero (0); otherwise, set to
0.

V: Set to 1 if the quotient is 2147483648; otherwise,
set to 0.

12 SCL –  – – – 

E: Set to 1 if the divisor is zero (0); otherwise, set to
0.

V: Set to 0 if the operation result is in the range
-32768 to 32767; otherwise, set to 1.

13 TST – –    –
P: Set to 1 if data value > 0; otherwise, set to 0.
N: Set to 1 if data value < 0; otherwise, set to 0.
Z: Set to 1 if data value = 0; otherwise, set to 0.

14 BTD –  – – – 
E: Set to 1 if data value < 0; otherwise, set to 0.
V: Set to 1 if data value > 9999; otherwise, set to 0.

E: Set to 1 if data value < 0; otherwise, set to 0.
V: Set to 1 if data value > 99999999; otherwise, set

to 0.

15 DTB –  – – – – E: Set to 1 if a given digit (4-bit) has a value in the range HA to HF; otherwise, set to 0.

16 APB –  – – – – E: Set to 1 if a data value other than H30 thru H39
and H41 thru H46 is detected; otherwise, set to 0.

17 AUB –  – – – –

18 DTS – – – – – 
 V: Set to 0 if the operation result is in the range

-32768 to 32767; otherwise, set to 1.

19 ABS – – – – –  V: Set to 1 if data value = -32768; otherwise, set to
0.

V: Set to 1 if data value = -2147483648; otherwise,
set to 0.

20 NEG – – – – – 

21 ECD –  – – – – E: Set to 1 if data value = 0; otherwise, set to 0.

22 ASL – – – – –  V: Set to 1 if the sign bit’s value changes at least once during the shift operation.

23 LIM –  – – – – E: Set to 1 if upper-limit value < lower-limit value; otherwise, set to 0.

24 LIM
(floating) –  – – – –

 E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0. Also, set to 1 if the operation
ends up with an error (*); otherwise, set to 0.

25 BND –  – – – 

E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0.

V: Set to 0 if the operation result is in the range
-32768 to 32767; otherwise, set to 1.

E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0.

V: Set to 0 if the operation result is in the range
-2147483648 to 2147483647; otherwise, set to 1.

26 BND
(floating) –  – – – –

 E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0. Also, set to 1 if the operation
ends up with an error (*); otherwise, set to 0.

27 ZON –  – – – 

E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0.

V: Set to 0 if the operation result is in the range
-32768 to 32767; otherwise, set to 1.

E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0.

V: Set to 0 if the operation result is in the range
-2147483648 to 2147483647; otherwise, set to 1.

28 ZON
(floating) –  – – – –

 E: Set to 1 if upper-limit value < lower-limit value;
otherwise, set to 0. Also, set to 1 if the operation
ends up with an error (*); otherwise, set to 0.

29 TAN –  – – – –
 E: Set to 1 if the operation ends up with an error (*);

otherwise, set to 0.

30 ASIN –  – – – – E: Set to 1 if a given data value is out of the range -1.0
to 1.0; otherwise, set to 0.

31 ACOS –  – – – –

32 EXP –  – – – –
 E: Set to 1 if the operation ends up with an error (*);

otherwise, set to 0.

33 LOG –  – – – –
 E: Set to 1 if specified value < 0; otherwise, set to 0.

Also, set to 1 if the operation ends up with an error
(*); otherwise, set to 0.

34 Other than
the above – – – – – –

All the flags remaining unchanged.

–: This flag’s value is the same as before the execution of the function.
●: See the description of flag setting conditions in this table.
(*) If the result of the floating-point arithmetic operation is the following and the abnormal result is not 0 and is outside the range of ±2-126 to ±2128 (for indirect specification only)

2. ARITHMETIC FUNCTIONS

2-7

2.3 Registers Used in Arithmetic Functions
As mentioned in Section 2.2, “Functional Specifications,” registers can be specified as
parameters to arithmetic functions. This section provides information on the registers used in
arithmetic functions.

2.3.1 Registers usable in arithmetic functions

Table 2-1 is a list of all registers that can be used in arithmetic functions. Each of these
registers has its unique name and specific use. For efficient programming and maintenance,
users are advised to use each register for its intended application. Of course, they may be
used for applications other than the intended.

Table 2-1 Registers Usable in Arithmetic Functions

(1/3)

Function name Register name (size) Number Use

Status after
reset or
power

recovery
External input X (bit) 0000 to FFFF Data input from

input modules
connected for remote
I/O operations

Cleared
XW (word) 0000 to FFF0

XL (long-word) 0000 to FFE0

External output Y (bit) 0000 to FFFF Data output to
output modules
connected for remote
I/O operations

Cleared
YW (word) 0000 to FFF0

YL (long-word) 0000 to FFE0

Internal register R, A (bit) 000 to FFF Passing operation
results between
ladder instructions

Cleared
M (bit) 0000 to FFFF
RW, AW (word) 000 to FF0
MW (word) 000 to FFF0
RL, AL (long-word) 000 to FE0
ML (long-word) 000 to FFE0

Keep relay K (bit) 000 to FFF Temporary retention
of operation results

Remaining
unchanged KW (word) 000 to FF0

KL (long-word) 000 to FE0
ON-delay timer (contact,

coil)
T (bit) 000 to 1FF ON-delay timer Cleared
TW (word) 000 to 1F0
TL (long-word) 000 to 1E0

ON-delay timer / set
value

TS (word) 000 to 1FF Remaining
unchanged

ON-delay timer /
count value

TC (word) 000 to 1FF Cleared

One-shot timer (contact,
coil)

U (bit) 000 to 0FF One-shot timer Cleared
UW (word) 000 to 0F0
UL (long-word) 000 to 0E0

2. ARITHMETIC FUNCTIONS

2-8

Table 2-1 Registers Usable in Arithmetic Functions
(2/3)

Function name Register name (size) Number Use

Status after
reset or
power

recovery
One-shot timer / set

value
US (word) 000 to 1FF One-shot timer Remaining

unchanged
One-shot timer / count

value
UC (word) 000 to 1FF Cleared

Up-down counter
(contact, coil)

C (bit) 000 to 0FF Counting if the
condition is met

Remaining
unchanged CW (word) 000 to 0F0

CL (long-word) 000 to 0E0
Up-down counter / set

value
CS (word) 000 to 1FF

Up-down counter / count
value

CC (word) 000 to 1FF

Global link register G (bit) 000 to FFF Linkage between
PLCs

Cleared
GW (word) 000 to FF0
GL (long-word) 000 to FE0

Nesting coil N (bit) 000 to 0FF Ladder subprogram
call

Cleared
NW (word) 000 to 0F0
NL (long-word)） 000 to 0E0

Process register P (bit) 001 to 080 Task initiation Cleared
PW (word) 000 to 080
PL (long-word) 000 to 060

Event register E (bit) 0000 to FFFF Event information
output,analog/pulse
counter

Cleared
EW (word) 0000 to FFF0
EL (long-word) 0000 to FFE0

Edge contact V (bit) 000 to FFF Edge detection Cleared
VW (word) 000 to FF0
VL (long-word) 000 to FE0

Zee register Z (bit) 000 to 3FF Interrupt generation
to host

Cleared
ZW (word) 000 to 3F0
ZL (long-word) 000 to 3E0

System register S (bit) 0000 to BFFF System status
display

Initialized
with initial

value
SW (word) 0000 to BFF0
SL (long-word) 0000～BFE0

Shared-data register
between HI-FLOW and

ladder

J (bit) 000 to FFF Data sharing
between HI-FLOW
and ladder

Cleared
JW (word) 000 to FF0
JL (long-word) 000 to FE0
Q (bit) 0000 to FFFF
QW (word) 0000 to FFF0
QL (long-word) 0000 to FFE0

2. ARITHMETIC FUNCTIONS

2-9

Table 2-1 Registers Usable in Arithmetic Functions
(3/3)

Function name Register name (size) Number Use

Status after
reset or
power

recovery
Extension internal

register
LB (bit) 0000 to FFFF Passing operation

results between
ladder instructions

Cleared
LBW (word) 0000 to FFF0
LBL (long-word) 0000 to FFE0

Converter-specific
register

LR, LV (bit) 0000 to 0FFF Internal registers Cleared
LRW, LVW (word) 0000 to 0FF0
LRL, LVL (long-word) 0000 to 0FE0

Input/output register
(reserved for future

extension)

IW, OW (word) 000 to FFF Future use Cleared

Internal register BD (long-word) 000 to 1FE Indirect access Remaining
unchanged

BW (word) 000 to 1FE Depending
on location BL (long-word) 000 to 1FE

Function data register DW (word) 000 to FFF Constant data area Remaining
unchanged DL (long) 000 to FFE

Function work register FW (word) 000 to BFF Work area Remaining
unchanged FL (long) 000 to BFE

Extension function work
register

LWW (word) 0000 to FFFF Work area Cleared
LWL (long) 0000 to FFFE

Long-word work
register

LLL 0000 to 1FFF Work area (long-
word)

Cleared

Single-precision
floating-point work

register

LF 0000 to 1FFF Floating-point
arithmetics

Cleared

Backup word work
register

LXW (word) (*) 0000 to 3FFF Retention of data
upon resetting

Remaining
unchanged LXL (long) 0000 to 3FFE

Backup long-word work
register

LML (*) 0000 to 1FFF Retention of data
upon resetting

Remaining
unchanged

Backup single-precision
floating-point work

register

LG (*) 0000 to 1FFF Retention of data
upon resetting

Remaining
unchanged

(*) The backup registers LX, LM, and LG require longer access time than do other registers, so they should
be used only for the retention of initial values or data saving on error. Do not use them like ordinary non-
backup registers.

2. ARITHMETIC FUNCTIONS

2-10

2.3.2 Handling of bit registers
In arithmetic functions, such bit registers as X0000 and RFF0 (i.e., those registers which are
listed as “bit” in Table 2-1, “Registers Usable in Arithmetic Functions”) are handled as word
data. In these registers, only the LSB is valid as data and all other bits are zero (0) in reading
and invalid in writing.
The following is the data format of bit registers used in arithmetic functions:

(MSB) (LSB)

Bit register 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 * * * * * * * * * * * * * * * 0/1

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

*: Each is zero (0) in reading and invalid in writing.

Example 1: MOV HFFFF -> R000, then MOV R000 -> FW000
The first transfer instruction “MOV” moves the value HFFFF (hexadecimal
constant) to the bit register R000, then the second “MOV” moves the content of
R000 to the word register FW000. The result is the value H0001 stored in
FW000.

Example 2: MOV FW010 -> LB0000, then MOV LB0000 -> DW000
If the content of FW010 is H1234, the first “MOV” moves that content to the bit
register LB0000, then the second “MOV” moves the content of LB0000 to
DW000. The result is the value H0000 stored in DW000.

2. ARITHMETIC FUNCTIONS

2-11

2.3.3 Relationships between bit registers and word registers
Bit registers and word registers have relationships as shown below. The example below
manifests that the bit registers X0000 through X000F are in 16-to-1 correspondence with the
word register XW0000. The same correspondence also exists between X0010 through
X001F and XW0010, between X0020 through X002F and XW0020, and so forth. The
example below is the case of the X registers. The same is true with all other bit registers.
The bit and word registers actually share the same memory area, so the contents of a
particular set of bit registers are completely synchronized with the content of the
corresponding word register. This means that, right after data is written to a word register,
reading some of the corresponding bit registers will bring you part of the data you have just
written to that word register.

Word register XW0000

Bit number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

Bit registers

(MSB) (LSB)

X0000 * * * * * * * * * * * * * * * 0

X0001 * * * * * * * * * * * * * * * 0

X0002 * * * * * * * * * * * * * * * 0

X0003 * * * * * * * * * * * * * * * 1

X0004 * * * * * * * * * * * * * * * 0

X0005 * * * * * * * * * * * * * * * 0

X0006 * * * * * * * * * * * * * * * 1

X0007 * * * * * * * * * * * * * * * 0

X0008 * * * * * * * * * * * * * * * 0

X0009 * * * * * * * * * * * * * * * 0

X000A * * * * * * * * * * * * * * * 1

X000B * * * * * * * * * * * * * * * 1

X000C * * * * * * * * * * * * * * * 0

X000D * * * * * * * * * * * * * * * 1

X000E * * * * * * * * * * * * * * * 0

X000F * * * * * * * * * * * * * * * 0

*: Each is zero (0) in reading and invalid in writing.

Long-word registers also have similar relationships with bit registers. For example, the bit
registers X0000 through X001F are in 32-to-1 correspondence with the long-word register
XL0000.

2. ARITHMETIC FUNCTIONS

2-12

2.4 Inputs to Arithmetic Functions
Inputs to arithmetic functions are made through the input diagram of the arithmetic function.
(For details on the arithmetic-function input diagram, refer to the S10VE Software Manual
Operation Ladder Diagram System for Windows® (manual number SEE-3-131).)
Every input made has spaces inserted between the symbol and the first parameter, if any, and
between the first and subsequent parameters, if any.
The number of parameters input depends of the type of arithmetic function. For details, see
Section 2.6, “Details on the Instructions.”

function-name parameter parameter parameter [Enter]
Example:

ADD RW000 FW000 FW000 [Enter]

(1) Registers as inputs

Area in which settings can be made
Example of

input
Remarks

I/O area (bit) X0000 Inputs are handled as word
data in arithmetic functions.
(Only LSB data is valid.)

I/O area (word) YW0000 The letter “W” denotes a word.
I/O area (long-word) RL000 The letter “L” denotes a long

word.
Function work register area FW025 Work area
Function data register area DW050 Constant-data area
Extension function work register area LWW0000 The letter “W” denotes a word.
Long-word work register area LLL0000 The letter “L” denotes a long

word.
Single-precision floating-point work register
area

LF0001 Used for single-precision
floating-point operations.

Backup work register area
(word, long-word, and floating)

LXW0000 The three types of registers,
word, long-word, and floating,
can be specified.

T, U, C set-value area TS003 The letter “S” denotes a set
value.

T, U, C count-value area UC007 The letter “C” denotes a count
value.

High-speed I/O (word) area IW000 (Reserved for future extension)

 Each I/O area above is one of the registers named X, Y, R, M, A, K, T, U, C, G, N, P, E,

V, Z, S, J, Q, LB, or LV.
 Numbers are input as 3- or 4-digit numbers.

2. ARITHMETIC FUNCTIONS

2-13

(2) Constants as inputs (immediate)

(a) Input of decimal numbers
[1] Direct input of numeric value

(positivedecimal number)
[2] Input of a sign (“+” or “-”)

and then a numeric value
[3] Maximum number of digits

that can be input:
 For word: 5
 For long-word: 10

(b) Input of hexadecimal numbers

[1] Input of “H” and then a numeric value
[2] Maximum number of digits that can be input:
 For word: 4
 For long word: 8

(c) Input of floating (single-precision floating-point) data

[1] Input without exponent
Up to 13 digits (including the decimal point), and up to 11 digits after the decimal
point:

[2] Input with exponent
Up to eight digits as the mantissa, up to six digits after the decimal point in the
mantissa, and up to three digits in the exponent:

Note: When you input a floating constant, be sure to enter the decimal point. If the

decimal point is omitted, the input value will not be recognized as floating data
and will cause an input error.

H 0 5 F 3

H 1 2 3 4 A B C D

 1 2 5 3

 + 3 2 1 0 5

 - 1 2 5

(+ / -) 3 2 7 6 7
(+ / -) 2 1 4 7 4 8 3 6 4 7

Positive number

Negative number

0 . 1 2 3 4 5 6 7 8 9 0 5

Up to 11 digits

Up to 13 digits

1 . 2 3 0 0 0 0 E (+ / -) 0 0 2

Up to 6 digits

Up to 8 digits

Up to 13 digits

Up to 3
digits

2. ARITHMETIC FUNCTIONS

2-14

(3) Specification of indices in arithmetic function instructions

(a) Indexing using the “base register (index register)” format
Execution register address = base register number + index register content (expressed
in units of words)

This indexing method uses as the execution address the location that is identified by
the content of the index register relative to the register number of the base register.
The index registers that can be specified are all word-type registers.
Examples: DW020 (FW000), R400 (FW010)

In the case of “DW020 (FW000)”, if the content of FW000 is H0020,
then: DW020 + H0020 → DW040.
In the case of “R400 (FW010)”, if the content of FW010 is H0080, then:
R400 + H0080 → R480.

Note 1: If the content of FW000 is such a value as H0FF0 or H1200, which will
result in a value greater than DWFFF (i.e., the maximum value of DW) when
added to the number DW020, the normal operation of the instruction using
the index is not guaranteed.

Note 2: Depending on the type of a register specified as the base register, the
equation “base register number + index register content = execution register
number” does not hold. For details, see the description of item (a) under “(4)
Precautions in specifying an index in the arithmetic function instruction.”

When specifying the first number in a series, such as 000 or 0000, as the base
register, the number may be omitted.
Examples: DW (FW000), XW (DW000)

In the case of “DW (FW000)” above, if the content of FW000 is H0020,
then the indexed register points to DW020.

(b) Indexing using the “reference type (indirect register)” format

Execution register address = indirect-register content
This indexing method is specified in the format:

Reference type (long-word register)
where the reference type is one of W (word), L (long-word), and F (floating).
The indirect register specified in this format is always a long-word register.
Examples: W (FL000), L (DL000)

In the case of “W (FL000)” above, the content of FL000 is used as an
address. For example, if the content of FL000 is 000A0000, the content of
the location 000A0000 is used as word data.

2. ARITHMETIC FUNCTIONS

2-15

(4) Precautions in specifying an index in the arithmetic function instruction

(a) Register numbers used in “base register (index register)” format
If any register as enumerated in the row Nos. 2, 3, 6, and 7 of the table below is used as
the base register for indexing, the equation “base register number + index register
content = execution register address” does not hold. Therefore, when you specify an
index in an arithmetic function instruction, recall the information supplied in the table
below and check that the register you have selected as the base register is actually
usable.

No. Register type Register name Execution register address
1 I/O register (bit) X, Y, R, M, A, K, T, U, C, G,

N, P, E, V, Z, S, J, Q, LB, LR,
LV

Base register number + index register
content (hexadecimal)

2 I/O register (word) XW, YW, RW, MW, AW,
KW, TW, UW, CW, GW, NW,
PW, EW, VW, ZW, SW, JW,
QW, LBW, LRW, LVW

Base register number + index register
content (hexadecimal) × H0010
(hexadecimal)

3 I/O register
(long-word)

XL, YL, RL, ML, AL, KL, TL,
UL, CL, GL, NL, PL, EL, VL,
ZL, SL, JL, QL, LBL, LRL,
LVL

4 Work register
(word)

DW, FW, LWW, LXW Base register number + index register
content (hexadecimal)

5 Work register
(long-word)

DL, FL, LWL, LXL

6 Register used as
long-word only

BD, LLL, LML Base register number + index register
content (hexadecimal) ÷ H0002
(hexadecimal) 7 Register used as

floating only
LF, LG

Examples:  G000 (DW001)

This example results in the execution register address G010 if the content
of DW001 is H0010.
 RW020 (FW000)

This example results in the execution register address RW320 if the
content of FW000 is H0030.
 LLL0000 (FW000)

This example results in the execution register address LLL0020 if the
content of FW000 is H0040.

2. ARITHMETIC FUNCTIONS

2-16

[Supplement] How to check if an arithmetic function address error has occurred by
using the BASE SYSTEM/S10VE:
If the ERR LED indicator of the S10VE CPU module is lit, you can
identify the error as an arithmetic function address error or some other
type of error by using the BASE SYSTEM/S10VE. The procedure is as
follows:
[1] Start the BASE SYSTEM/S10VE.
[2] Click [Project] and then [Open] to open the target project.
[3] Click [RAS], [Error Log Display], and then [HP Error Log Display].
[4] The [Display Error log] window appears. Check if error information

of error code 0x03d0120c and content “[E] Illegal Function
Parameter (TN=232)” is displayed. The [Display Error log] window
shown below contains the arithmetic function address error.

2. ARITHMETIC FUNCTIONS

2-17

2.5 Arithmetic Functions
(1/5)

Major
classification

Minor
classification

Symbol
Unit of

data
processed

Process outline
Flags

Page
X E P N Z V

Arithmetic
instructions

Addition ADD

Word

(S) + (D) → (R)

– – – – – 
2-23 Long – – – – – 

Floating –  – – – –

Subtraction SUB

Word

(S) - (D) → (R)

– – – – – 
2-26 Long – – – – – 

Floating –  – – – –

+ 1 INC
Word

(S) + 1 → (S) – – – – –  2-29
Long

- 1 DEC
Word

(S) - 1 → (S) – – – – –  2-31
Long

Multiplication MUL

Word

(S) × (D) → (R)

– – – – – 
2-33 Long – – – – – 

Floating –  – – – –

Division DIV

Word

(S) / (D) → (R) (quotient)

–  – – – 
2-36 Long –  – – – 

Floating –  – – – –

Remainder MOD
Word

(S) / (D) → (R) (remainder) –  – – –  2-39
Long

Scale change SCL

Word

(S) × (D1) / (D2) → (R) –  – – –  2-41 Word

Long

Logical
instructions

Logical
product

AND
Word

(S)  (D) → (R) – – – – – – 2-44
Long

Logical sum OR
Word

(S)  (D) → (R) – – – – – – 2-46
Long

Exclusive OR EOR
Word

(S) ○＋ (D) → (R) – – – – – – 2-48
Long

Negation NOT
Word

(S) → (R) – – – – – – 2-50
Long

Comparison
instructions

= EQU

Floating
When (S) = (D), 1 → (R).
When (S) ≠ (D), 0 → (R).

– – – – – – 2-52 Word

Long

≠ NEQ

Floating
When (S) ≠ (D), 1 → (R).
When (S) = (D), 0 → (R).

– – – – – – 2-54 Word

Long

> GT

Floating
When (S) > (D), 1 → (R).
When (S) ≤ (D), 0 → (R).

– – – – – – 2-56 Word

Long

< LT

Floating
When (S) < (D), 1 → (R).
When (S) ≥ (D), 0 → (R).

– – – – – – 2-58 Word

Long

: The value of this flag varies depending on the result of the operation performed.
–: The same value as before the performance of the operation is retained.
S: Source
D: Destination
R: Result

2. ARITHMETIC FUNCTIONS

2-18

(2/5)

Major
classification

Minor
classification

Symbol
Unit of

data
processed

Process outline
Flags

Page
X E P N Z V

Comparison
instructions

≥ GE

Word
When (S)  (D), 1 → (R)
When (S) < (D), 0 → (R)

– – – – – – 2-60 Long

Floating

≤ LE

Word
When (S)  (D), 1 → (R)
When (S) > (D), 0 → (R)

– – – – – – 2-62 Long

Floating

Test TST

Word
Test (S) and set the P, N, and/or Z flags
according the result.

– –    – 2-64 Long

Floating

Transfer
instructions

Transfer MOV

Word

(S) → (D) – – – – – – 2-66 Long

Floating

Batch transfer MOM
Word

(S, n) → (D) – – – – – – 2-68
Long

Batch transfer
of same data INI

Word
(S) → (D, n) – – – – – – 2-70

Long

Exchange EXC
Word

(S)  (D) – – – – – – 2-72
Long

Write on FIFO
basis

PSH Word (S) → FIFO table – – – – – – 2-74

Read on FIFO
basis

POP Word FIFO table → (D) – – – – – – 2-76

Write on FIFO
basis

PSHO Word (S) → FIFO table – – – – – – 2-78

Read on FIFO
basis

POPO Word FIFO table → (D) – – – – – – 2-80

Address setting AST Long Address of S → (D) – – – – – – 2-82

Search SCH

Word Search D for (S) in the range m (the
number of steps to be searched), and
matching number → (R)

– – – – – – 2-84 Long

Floating

Conversion
instructions

BIN→
FLOAT

BTF
Word BIN → FLOAT

(S) (R)
– – – – – – 2-87

Long

FLOAT
→BIN

FTB
Word FLOAT → BIN

(S) (R)
– – – – – – 2-89

Long

BIN→
BCD

BTD
Word BIN → BCD

(S) (R)
–  – – –  2-91

Long

BCD→
BIN

DTB
Word BCD → BIN

(S) (R)
–  – – – – 2-93

Long

BIN→
7SEG

SEG
Word BIN → 7SEG

(S) (R)
– – – – – – 2-95

Long

: The value of this flag varies depending on the result of the operation performed.
–: The same value as before the performance of the operation is retained.
S: Source
D: Destination
R: Result
n: Number of words
m: Number of steps to be searched

2. ARITHMETIC FUNCTIONS

2-19

(3/5)

Major
classification

Minor
classification

Symbol
Unit of

data
processed

Process outline
Flags

Page
X E P N Z V

Conversion
instructions

BIN→
ASCII

ASP Word
BIN → ASCII (pack mode)
(S) (R)

– – – – – – 2-97

ASU Word
BIN → ASCII (unpack mode)
(S) (R)

– – – – – – 2-99

ASCII
→BIN

APB Word
ASCII → BIN (pack mode)
(S) (R)

–  – – – – 2-101

AUB Word
ASCII → BIN (unpack mode)
(S) (R)

–  – – – – 2-103

SINGLE→
DOUBLE

STD Word (S) W → (R) L – – – – – – 2-105

DOUBLE→
SINGLE

DTS Long (S) L → (R) W – – – – –  2-107

Absolute value ABS

Word

|(S)| → (R) – – – – –  2-109 Long

Floating

+/- NEG

Word

-(S) → (R) – – – – –  2-112 Long

Floating

Decode DCD
Word Numeric value n in (S) ··· 1

→ n-th bit in (R)
– – – – – – 2-115

Long

Encode ECD
Word Search for first 1-bit in (S), starting

from MSB ··· bit position n of the
1-bit found → (R)

–  – – – – 2-117
Long

Shift
instructions

Logical shift
right

LSR
Word Shift (S) to the right by (D) bits

→ 0, (R)
– – – – – – 2-119

Long

Logical shift
left

LSL
Word Shift (S) to the left by (D) bits

→ (R), 0
– – – – – – 2-121

Long

Arithmetic
shift right

ASR
Word Shift (S) to the right by (D) bits

→ MSB, (R)
– – – – – – 2-123

Long

Arithmetic
shift left

ASL
Word Shift (S) to the left by (D) bits

→ (R), V
– – – – –  2-125

Long

Rotation
instructions

Rotate right ROR
Word Rotate (S) to the right by (D) bits

→ (R)
– – – – – – 2-127

Long

Rotate left ROL
Word Rotate (S) to the left by (D) bits

→ (R)
– – – – – – 2-129

Long

Function
processing
instructions

LIMITER LIM

Word (D1) < (S) ·· (D1) → (R)
(D2) ≤ (S) ≤ D1 ·· (S) → (R)
(S) < (D2) ·· (D2) → (R)

–  – – – – 2-131 Long

Floating

DEAD
BAND

BND

Word (D1) < (S) ·· (S) - (D1) → (R)
(D2) ≤ (S) ≤ (D1) ·· 0 → (R)
(S) < (D2) ·· (S) - (D2) → (R)

–  – – – 
2-134 Long –  – – – 

Floating –  – – – –

: The value of this flag varies depending on the result of the operation performed.
–: The same value as before the performance of the operation is retained.
S: Source
D: Destination
R: Result

2. ARITHMETIC FUNCTIONS

2-20

(4/5)

Major
classification

Minor
classification

Symbol
Unit of

data
processed

Process outline
Flags

Page
X E P N Z V

Function
processing
instructions

DEAD
ZONE

ZON

Word (S) > 0 ·· (S) + (D1) → (R)
(S) = 0 ·· 0 → (R)
(S) < 0 ·· (S) + (D2) → (R)

–  – – – 

2-138 Long –  – – – 

Floating –  – – – –

Square root SQR

Word
(S) ≥ 0 ··· SQR (S) → (R)
(S) < 0 ··· 0 → (R)

– – – – – – 2-142 Long

Floating

Sine SIN Floating SIN (S) → (R) – – – – – – 2-145

Cosine COS Floating COS (S) → (R) – – – – – – 2-147

Tangent TAN Floating TAN (S) → (R) –  – – – – 2-149

Arc sine ASIN Floating SIN-1 (S) → (R) –  – – – – 2-151

Arc cosine ACOS Floating COS-1 (S) → (R) –  – – – – 2-153

Arc tangent ATAN Floating TAN-1 (S) → (R) – － – – – – 2-155

Exponential EXP Floating EXP (S) → (R) –  – – – – 2-157

Natural
logarithm

LOG Floating LOG (S) → (R) –  – – – – 2-159

Maximum
value

MAX

Word
(S) ≥ (R) ··· (S) → (R)
(S) < (R) ··· (D) → (R)

– – – – – – 2-161 Long

Floating

Minimum
value

MIN

Word
(S) ≤ (R) ··· (S) → (R)
(S) > (R) ··· (D) → (R)

– – – – – – 2-163 Long

Floating

Special
instructions

Clear

XCLR – Clear X-area. – – – – – – 2-165

YCLR – Clear Y-area. – – – – – – 2-165

GCLR – Clear G-area. – – – – – – 2-165

RCLR – Clear R-area. – – – – – – 2-165

KCLR – Clear K-area. – – – – – – 2-165

TCLR – Clear T-area and count value – – – – – – 2-165

UCLR – Clear U-area and count value. – – – – – – 2-165

CCLR – Clear C-area and count value. – – – – – – 2-165

VCLR – Clear V-area. – – – – – – 2-165

ECLR – Clear E-area. – – – – – – 2-165

: The value of this flag varies depending on the result of the operation performed.
–: The same value as before the performance of the operation is retained.
S: Source
D: Destination
R: Result

2. ARITHMETIC FUNCTIONS

2-21

(5/5)

Major
classification

Minor
classification

Symbol
Unit of

data
processed

Process outline
Flags

Page
X E P N Z V

Jump
instructions

Conditional JT – If a given condition is met, jump to a
specified label.

– – – – – – 2-167

Unconditional JMP –
Unconditionally jump to a specified
label.

– – – – – – 2-169

Conditional
jump to SEND

JSE –
If a given condition is met, jump to the
SEND (Sequence END) instruction.

– – – – – – 2-170

Ethernet
communica-

tion
instructions

TCP
communication

TOP – Open a TCP connection (client). – – – – – – 2-187

TPOP – Open a TCP connection (server). – – – – – – 2-189

TCLO – Close a TCP connection. – – – – – – 2-191

TRCV – TCP reception. – – – – – – 2-193

TSND – TCP transmission. – – – – – – 2-196

UDP
communication

UOP – Open UDP. – – – – – – 2-198

UCLO – Close UDP. – – – – – – 2-200

URCV – UDP reception. – – – – – – 2-202

USND – UDP transmission. – – – – – – 2-205

–: The same value as before the performance of the operation is retained.

2. ARITHMETIC FUNCTIONS

2-22

2.6 Details on the Instructions
Information in this section is concerning all available standard arithmetic function instructions
and is organized as follows.
(1) Input format

Under this heading is shown the input format of each instruction.
(2) Function

Under this heading is provided a description of each instruction’s function.
(3) Data types

Under this heading are listed the types of data that can be specified as parameters to each
instruction.

Example:

 Word Long-word Floating
Index

specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √

D √ √ √ √ √ √ √

R √ – √ – √ – √

√: May be specified.
–: May not be specified.

According to the above sample table, users can specify, as S (Source) and D (Destination),
addresses of such data as word, long-word, and floating, including index specifications,
and can specify constants of those types. In addition, they can also specify as R (result)
such data registers as word, long-word, and floating, including index specifications.
Note: Bit I/O areas, such as R000 and Y01FF, are handled as word data in arithmetic

functions. In these cases, only the LSB is valid and all the other bits are zero (0) in
reading and invalid in writing. For details, see Subsection 2.3.2, “Handling of bit
registers.”

(4) Example program

Under this heading is shown a simple ladder program using each instruction and its
operation.

(5) Error handling

Under this heading is described what processing will be done if an error occurs. The
operation result flag(s) reflecting the error are also shown under this heading.

This portion shows whether
such registers as DW000 and
such constants as H0001 may be
used with the instruction or not.

This portion shows whether
such registers as LLL0000 and
such constants as H04231556
may be used with the instruction
or not.

This portion shows whether
such registers as LF0000 and
such constants as 1.12E-002
may be used with the instruction
or not.

If a register may be specified,
this portion shows whether an
index may be specified or not.

2. ARITHMETIC FUNCTIONS

2-23

ADD ADDITION

(1) Input format

ADD S + D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and

between the parameters. The symbols “+” and “->” may be omitted.

(2) Function
 Addition of word data

The ADD instruction adds a 16-bit data value specified in Source (S) and another 16-bit
data value specified in Destination (D) together and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -32768 to 32767.

 Addition of long-word data

The ADD instruction adds a 32-bit data value specified in Source (S) and another 32-bit
data value specified in Destination (D) together and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -2147483648 to 2147483647.

（S）
215 ・・・・・・ 20

+ （D）
215 ・・・・・・ 20

（R）
215 ・・・・・・ 20

（S）
231 ・・・・・・ 20

+ （D）

231 ・・・・・・ 20

（R）

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-24

 Addition of floating data
The ADD instruction adds a floating data value specified in Source (S) and another floating
data value specified in Destination (D) together and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the following range:

0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If any
one of them is of a different type, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ADD instruction
adds the contents of FW000 and FW001 together and stores the result in FW002.

R000 ADD

FW000 + FW001 = FW002 F

(S)

Floating value

+ (D)

Floating value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-25

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:

V: When the type of given data is word:
 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.

When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Not affected by the result of the operation performed; it remains unchanged.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
±2-126 to ±2128

All the other flags then V and E remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored
in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a word
or long-word value causes an overflow.)

 If the E-flag is set, the content of Result (R) remains unchanged.

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored

in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-26

SUB SUBTRACTION

(1) Input format

SUB S - D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “-” and “->” may be omitted.

(2) Function
 Subtraction of word data

The SUB instruction subtracts a 16-bit data value specified in Destination (D) from another
16-bit data value specified in Source (S) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -32768 to 32767.

 Subtraction of long-word data

The SUB instruction subtracts a 32-bit data value specified in Destination (D) from another
32-bit data value specified in Source (S) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -2147483648 to 2147483647.

(S)
215 ・・・・・・ 20

– (D)
215 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
– (D)

231 ・・・・・・ 20
(R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-27

 Subtraction of floating data
The SUB instruction subtracts a floating data value specified in Destination (D) from
another floating data value specified in Source (S) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the following range:

0, ±2-126 to ±2128

(3) Data types

Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If any
one of them is of a different type, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the SUB instruction
subtracts the content of FW001 from that of FW000 and stores the result in FW002.

R000 SUB

FW000 - FW001 = FW002 F

(S)

Floating value

– (D)

Floating value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-28

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:

V: When the type of given data is word:
 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.

When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Not affected by the result of the operation performed; it remains unchanged.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
(For indirect specification only)

 ±2-126 to ±2128
All the other flags then V and E remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a word
or long-word value causes an overflow.)

 If the E-flag is set, the content of Result (R) remains unchanged.

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored

in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-29

INC +1 (INCREMENTATION)

(1) Input format

INC S

where:
S: A data storage register to store a data value to be incremented.

Note: Spaces must be inserted between the function name and parameter.

(2) Function
 Incrementation of word data

The INC instruction increments a 16-bit data value specified in Source (S) by one (1):

where the values that may be specified and stored in Source (S) are in the range
-32768 to 32767.

 Incrementation of long-word data

The INC instruction increments a 32-bit data value specified in Source (S) by one (1):

where the values that may be specified and stored in Source (S) are in the range
-2147483648 to 2147483647.

(3) Data types

Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – √ – – – √

√: May be specified.
–: May not be specified.

(S)

215 ・・・・・・ 20
+1 (S)

215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
+1 (S)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-30

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the INC instruction increments the content of FW000 by one (1) only once.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:

V: When the type of given data is word:
 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.

When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
All the other flags then V remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

Word Long-word
H7FFF H7FFFFFFF

R000 INC

FW000

V000

F

2. ARITHMETIC FUNCTIONS

2-31

DEC -1 (DECREMENTATION)

(1) Input format

DEC S

where:
S: A data storage register to store a data value to be decremented.

Note: Spaces must be inserted between the function name and parameter.

(2) Function
 Decrementation of word data

The DEC instruction decrements a 16-bit data value specified in Source (S) by one (1):

where the values that may be specified and stored in Source (S) are in the range -32768 to
32767.

 Decrementation of long-word data

The DEC instruction decrements a 32-bit data value specified in Source (S) by one (1):

where the values that may be specified and stored in Source (S) are in the range
-2147483648 to 2147483647.

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ – √ – – – √

√: May be specified.
–: May not be specified.

(S)
215 ・・・・・・ 20

-1 (S)

215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

-1 (S)
231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-32

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the DEC instruction decrements the content of FW000 by one (1) only once.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: When the type of given data is word:

 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.
When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
All the other flags then V remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

Word Long-word

H8000 H80000000

R000 DEC

FW000

V000

F

2. ARITHMETIC FUNCTIONS

2-33

MUL MULTIPLICATION

(1) Input format

MUL S * D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “*” and “->” may be omitted.

(2) Function
 Multiplication of word data

The MUL instruction multiplies a 16-bit data value specified in Source (S) and another
16-bit data value specified in Destination (D) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -32768 to 32767.

 Multiplication of long-word data

The MUL instruction multiplies a 32-bit data value specified in Source (S) and another
32-bit data value specified in Destination (D) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -2147483648 to 2147483647.

(S)
215 ・・・・・・ 20

* (D)
215 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

* (D)

231 ・・・・・・ 20

(R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-34

 Multiplication of floating data
The MUL instruction multiplies a floating data value specified in Source (S) and another
floating data value specified in Destination (D) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the following range:

0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If any
one of them is of a different type, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MUL instruction
multiplies the content of FW000 and that of FW001 and stores the result in FW002.

R000 MUL

FW000 * FW001 = FW002 F

(S)

Floating value

* (D)

Floating value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-35

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:
V: When the type of given data is word:

 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.
When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Not affected by the result of the operation performed; it remains unchanged.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
±2-126 to ±2128

All the other flags then V and E remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored
in Result (R):

 In case of a positive

overflow:
In case of a negative

overflow:
Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a
word or long-word value causes an overflow.)

 If the E-flag is set, the content of Result (R) remains unchanged.

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored

in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-36

DIV DIVISION

(1) Input format

DIV S / D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “/” and “->” may be omitted.

(2) Function
 Division of word data

The DIV instruction divides a 16-bit data value specified in Source (S) by another 16-bit
data value specified in Destination (D) and stores the result (quotient) in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -32768 to 32767.

 Division of long-word data

The DIV instruction divides a 32-bit data value specified in Source (S) by another 32-bit
data value specified in Destination (D) and stores the result (quotient) in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -2147483648 to 2147483647.

(S)

215 ・・・・・・ 20
/ (D)

215 ・・・・・・ 20

(R)

215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
/ (D)

231 ・・・・・・ 20

(R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-37

 Multiplication of floating data
The DIV instruction divides a floating data value specified in Source (S) by another floating
data value specified in Destination (D) and stores the result in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the following range:

0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If any
one of them is of a different type, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the DIV instruction
divides the content of FW000 by that of FW001 and stores the result (quotient) in FW002.

R000 DIV

FW000 / FW001 = FW002 F

(S) / (D) (R)

Floating value Floating value Floating value

2. ARITHMETIC FUNCTIONS

2-38

(5) Error handling
 Operation result flags

X E P N Z V

－ － － －

where:
V: When the type of given data is word:

 Set to 1 if Result (R) equals 32768; otherwise, set to 0.
When it is long-word:
 Set to 1 if Result (R) equals 2147483648; otherwise, set to 0.

When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Set to 1 if D equals 0; otherwise, set to 0.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
(For indirect specification only)

 ±2-126 to ±2128
All the other flags then V and E remain unchanged.

 If an attempt is made to divide a value by zero (0), the error (E) flag is set, with the
overflow (V) flag reset. The content of Result (R) remains unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a word
or long-word value causes an overflow.)

 If the E-flag is set, the content of Result (R) remains unchanged.

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored
in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-39

MOD REMAINDER

(1) Input format

MOD S % D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “%” and “->” may be omitted.

(2) Function
 Remainder division of word data

The MOD instruction divides a 16-bit data value specified in Source (S) by another 16-bit
data value specified in Destination (D) and stores the resulting remainder in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -32768 to 32767.

 Remainder division of long-word data

The MOD instruction divides a 32-bit data value specified in Source (S) by another 32-bit
data value specified in Destination (D) and stores the resulting remainder in Result (R):

where the values that may be specified in Source (S) and Destination (D) and stored in
Result (R) are in the range -2147483648 to 2147483647.

(S)
215 ・・・・・・ 20

% (D)
215 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

% (D)
231 ・・・・・・ 20

(R)
231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-40

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word or long-word). If any one of them
is of a different type, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MOD instruction
divides the content of FW000 by that of FW001 and stores the resulting remainder in FW002.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － －

where:
V: When the type of given data is word:

 Set to 1 if the resulting quotient equals 32768; otherwise, set to 0.
When it is long-word:
 Set to 1 if the resulting quotient equals 2147483648; otherwise, set to 0.

E: Set to 1 if Destination (D) equals 0; otherwise, set to 0.
All the other flags then V and E remain unchanged.

 If an attempt is made to divide a value by zero (0), the error (E) flag is set, with the
overflow (V) flag reset. The content of Result (R) remains unchanged.

 If an overflow occurs in the operation, a value of zero (0) will be stored in Result (R).

R000 MOD

FW000 % FW001 = FW002 F

2. ARITHMETIC FUNCTIONS

2-41

SCL SCALE

(1) Input format

SCL S : D1 : D2 -> R

where:
S: (Source) is a source storage register or a constant.
D1, D2: (Destination 1, Destination 2) each is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Scale of word data

The SCL instruction multiplies a 16-bit data value specified in Source (S) and the value of
Destination 1 (D1) divided by Destination 2 (D2) and stores the result in Result (R):

where the values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2) and stored in Result (R) are in the range -32768 to 32767.

 Scale of long-word data
The SCL instruction multiplies a 32-bit data value specified in Source (S) and the value of
Destination 1 (D1) divided by Destination 2 (D2) and stores the result in Result (R):

where the values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2) and stored in Result (R) are in the range -2147483648 to 2147483647.

(S)
215 ・・・・・・ 20

* (D1)
215 ・・・・・・ 20

(D2)
215 ・・・・・・ 20

/ (R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

* (D1)

231 ・・・・・・ 20

(D2)

231 ・・・・・・ 20
/ (R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-42

 Scale of floating data
The SCL instruction multiplies a 32-bit data value specified in Source (S) and the value of
Destination 1 (D1) divided by Destination 2 (D2) and stores the result in Result (R):

where the values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2), and stored in Result (R) are in the following range:
 0, ±2-126 to ±2128

(3) Data types

Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ √ √ √

D1 √ √ √ √ √ √ √
D2 √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the SCL instruction changes the scale for the content of FW000 only once and stores the
result in FW100.

R000 SCL

FW000 : FW001 : 100 = FW100

V000

F

H0100 FW000

FW001

FW100

H0200

 H0002

 0000

H051E ÷

Dividend
Divisor
100

(S) * (D1) (D2) / (R)

Floating value Floating value Floating value Floating value

2. ARITHMETIC FUNCTIONS

2-43

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:
V: When the type of given data is word:

 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.
When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Set to 1 if D equals 0; otherwise, set to 0.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
(For indirect specification or long-word size specification only)

 ±2-126 to ±2128
All the other flags then V and E remain unchanged.

 If an attempt is made to divide a value by zero (0), the error (E) flag is set, with the
overflow (V) flag reset. The content of Result (R) remains unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 Positive overflow Negative overflow

Word H7FFF H8000

Long-word H7FFFFFFF H80000000

Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a
word or long-word value causes an overflow.)

 If the E-flag is set, the content of Result (R) remains unchanged.

 If a floating value causes an underflow, a value of zero (0) with correct sign will be
stored in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-44

AND LOGICAL PRODUCT

(1) Input format

AND S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Logical product of word data

The AND instruction computes the logical product of a 16-bit data value specified in
Source (S) and another 16-bit data value specified in Destination (D) and stores the result in
Result (R):

 Logical product of long-word data

The AND instruction computes the logical product of a 32-bit data value specified in
Source (S) and another 32-bit data value specified in Destination (D) and stores the result in
Result (R):

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word or long-word). If any one of them
is of a different type, an input error will result.

(S)
215 ・・・・・・ 20

AND (D)

215 ・・・・・・ 20

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

AND (D)
231 ・・・・・・ 20

(R)
231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-45

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the AND instruction computes the logical product of the contents of FW000 and FW001
only once and stores the result in FW002.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 AND

FW000 : FW001 = FW002

V000

F

H1234

FW000

AND H0F0F

FW001

H0204

FW002

2. ARITHMETIC FUNCTIONS

2-46

OR LOGICAL SUM

(1) Input format

OR S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Logical sum of word data

The OR instruction computes the logical sum of a 16-bit data value specified in Source (S)
and another 16-bit data value specified in Destination (D) and stores the result in Result
(R):

 Logical sum of long-word data

The OR instruction computes the logical sum of a 32-bit data value specified in Source (S)
and another 32-bit data value specified in Destination (D) and stores the result in Result
(R):

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ – – √
D √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word or long-word). If any one of them
is of a different type, an input error will result.

(S)

215 ・・・・・・ 20
OR (D)

215 ・・・・・・ 20
(R)

215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
OR (D)

231 ・・・・・・ 20
(R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-47

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the OR instruction
computes the logical sum of the contents of FW000 and FW001 and stores the result in
FW002.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 OR

FW000 : FW001 = FW002 F

H1234

FW000

OR H0F0F

FW001

H1F3F

FW002

2. ARITHMETIC FUNCTIONS

2-48

EOR EXCLUSIVE OR

(1) Input format

EOR S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Exclusive logical sum of word data

The EOR instruction computes the exclusive logical sum of a 16-bit data value specified in
Source (S) and another 16-bit data value specified in Destination (D) and stores the result in
Result (R):

 Exclusive logical sum of long-word data

The EOR instruction computes the exclusive logical sum of a 32-bit data value specified in
Source (S) and another 32-bit data value specified in Destination (D) and stores the result in
Result (R):

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ – – √
D √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word or long-word). If any one of them
is of a different type, an input error will result.

(S)

215 ・・・・・・ 20
EOR (D)

215 ・・・・・・ 20

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

EOR (D)
231 ・・・・・・ 20

(R)
231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-49

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the EOR instruction
computes the exclusive logical sum of the contents of FW000 and FW001 and stores the result
in FW002.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 EOR

FW000 : FW001 = FW002 F

H1234

FW000

EOR H1234

FW001

H0000

FW002

2. ARITHMETIC FUNCTIONS

2-50

NOT NEGATION

(1) Input format

NOT S -> R

where:
S: (Source) is a source storage register.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Negation of word data

The NOT instruction inverts the bits of a 16-bit data value specified in Source (S) and
stores the result in Result (R):

 Negation of long-word data

The NOT instruction inverts the bits of a 32-bit data value specified in Source (S) and
stores the result in Result (R):

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result.

(S)
215 ・・・・・・ 20

NOT (R)

215 ・・・・・・ 20

231 ・・・・・・ 20

NOT (S) (R)

231 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-51

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the NOT instruction
inverts the content bits of FW000 and stores the inverted bits in FW001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 NOT

FW000 = FW001 F

H1234
FW000

NOT HEDCB

FW001

2. ARITHMETIC FUNCTIONS

2-52

EQU = (EQUAL)

(1) Input format

EQU S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The EQU instruction compares two 16-bit data values specified in Source (S) and
Destination (D), respectively. If they are equal, the instruction then stores the value 1 in
Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data
The EQU instruction compares two 32-bit data values specified in Source (S) and
Destination (D), respectively. If they are equal, the instruction then stores the value 1 in
Result (R); otherwise, it stores the value 0 in it.

 Comparison of floating data

The EQU instruction compares two floating data values specified in Source (S) and
Destination (D), respectively. If they are equal, the instruction then stores the value 1 in
Result (R); otherwise, it stores the value 0 in it.

Note: Care must be taken when using this instruction for comparison of floating data

values. Any two such values, which are actually equal, may be compared as not
equal, due to error contained in those values.

(S)
215 ・・・・・・ 20

= (D)
215 ・・・・・・ 20

then, the
value 1

(R)
215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

≠ (D)
215 ・・・・・・ 20

then, the
value 0

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

= (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

then, the
value 1

(S)
231 ・・・・・・ 20

≠ (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

then, the
value 0

(S)

Floating value

＝ (D)

Floating value

(R)

215 ・・・・・・ 20
then, the
value 1

Floating value Floating value

(S) ≠ (D) (R)
215 ・・・・・・ 20

then, the
value 0

2. ARITHMETIC FUNCTIONS

2-53

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the EQU instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 EQU

FW000 : FW001 = R001 F

H0003

FW000

R001

H0004

FW001
＝

0

2. ARITHMETIC FUNCTIONS

2-54

NEQ ≠ (NOT EQUAL)

(1) Input format

NEQ S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The NEQ instruction compares two 16-bit data values specified in Source (S) and
Destination (D), respectively. If they are not equal, the instruction then stores the value 1 in
Result (R); if they are equal, it stores the value 0 in it.

 Comparison of long-word data

The NEQ instruction compares two 32-bit data values specified in Source (S) and
Destination (D), respectively. If they are not equal, the instruction then stores the value 1 in
Result (R); if they are equal, it stores the value 0 in it.

 Comparison of floating data
The NEQ instruction compares two floating data values specified in Source (S) and
Destination (D), respectively. If they are not equal, the instruction then stores the value 1 in
Result (R); if they are equal, it stores the value 0 in it.

(S)
215 ・・・・・・ 20

≠ (D)

215 ・・・・・・ 20
then, the
value 1

(R)

215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

= (D)

215 ・・・・・・ 20
then, the
value 0

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

≠ (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

= (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

then, the
value 1

then, the
value 0

Floating value Floating value

(S)

Floating value

≠ (D)

Floating value

(R)
215 ・・・・・・ 20

(S) = (D) (R)
215 ・・・・・・ 20

then, the
value 1

then, the
value 0

2. ARITHMETIC FUNCTIONS

2-55

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the NEQ instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 NEQ

FW000 : FW001 = R001 F

H0004

FW000

R001

H0008
FW001

≠

1

2. ARITHMETIC FUNCTIONS

2-56

GT > (GREATER THAN)

(1) Input format

GT S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The GT instruction compares two 16-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is greater than Destination (D), the instruction then stores
the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data

The GT instruction compares two 32-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is greater than Destination (D), the instruction then stores
the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of floating data

The GT instruction compares two floating data values specified in Source (S) and
Destination (D), respectively. If Source (S) is greater than Destination (D), the instruction
then stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

(S)
215 ・・・・・・ 20

> (D)

215 ・・・・・・ 20
then, the
value 1

(R)

215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

≤ (D)

215 ・・・・・・ 20
then, the
value 0

(R)

215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
> (D)

231 ・・・・・・ 20
(R)

215 ・・・・・・ 20

(S)

231 ・・・・・・ 20
≤ (D)

231 ・・・・・・ 20
(R)

215 ・・・・・・ 20

then, the
value 1

then, the
value 0

then, the
value 1

then, the
value 0

Floatng value Floatng value

(S)

Floatng value

> (D)

Floatng value

(R)
215 ・・・・・・ 20

(S) ≤ (D) (R)
215 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-57

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the GT instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 GT

FW000 : FW001 = R001 F

H0004

FW000

R001

H0008

FW001

>

0

2. ARITHMETIC FUNCTIONS

2-58

LT < (LESS THAN)

(1) Input format

LT S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The LT instruction compares two 16-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is less than Destination (D), the instruction then stores the
value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data

The LT instruction compares two 32-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is less than Destination (D), the instruction then stores the
value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data

The LT instruction compares two 32-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is less than Destination (D), the instruction then stores the
value 1 in Result (R); otherwise, it stores the value 0 in it.

then, the
value 0

then, the
value 1

(S)
215 ・・・・・・ 20

< (D)
215 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

≥ (D)
215 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

< (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

≥ (D)
231 ・・・・・・ 20

(R)
215 ・・・・・・ 20

then, the
value 0

then, thez
value 1

Floating value Floating value

(S)

Floating value

< (D)

Floating value

(R)
215 ・・・・・・ 20

(S) ≥ (D)
then, the
value 0

(R)
215 ・・・・・・ 20

then, the
value 1

2. ARITHMETIC FUNCTIONS

2-59

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LT instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 LT

FW000 : FW001 = R001 F

H0005
FW000

R001

H0003

FW001
<

0

2. ARITHMETIC FUNCTIONS

2-60

GE ≥ (GREATER OR EQUAL)

(1) Input format

GE S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The GE instruction compares two 16-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is greater than or equal to Destination (D), the instruction
then stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data

The GE instruction compares two 32-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is greater than or equal to Destination (D), the instruction
then stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of floating data
The GE instruction compares two floating data values specified in Source (S) and
Destination (D), respectively. If Source (S) is greater than or equal to Destination (D), the
instruction then stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

Floating value Floating value

Floating value Floating value

(S)
215 ・・・・・・ 20

≥ (D)

215 ・・・・・・ 20
then, the
value 1

(R)

215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

< (D)

215 ・・・・・・ 20
then, the
value 0

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

≥ (D)
231 ・・・・・・ 20

then, the
value 1

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

< (D)
231 ・・・・・・ 20

then, the
value 0

(R)
215 ・・・・・・ 20

(S) ≥ (D)
then, the
value 1

(R)
215 ・・・・・・ 20

(S) < (D)
then, the
value 0

(R)
215 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-61

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the GE instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

R000 GE

FW000 : FW001 = R001 F

H0004

FW000

R001

H0008

FW001
≥

0

2. ARITHMETIC FUNCTIONS

2-62

LE ≤ (LESS OR EQUAL)

(1) Input format

LE S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Comparison of word data

The LE instruction compares two 16-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is less than or equal to Destination (D), the instruction then
stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of long-word data

The LE instruction compares two 32-bit data values specified in Source (S) and Destination
(D), respectively. If Source (S) is less than or equal to Destination (D), the instruction then
stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

 Comparison of floating data
The LE instruction compares two floating data values specified in Source (S) and
Destination (D), respectively. If Source (S) is less than or equal to Destination (D), the
instruction then stores the value 1 in Result (R); otherwise, it stores the value 0 in it.

(S)
215 ・・・・・・ 20

≤ (D)
215 ・・・・・・ 20

then, the
value 1

(R)
215 ・・・・・・ 20

(S)
215 ・・・・・・ 20

> (D)
215 ・・・・・・ 20

then, the
value 0

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

≤ (D)
231 ・・・・・・ 20

then, the
value 1

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・ 20

> (D)
231 ・・・・・・ 20

then, the
value 0

(R)
215 ・・・・・・ 20

Floating value Floating value

(S)

Floating value

≤ (D)

Floating value
then, the
value 1

(R)

215 ・・・・・・ 20

(S) > (D)
then, the
value 0

(R)

215 ・・・・・・ 20

2. ARITHMETIC FUNCTIONS

2-63

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The type of R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LE instruction
compares the contents of FW000 and FW001 and stores the result in R001.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

R000 LE

FW000 : FW001 = R001 F

H0004

FW000

R001

H0008
FW001

≤

1

2. ARITHMETIC FUNCTIONS

2-64

TST TEST

(1) Input format

TST S

where:
S: (Source) is a source storage register.

Note: At least one space must be inserted between the function name and parameter.

(2) Function

The TST instruction tests the content of Source (S) for polarity and sets the positive (p),
negative (N), or zero (Z) flag, depending on the polarity found. All the other flags remain
unchanged.

<Operation result flags>

X E P N Z V

– – –

 Test of word data

 Test of long-word data

 Test of floating data

(S)
215 ・・・・・・ 20

> 0 : P ON（N, Z OFF）

(S)
215 ・・・・・・ 20

(S)

215 ・・・・・・ 20

= 0 : Z ON（P, N OFF）

< 0 : N ON（P, Z OFF）

(S)

231 ・・・・・・・・・ 20

> 0 : P ON（N, Z OFF）

(S)
231 ・・・・・・・・・ 20

(S)

231 ・・・・・・・・・ 20

= 0 : Z ON（P, N OFF）

< 0 : N ON（P, Z OFF）

Floating value

Floating value

Floating value

(S) > 0 : P ON（N, Z OFF）

(S)

(S)

= 0 : Z ON（P, N OFF）

< 0 : N ON（P, Z OFF）

2. ARITHMETIC FUNCTIONS

2-65

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – √ – √ – √

√: May be specified.
–: May not be specified.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the TST instruction tests
the content of FW000 for polarity and sets the appropriate flag.

S000 Remaining unchanged X-flag

S001 Remaining unchanged E-flag

S002 ON P-flag

S003 OFF N-flag

S004 OFF Z-flag

S005 Remaining unchanged V-flag

(5) Error handling
 If a non-numeric value or infinity is specified in Source (S) for a floating-value test

operation, the operation result flags set are as follows:

Source (S) Operation result flag
Non-numeric value N ON (P, Z OFF)
+ infinity P ON (N, Z OFF)
- infinity N ON (P, Z OFF)

R000 TST

FW000 F

H0004

FW000
TST

2. ARITHMETIC FUNCTIONS

2-66

MOV TRANSFER

(1) Input format

MOV S -> D

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The MOV (move) instruction transfers a data value specified in Source (S) to Destination (D).

 Transfer of word data

 Transfer of word data

 Transfer of long-word data

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result.

(S)

215 ・・・・・・ 20 Transfer
(D)

215 ・・・・・・ 20

(S)

231 ・・・・・・・・ 20 Transfer
(D)

231 ・・・・・・・・ 20

(S)

Floating value Transfer
(D)

Floating value

2. ARITHMETIC FUNCTIONS

2-67

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MOV instruction
transfers the content of FW000 to FW001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 MOV

FW000＝FW001 F

H0004

FW000
H0004
FW001

MOV

2. ARITHMETIC FUNCTIONS

2-68

MOM BATCH TRANSFER

(1) Input format

MOM S : n -> D

where:
S: (Source) is a source storage register.
n: A count (constant) of the number of words or long words to be transferred.
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The MOM (move multi) instruction transfers the contents of the first n steps in Source (S) to
the corresponding steps in Destination (D), where n is an integer in the range 1 to 256. (If any
integer outside that range is given, the instruction performs nothing.)

 Batch transfer of word data

 Batch transfer of long-word data

215 ・・・・・ 20

Transfer

S
S+1
S+2

S+ (n-2)
S+ (n-1)

：
：
：

215 ・・・・・ 20

D
D+1
D+2

D+ (n-2)
D+ (n-1)

：
：
：

231 ・・・・・ 20

Transfer

S
S+1
S+2

S+ (n-2)
S+ (n-1)

：
：
：

231 ・・・・・ 20

D
D+1
D+2

D+ (n-2)
D+ (n-1)

：
：
：

2. ARITHMETIC FUNCTIONS

2-69

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – √ – √ – √
n √ √ – – – – –
D √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of n must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MOM instruction
transfers the contents of the first five steps in DW000 to the corresponding steps in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 MOM

DW000 : 5 = FW000 F

DW000

DW001

DW002

DW003

DW004

MOM

H0001

H0002

H0003

H0004

H0005

FW000

FW001

FW002

FW003

FW004

H0001

H0002

H0003

H0004

H0005

2. ARITHMETIC FUNCTIONS

2-70

INI BATCH TRANSFER OF SAME DATA

(1) Input format

INI S : n -> D

where:
S: (Source) is a source storage register or a constant.
n: A count (constant) of the number of words or long words to be transferred.
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The INI (initial) instruction transfers the content of Source (S) repeatedly to the first n steps in
Destination (D), where n is an integer in the range 1 to 256. (If any integer outside that range
is given, the instruction performs nothing.)

 Batch transfer of same word data

 Batch transfer of same long-word data

215 ・・・・・ 20

n

D

D+ (n-1)

：
：
：

215 ・・・・・ 20
S

215 ・・・・・ 20

n

D

D+ (n-1)

：
：
：

215 ・・・・・ 20

S

2. ARITHMETIC FUNCTIONS

2-71

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
n √ √ – – – – –
D √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of n must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the INI instruction
transfers the content of DW000 repeatedly to the first five steps in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 INI

DW000 : 5 = FW000 F

DW000 INI H1234

FW000

FW001

FW002

FW003

FW004

H1234

H1234

H1234

H1234

H1234

2. ARITHMETIC FUNCTIONS

2-72

EXC EXCHANGE

(1) Input format

EXC S : D

where:
S: (Source) is a source storage register.
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “:” may be omitted.

(2) Function
The EXC instruction exchanges the contents of Source (S) and Destination (D).

 Exchange of word data

 Exchange of long-word data

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ – √ – √ – √
D √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result.

(S)
215 ・・・・・・ 20 Exchange

(D)

215 ・・・・・・ 20

(S)

231 ・・・・・・・・ 20
(D)

231 ・・・・・・・・ 20 Exchange

2. ARITHMETIC FUNCTIONS

2-73

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the EXC instruction
exchanges the contents of FW000 and FW001.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

R000 EXC

FW000 : FW001 F

EXC
H1234

H5678

FW000

FW001

H5678

H1234

FW000

FW001

2. ARITHMETIC FUNCTIONS

2-74

PSH WRITE ON FIFO BASIS

(1) Input format

PSH S -> TB

where:
S: (Source) is a source storage register.
TB: Is the starting register of an FIFO table.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The PSH (FIFO push) instruction writes the content of Source (S) to a specified FIFO table.

Notes:
 If the pointer has a value of n before pushing, this instruction sets the FULL flag and does

not perform pushing (the ZERO flag is reset). The instruction also sets the FULL flag if
the pointer incremented after pushing reaches n. In any other case, the FULL flag is reset.
 This instruction resets the ZERO flag at the end of its operation, except when it performs

nothing in the cases described below.
 If data size n is smaller than or equal to 0 or greater than 256, this instruction performs

nothing.
 If the pointer has a value smaller than 0 or greater than n, this instruction performs

nothing.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – – – – – √
TB √ – – – – – √

√: May be specified.
–: May not be specified.

Data value #1

Data value #2

Data value #3

Data value #4

Data movement

Push data

Pointer

n (data size)

(Reserved)

ZERO flag
address

FULL flag
address

Pointer

Data value #1

Data value #n

FIFO data table structure

Data storage area specified
by data size

FIFO top

+2

+4

+6

+8

+10

+12

+14

n×2+12

～

2. ARITHMETIC FUNCTIONS

2-75

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the MOV (transfer) and the AST (address setting) instructions set a data size (100) and
the addresses of a ZERO flag (R100) and a FULL flag (R101), respectively, only once. Then,
if the contact R001 (input condition) is closed (ON), the PSH instruction writes the content of
FW000 to a specified FIFO table beginning with DW000. (Data size n is defined by MOV
with an immediate data value.)

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

H1234 FW000

PSH

Pointer
Data value #1
Data value #2
Data value #3

H1234

DW000
DW001
DW002
DW003
DW004
DW005
DW006
DW007
DW008
DW009
DW00A

：
：

R001 PSH

F FW000 = DW000

R000 MOV

F 100 = DW000

R100 = DL002

R101 = DL004

AST

F

AST

F

V000

2. ARITHMETIC FUNCTIONS

2-76

POP READ OF FIFO BASIS

(1) Input format

POP TB -> D

where:
TB: Is the starting address of an FIFO table (register).
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The POP (FIFO pop) instruction reads a data value from a specified FIFO table and stores the
value in Destination (D).

Notes:
 If the pointer has a value of 0 before popping, this instruction sets the ZERO flag and does

not perform popping (the FULL flag is reset). The instruction also sets the ZERO flag if
the pointer decremented after popping reaches 0. In any other case, the ZERO flag is reset.
 This instruction resets the FULL flag at the end of its operation, except when it performs

nothing in the cases described below.
 If data size n is smaller than or equal to 0 or greater than 256, this instruction performs

nothing.
 If the pointer has a value smaller than 0 or greater than n, this instruction performs

nothing.

Data value #1

Data value #2

Data value #3

Data value #4

Data movement

Pop data

Pointer

n (data size)

(Reserved)

ZERO flag
address

FULL flag
address

Pointer

Data value #1

Data value #n

FIFO data table structure

Data storage area specified
by data size

FIFO top

+2

+4

+6

+8

+10

+12

+14

n×2+12

～

2. ARITHMETIC FUNCTIONS

2-77

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

D √ – － – – – √
TB √ – － – – – √

√: May be specified.
–: May not be specified.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the POP instruction
reads a data value from a specified FIFO table beginning with DW000 and stores the value in
FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 POP

DW000 = FW000 F

DW000

DW001

DW002

DW003

DW004

DW005

DW006

DW007

DW008

DW009

DW00A

H1234 FW000

POP

Pointer

H1234

：
：

2. ARITHMETIC FUNCTIONS

2-78

PSHO WRITE ON FIFO BASIS

(1) Input format

PSHO S -> TB

where:
S: (Source) is a source storage register.
TB: Is the starting register of an FIFO table.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
This instruction pushes the contents of the source (S) to the S10/2α and S10mini-compatible
FIFO table.

Notes:
 If the pointer has a value of n before pushing, this instruction sets the FULL flag and does

not perform pushing (the ZERO flag is reset). The instruction also sets the FULL flag if
the pointer incremented after pushing reaches n. In any other case, the FULL flag is reset.
 This instruction resets the ZERO flag at the end of its operation, except when it performs

nothing in the cases described below.
 If data size n is smaller than or equal to 0 or greater than 256, this instruction performs

nothing.
 If the pointer has a value smaller than 0, this instruction performs nothing.
 If the pointer has a value greater than n, this instruction sets the FULL flag.

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ – – – – – √

TB √ – – – – – √

√: May be specified.
–: May not be specified.

Data value #1

Data value #2

Data value #3

Data value #4

Data movement

Push data

Pointer

Data storage area specified
by data size

n (data size)

ZERO flag
address

FULL flag
address

Pointer

Data value #1

Data value #n

[S10/2α and S10mini compatibility]
FIFO data table structure

FIFO top+0

+2

+4

+6

+8

+10

+12

n×2+10

～

2. ARITHMETIC FUNCTIONS

2-79

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the MOV (transfer) and the AST (address setting) instructions set a data size (100) and
the addresses of a ZERO flag (R100) and a FULL flag (R101), respectively, only once. Then,
if the contact R001 (input condition) is closed (ON), the PSH instruction writes the content of
FW000 to a specified FIFO table beginning with DW000. (Data size n is defined by MOV
with an immediate data value.)

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

H1234 FW000

PSHO

Pointer
Data value #1
Data value #2
Data value #3

H1234

DW000
DW001
DW002
DW003
DW004
DW005
DW006
DW007
DW008
DW009
DW00A

：
：

R001 PSHO

F FW000 = DW000

R000 MOV

F 100 = DW000

R100 = DL001

R101 = DL003

AST

F

AST

F

V000

2. ARITHMETIC FUNCTIONS

2-80

POPO READ ON FIFO BASIS

(1) Input format

POPO TB -> D

where:
TB: Is the starting address of an FIFO table (register).
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
This instruction performs popping for the S10/2α and S10mini-compatible FIFO table and
stores pop data in the destination (D).

Notes:
 If the pointer has a value of 0 before popping, this instruction sets the ZERO flag and does

not perform popping (the FULL flag is reset). The instruction also sets the ZERO flag if
the pointer decremented after popping reaches 0. In any other case, the ZERO flag is reset.
 This instruction resets the FULL flag at the end of its operation, except when it performs

nothing in the cases described below.
 If data size n is smaller than or equal to 0 or greater than 256, this instruction performs

nothing.
 If the pointer has a value smaller than 0 or greater than n, this instruction performs

nothing.

Data value #1

Data value #2

Data value #3

Data value #4

Data movement

Pop data

Pointer

Data storage area specified
by data size

n (data size)

ZERO flag
address

FULL flag
address

Pointer

Data value #1

Data value #n

[S10/2α and S10mini compatibility]
FIFO data table structure

Table top +0

+2

+4

+6

+8

+10

+12

n×2+10

～

2. ARITHMETIC FUNCTIONS

2-81

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

D √ – – – – – √
TB √ – – – – – √

√: May be specified.
–: May not be specified.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the POP instruction
reads a data value from a specified FIFO table beginning with DW000 and stores the value in
FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 POPO

DW000 = FW000 F

DW000

DW001

DW002

DW003

DW004

DW005

DW006

DW007

DW008

DW009

DW00A

H1234 FW000

POPO

Pointer

H12344

：
：

2. ARITHMETIC FUNCTIONS

2-82

AST ADDRESS SETTING

(1) Input format

AST S -> D

where:
S: (Source) is a source storage register.
D: (Destination) is a destination storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The AST instruction stores the address of Source (S) in Destination (D).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – √ – √ – √
D – – √ – – – √

√: May be specified.
–: May not be specified.

Address of S

D

S

2. ARITHMETIC FUNCTIONS

2-83

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the AST instruction stores the address of FW000 in DL000.

(5) Error handling

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 AST

FW000 = DL000

V000

F

DL000（DW000）

（DW001）

H0040

H2000
AST

FW000

Address of FW000

2. ARITHMETIC FUNCTIONS

2-84

SCH SEARCH

(1) Input format

SCH S : D : m -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register.
m：Number of steps to be searched (constant or word register)
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Search for word data

The SCH instruction searches the first m steps in a specified destination (D) for a word data
value specified in Source (S) and, if it is found, stores in Result (R) the step number of the
step containing the matching value.

 The matching value is the first value that is found in a specified range of search, starting

from the beginning of that range.
 If there is no matching value in a specified range of search, this instruction stores the

value -1 (HFFFF) in Result (R).
 If a value specified as m (the number of steps to be searched) is not within the range 1 to

256, this instruction performs nothing.

data1 S
data1

･
･
･

･
･
･

D[0]

D[1]

D[n]

D[m-1]
Range of search

n R

2. ARITHMETIC FUNCTIONS

2-85

 Search for long-word data
The SCH instruction searches the first m steps in a specified destination (D) for a long-
word data value specified in Source (S) and, if it is found, stores in Result (R) the step
number of the step containing the matching value.

 The matching value is the first value that is found in a specified range of search, starting

from the beginning of that range.
 If there is no matching value in a specified range of search, this instruction stores the

value -1 (HFFFF) in Result (R).
 If a value specified as m (the number of steps to be searched) is not within the range 1 to

256, this instruction performs nothing.

 Search for floating data
The SCH instruction searches the first m steps in a specified destination (D) for a floating
data value specified in Source (S) and, if it is found, stores in Result (R) the step number of
the step containing the matching value.

 The matching value is the first value that is found in a specified range of search, starting

from the beginning of that range.
 If there is no matching value in a specified range of search, this instruction stores the

value -1 (HFFFF) in Result (R).
 If a value specified as m (the number of steps to be searched) is not within the range 1 to

256, this instruction performs nothing.

Note: Care must be taken when using this instruction for searching for floating data values.
Any data value in storage, which is actually equal to a given data value, may be
skipped as not matching, due to error contained in those values.

data2 S

data2

･
･
･

･
･
･

D[0]

D[1]

D[n]

D[m-1]
Range of search

n R

data3 S

data3

･
･
･

･
･
･

D[0]

D[1]

D[n]

D[m-1]
Range of search

n R

Floating data value

2. ARITHMETIC FUNCTIONS

2-86

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ – √ – √ – √
m √ √ – – – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

The types of S and D must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result. The types of m and R must always be word.

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the SCH instruction searches the first five steps FW000 through FW004 for the same
data value as the content of DW000 only once and stores the result in DW010.

(5) Error handling

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 SCH

DW000 : FW000 : 5 = DW010

V000

F

DW000 H1234 SCH

DW010 2

Result

Search FW000

FW001

FW002

FW003

FW004

H1010

H2468

H1234

H8ABC

H1234

Range of
search

2. ARITHMETIC FUNCTIONS

2-87

BTF BINARY-TO-FLOATING CONVERSION

(1) Input format

BTF S -> R

where:
S: (Source) is a binary-data storage register or a binary constant.
R: (Result) is an operation result (floating data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Conversion of word data

The BTF instruction converts a 16-bit binary data value specified in Source (S) to floating
format and stores the result in Result (R).

The values that may be specified in Source (S) are in the range -32768 to 32767.

 Conversion of long-word data
The BTF instruction converts a 32-bit binary data value specified in Source (S) to floating
format and stores the result in Result (R).

The values that may be specified in Source (S) are in the range -2147483648 to
2147483647.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
R – – – – √ – √

√: May be specified.
–: May not be specified.

The type of R must always be floating.

(S)

16-bit binary value
ﾞ ﾀ

Conversion

(R)

Floating value

(S)

32-bit binary value Conversion
(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-88

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the BTF instruction
converts the content of DW000 to floating data format and stores the result in LF0000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Note: Any floating data value, processed in 32-bit single-precision form, has a total of 24
significant bits when expressed in binary, and about seven significant digits when
expressed in decimal. Therefore, if an integer outside the range -16777216 to 16777215
(24-bit binary values) is converted by using this instruction, the resulting value will
contain error, because it is rounded off at its 25th significant bit position.

R000 BTF

DW000 = LF0000 F

12345 DW000 BTF 12345. 0

LF0000

2. ARITHMETIC FUNCTIONS

2-89

FTB FLOATING-TO-BINARY CONVERSION

(1) Input format

FTB S -> R

where:
S: (Source) is a floating-data storage register or a floating constant.
R: (Result) is an operation result (binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Conversion to binary word data format

The FTB instruction converts a floating data value specified in Source (S) to 16-bit binary
data format and stores the result in Result (R).

 The values that may be specified in Source (S) are in the range -32768 to 32767.
 The resulting value is one that is rounded off at the first decimal place in the floating data

value.

 Conversion to binary long-word data format
The FTB instruction converts a floating data value specified in Source (S) to 32-bit binary
data format and stores the result in Result (R).

 The values that may be specified in Source (S) are in the range -2147483648 to

2147483647.
 The resulting value is one that is rounded off at the first decimal place in the floating data

value.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

(S)

Floating value Conversion
(R)

32-bit binary value

(S)

16-bit binary value Conversion

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-90

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the FTB instruction
converts the content of LF0000 to binary data format and stores the result in DW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: When the type of given data is word:
 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.

When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
All the other flags then V remain unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word 32767 -32768
Long-word 2147483647 -2147483648

R000 FTB

LF0000 = DW000 F

LF0000 FTB

DW0000

12346 12345. 678

2. ARITHMETIC FUNCTIONS

2-91

BTD BINARY-TO-BCD CONVERSION

(1) Input format

BTD S -> R

where:
S: (Source) is a binary-data storage register or a binary constant.
R: (Result) is an operation result (BCD data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Conversion of word data

The BTD instruction converts a binary data value (0 to 9999) specified in Source (S) to
BCD (Binary Coded Decimal) data format and stores the result in Result (R).

 Conversion of long-word data
The BTD instruction converts a binary data value (0 to 99999999) specified in Source (S)
to BCD data format and stores the result in Result (R).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

Source (S) / binary 9999 2 7 0 F
215 212 211 28 27 24 23 20

Conversion

Result (R) / BCD 9999 9 9 9 9
215 212 211 28 27 24 23 20

Source (S) / binary 99999999 0 5 F 5 E 0 F F
231 228

Conversion

Result (R) / BCD 99999999

227 224 223 220 219 216 215 212 211 28 27 24 23 20

 9 9 9 9 9 9 9 9
231 228 227 224 223 220 219 216 215 212 211 28 27 24 23 20

2. ARITHMETIC FUNCTIONS

2-92

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the BTD instruction
converts the binary data content of FW000 to BCD data format and stores the result in
FW001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:
E: Set to 1 if Source (S) is smaller than 0; otherwise, set to 0.
V: When the type of given data is word:

 Set to 1 if Source (S) is greater than 9999; otherwise, set to 0.
When it is long-word:
 Set to 1 if Source (S) is greater than 99999999; otherwise, set to 0.

All the other flags then V and E remain unchanged.

 If Source (S) is smaller than 0, this instruction sets the E-flag of the operation result flags
(the V-flag is reset) and performs nothing. The value of Result (R) remains unchanged.

 If an overflow occurs in the operation (the V-flag is set), one of the following full-scale

values will be stored in Result (R):

Word Long-word

H9999 H99999999

R000 BTD

FW000 = FW001 F

H0402 FW000 BTD

(1234 in decimal)

H1234

FW001

2. ARITHMETIC FUNCTIONS

2-93

DTB BCD-TO-BINARY CONVERSION

(1) Input format

DTB S -> R

where:
S: (Source) is a BCD data storage register or a BCD constant.
R: (Result) is an operation result (binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbol “->” may be omitted.

(2) Function
 Conversion of word BCD data

The DTB instruction converts a BCD data value (0 to 9999) specified in Source (S) to
binary data format and stores the result in Result (R).

 Conversion of long-word BCD data

The DTB instruction converts a long-word BCD data value (0 to 99999999) specified in
Source (S) to binary data format and stores the result in Result (R).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result.

Source (S) / BCD 9999 9 9 9 9
215 212 211 28 27 24 23 20

Conversion

Result (R) / binary 9999 2 7 0 F
215 212 211 28 27 24 23 20

Source (S) / BCD 99999999 9 9 9 9 9 9 9 9
231 228

Conversion

Result (R) / binary 99999999

227 224 223 220 219 216 215 212 211 28 27 24 23 20

 0 5 F 5 E 0 F F
231 228227 224 223 220 219 216 215 212 211 28 27 24 23 20

2. ARITHMETIC FUNCTIONS

2-94

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the DTB instruction
converts the BCD data content of FW000 to binary data format and stores the result in
FW001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 0 if each digit (4-bit) (*) specified in Source (S) is in the range 0 to 9; otherwise,

set to 1.
All the other flags then E remain unchanged.
(*) The digit is as shown below.

R000 DTB

FW000 = FW001 F

H1234 FW000 DTB

(1234 in decimal)

H0402

FW001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (LSB) (MSB)

Digit Digit Digit Digit

2. ARITHMETIC FUNCTIONS

2-95

SEG BINARY-TO-SEGMENT CONVERSION

(1) Input format

SEG S -> R

where:
S: (Source) is a binary data storage register or a binary constant.
R: (Result) is an operation result (7-segment data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Conversion of word data

The SEG instruction converts a 16-bit binary data value specified in Source (S) to 7-
segment data format and stores the result in Result (R).

 Conversion of long-word data

The SEG instruction converts a 32-bit binary data value specified in Source (S) to 7-
segment data format and stores the result in Result (R).

16-bit binary value

7-segment values
for 4 characters

Source (S)

Result (R)
(R+1)

32-bit binary value

7-segment values
for 8 characters

Source (S)

Result (R)
(R+1)
(R+2)
(R+3)

2. ARITHMETIC FUNCTIONS

2-96

<Segment data structure>

Correspondence between displays and segment data:
No. 0 1 2 3 4 5 6 7 8 9 A B C D E F

Display

Data
value

H7E H30 H6D H79 H33 H5B H5F H70 H7F H7B H77 H1F H4E H3D H4F H47

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the SEG instruction
converts the binary data content of FW000 to 7-segment data format (four characters) and
stores the result in FW002.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

7
0

6
①

5
②

4
③

3
④

2
⑤

1
⑥

0
⑦

①

⑥ ②
⑦

④

⑤ ③

R000 SEG

FW000 = FW002 F

If each encircled-number bit is set, the
corresponding segment is displayed.

H1357

(H30) (H79)

(H5B) (H70)

Conversion to 7-segment format FW000

FW001

FW002

FW003

2. ARITHMETIC FUNCTIONS

2-97

ASP BINARY-TO-ASCII CONVERSION IN PACK MODE

(1) nput format

ASP S -> R

where:
S: (Source) is a binary data storage register or a binary constant.
R: (Result) is an operation result (ASCII data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The ASP instruction converts a 16-bit binary data value specified in Source (S) to
hexadecimal ASCII data format in pack mode and stores the result in Result (R).

<Correspondence between binary and ASCII data>

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII H30 H31 H32 H33 H34 H35 H36 H37 H38 H39 H41 H42 H43 H44 H45 H46

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

H1234 Source (S)

Result (R)
(R+1)

‘1’ (H31) ‘2’ (H32)

‘3’ (H33) ‘4’ (H34)

16-bit binary value

Conversion to hexadecimal
ASCII format (pack mode)

ASCII data

2. ARITHMETIC FUNCTIONS

2-98

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the ASP instruction converts the binary data content of DW000 to hexadecimal ASCII
data format in pack mode only once and stores the result in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

H56AB

ASP

DW000

FW000

FW001

‘5’ (H35) ‘6’ (H36)

‘A’ (H41) ‘B’ (H42)

R000 ASP

DW000 = FW000

V000

F

2. ARITHMETIC FUNCTIONS

2-99

ASU BINARY-TO-ASCII CONVERSION IN UNPACK MODE

(1) Input format

ASU S -> R

where:
S: (Source) is a binary data storage register or a binary constant.
R: (Result) is an operation result (ASCII data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The ASU instruction converts a 16-bit binary data value specified in Source (S) to
hexadecimal ASCII data format in unpack mode and stores the result in Result (R).

The result is stored byte-by-byte in the lower bytes at (R), (R+1), (R+2), and (R+3), starting
from the high-order digit. The upper bytes at (R) through (R+3) are set to an ASCII value of 0
(H30).

<Correspondence between binary and ASCII data>

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII H30 H31 H32 H33 H34 H35 H36 H37 H38 H39 H41 H42 H43 H44 H45 H46

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

H1234 Source (S)

Result (R)
(R+1)
(R+2)

(R+3)

‘0’ (H30) ‘1’ (H31)

‘0’ (H30) ‘2’ (H32)

16-bit binary value

Conversion to hexadecimal
ASCII format (unpack mode)

ASCII data

‘0’ (H30) ‘3’ (H33)

‘0’ (H30) ‘4’ (H34)

2. ARITHMETIC FUNCTIONS

2-100

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the ASU instruction converts the binary data content of DW000 to hexadecimal ASCII
data format in unpack mode only once and stores the result in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 ASU

DW000 = FW000

V000

F

H56AB

ASU

DW000

FW000

FW001

FW002

FW003

‘0’ (H30) ‘5’ (H35)

‘0’ (H30) ‘6’ (H36)

‘0’ (H30) ‘A’ (H41)

‘0’ (H30) ‘B’ (H42)

2. ARITHMETIC FUNCTIONS

2-101

APB ASCII-TO-BINARY CONVERSION IN PACK MODE

(1) Input format

APB S -> R

where:
S: (Source) is an ASCII data storage register.
R: (Result) is an operation result (binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The APB instruction converts a packed hexadecimal ASCII data value specified in Source (S)
to 16-bit binary data format and stores the result in Result (R).

<Correspondence between binary and ASCII data>

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII H30 H31 H32 H33 H34 H35 H36 H37 H38 H39 H41 H42 H43 H44 H45 H46

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – – – – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

H1234 Result (R)

Source (S)

(S+1)

‘1’ (H31) ‘2’ (H32)

‘3’ (H33) ‘4’ (H34)

16-bit binary value

Conversion to binary format

ASCII data
(packed)

2. ARITHMETIC FUNCTIONS

2-102

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the APB instruction converts the unpacked hexadecimal ASCII data content of DW000
to binary data format only once and stores the result in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if data other than hexadecimal ASCII data (H30 through H39 and H41 through

H46) is detected in Source (S); otherwise, set to 0.
All the other flags then E remain unchanged.

 If the E-flag is set, Result (R) remains unchanged.

R000 APB

DW000 = FW000

V000

F

H56AB

APB

FW000

DW000

DW001

‘5’ (H35) ‘6’ (H36)

‘A’ (H41) ‘B’ (H42)

2. ARITHMETIC FUNCTIONS

2-103

AUB ASCII-TO-BINARY CONVERSION IN UNPACK MODE

(1) Input format

AUB S -> R

where:
S: (Source) is an ASCII data storage register.
R: (Result) is an operation result (binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The AUB instruction converts an unpacked hexadecimal ASCII data value specified in Source
(S) to 16-bit binary data format and stores the result in Result (R).

The upper bytes at Source (S) and subsequent locations up to (S+3) may be set to any value.

<Correspondence between binary and ASCII data>
Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII H30 H31 H32 H33 H34 H35 H36 H37 H38 H39 H41 H42 H43 H44 H45 H46

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ – – – – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

H1234 Result (R)

Source (S)

(S+1)

(S+2)

(S+3)

‘0’ (H30) ‘1’ (H31)

‘0’ (H30) ‘2’ (H32)

16-bit binary value

ASCII data
(unpacked)

Conversion to binary format

‘0’ (H30) ‘3’ (H33)

‘0’ (H30) ‘4’ (H34)

2. ARITHMETIC FUNCTIONS

2-104

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the AUB instruction converts the unpacked hexadecimal ASCII data content of DW000
to binary data format only once and stores the result in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if data other than hexadecimal ASCII data (H30 through H39 and H41 through

H46) is detected in Source (S); otherwise, set to 0.
All the other flags then E remain unchanged.

 If the E-flag is set, Result (R) remains unchanged.

R000 AUB

DW000 = FW000

V000

F

H56AB

AUB

FW000

DW000

DW001

DW002

DW003

‘0’ (H30) ‘5’ (H35)

‘0’ (H30) ‘6’ (H36)

‘0’ (H30) ‘A’ (H41)

‘0’ (H30) ‘B’ (H42)

2. ARITHMETIC FUNCTIONS

2-105

STD SINGLE-TO-DOUBLE CONVERSION

(1) Input format

STD S -> R

where:
S: (Source) is a 16-bit binary data storage register.
R: (Result) is an operation result (32-bit binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The STD instruction converts a signed 16-bit binary data value specified in Source (S) to 32-
bit binary data format, expanding the sign bit assignment, and stores the result in Result (R).

 When the sign bit is set:

 When the sign bit is reset:

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – √
R – – √ – – – √

√: May be specified.
–: May not be specified.

HABCD Source (S) Result (R)

(R+1)
HFFFF
ABCD

H1234 Source (S) Result (R)
(R+1)

H0000
1234

2. ARITHMETIC FUNCTIONS

2-106

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the STD instruction
converts the 16-bit binary data content of DW000 to 32-bit binary data format, extending the
sign bit assignment, and stores the result in FL000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 STD

DW000 = FL000 F

H8804 DW000 STD

HFFFF
8804

FL000 (FW000)

(FW001)

2. ARITHMETIC FUNCTIONS

2-107

DTS DOUBLE-TO-SINGLE CONVERSION

(1) Input format

DTS S -> R

where:
S: (Source) is a 32-bit binary data storage register or a 32-bit binary constant.
R: (Result) is an operation result (16-bit binary data) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The DTS instruction converts a 32-bit binary data value specified in Source (S) to 16-bit
binary data format and stores the result in Result (R).

 When the sign bit is set:

 When the sign bit is reset:

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – √ √ – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

HABCD Result (R)Source (S)

(S+1)
HFFFF
ABCD

H1234 Result (R)Source (S)

(S+1)
H0000

1234

2. ARITHMETIC FUNCTIONS

2-108

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the DTS instruction
converts the 32-bit binary data content of FL000 to 16-bit binary data format and stores the
result in FW002.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: Set to 0 if Source (S) is in the range -32768 to 32767; otherwise, set to 1.
All the other flags then V remain unchanged.

 If an overflow occurs in the operation (the V-flag is set), one of the following full-scale

values will be stored in Result (R):

When Source (S) > 32767: H7FFF
When Source (S) < -32767: H8000

R000 DTS

FL000 = FW002 F

DTS

H0000
3665

H3665

FL0000 (FW000)

(FW001)

(FW002)

2. ARITHMETIC FUNCTIONS

2-109

ABS ABSOLUTE VALUE

(1) Input format

ABS S -> R

where:
S: (Source) is a source storage register or a constant.
R: (Result) is an operation result (absolute value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Absolute value of word data

The ABS instruction obtains the absolute value of a 16-bit data value specified in Source
(S) and stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range -32768 to 32767.

 Absolute value of long-word data

The ABS instruction obtains the absolute value of a 32-bit data value specified in Source
(S) and stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range -32768 to 32767.

 Absolute value of long-word data

The ABS instruction obtains the absolute value of a 32-bit data value specified in Source
(S) and stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range:

0, ±2-126 to  ±2128

(S)
215 ・・・・・・ 20 Absolute value

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・・・・ 20 Absolute value

(R)
231 ・・・・・・・・・ 20

(S)

Floating value
Absolute value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-110

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ABS instruction
obtains the absolute value of the content of DW000 and stores the result in FW001.

R000 ABS

DW000 = FW001 F

DW000 HFF9C

(-100 in decimal)

FW001 H0064

(100 in decimal)

ABS

2. ARITHMETIC FUNCTIONS

2-111

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: When the type of given data is word:

 Set to 1 if Source (S) equals -32768; otherwise, set to 0.
When it is long-word:
 Set to 1 if Source (S) equals -2147483648; otherwise, set to 0.

When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

All the other flags then V remain unchanged.

 If an overflow occurs in the operation (the V-flag is set), one of the following full-scale
values will be stored in Result (R):

Word Long-word
H7FFF H7FFFFFFF

 If a non-numeric value or infinity is specified in Source (S) for a floating operation, one of
the following values will be stored in Result (R) -- the E-flag remains reset in this case:

Source (S) Result (R)
Non-numeric value Non-numeric value

+ infinity + infinity
- infinity - infinity

2. ARITHMETIC FUNCTIONS

2-112

NEG SIGN CHANGE

(1) Input format

NEG S -> R

where:
S: (Source) is a data storage register or constant whose sign is to be changed.
R: (Result) is an operation result (sign-changed value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Changing the sign of word data

The NEG instruction changes the sign of a 16-bit data value specified in Source (S) and
stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range -32768 to 32767.

 Changing the sign of long-word data

The NEG instruction changes the sign of a 32-bit data value specified in Source (S) and
stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range -2147483648 to 2147483647.

 Changing the sign of floating data

The NEG instruction changes the sign of a floating data value specified in Source (S) and
stores the result in Result (R).

where the values that may be specified in Source (S) and stored in Result (R) are in the
range:

0, ±2-126 to ±2128

(S)
215 ・・・・・・ 20 Absolute value

(R)
215 ・・・・・・ 20

(S)
231 ・・・・・・・・・ 20 Absolute value

(R)

231 ・・・・・・・・・ 20

(S)

Floating value Absolute value
(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-113

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the NEG instruction changes the sign of the content of FW000 only once and stores the
result in FW001.

R000 NEG

FW000 = FW001

V000

F

FW000 H1000

(4096 in decimal)

FW001 HF000

(-4096 in decimal)

NEG

2. ARITHMETIC FUNCTIONS

2-114

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: When the type of given data is word:

 Set to 1 if Source (S) equals -32768; otherwise, set to 0.
When it is long-word:
 Set to 1 if Source (S) equals -2147483648; otherwise, set to 0.

When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

All the other flags then V remain unchanged.

 If an overflow occurs in the operation (the V-flag is set), one of the following full-scale
values will be stored in Result (R):

Word Long-word
H7FFF H7FFFFFFF

 If a non-numeric value or infinity is specified in Source (S) for a floating operation, one of
the following values will be stored in Result (R) -- the E-flag remains reset in this case:

Source (S) Result (R)

Non-numeric
value

Non-numeric
value

+ infinity - infinity
- infinity + infinity

2. ARITHMETIC FUNCTIONS

2-115

DCD DECODE

(1) Input format

DCD S -> R

where:
S: (Source) is a data storage register or constant to be decoded.
R: (Result) is an operation result (decoded value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Decoding of word data
 The DCD instruction decodes the low-order 4 bits of a data value specified in Source (S)

and sets the resulting bit in Result (R).
 Only the low-order 4 bits of a data value specified in Source (S) are effective.
 The values that may be specified in Source (S) are in the range 0 to 15.

 Decoding of long-word data
 The DCD instruction decodes the low-order 5 bits of a data value specified in Source (S)

and sets the resulting bit in Result (R).
 Only the low-order 5 bits of a data value specified in Source (S) are effective.
 The values that may be specified in Source (S) are in the range 0 to 31.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-116

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the DCD instruction
decodes the content of DW000 and sets the resulting bit in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 DCD

DW000 = FW000 F

DW000 H0003

DCD

(MSB)

FW000 0

0

0

1

0

2

1

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

12

0

13

0

14

0

15 (LSB)

The bit whose bit number is specified by the content of
DW000 is set (1). (The bits are numbered 0 through
15, starting from the MSB.)

2. ARITHMETIC FUNCTIONS

2-117

ECD ENCODE

(1) Input format

ECD S -> R

where:
S: (Source) is a data storage register or constant to be encoded.
R: (Result) is an operation result (encoded value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 The ECD instruction encodes a data value specified in Source (S) and stores the resulting

value in Result (R).
 If Source (S) equals 0, this instruction performs nothing, the content of Result (R) remaining

unchanged.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
R √ – – – – – √

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-118

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ECD instruction
encodes the content of DW000 and stores the resulting value in FW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if Source (S) equals 0; otherwise, set to 0.
All the other flags then E remain unchanged.

R000 ECD

DW000 = FW000 F

FW000 H0005

ECD

(MSB)

DW000 0

0

0

1

0

2

0

3

0

4

1

5

0

6

0

7

1

8

0

9

1

10

1

11

0

12

0

13

1

14

0

15 (LSB)

The bit number of the first 1-bit that is found in DW000 by scanning its
content from MSB towards LSB is stored in FW000.

2. ARITHMETIC FUNCTIONS

2-119

LSR LOGICAL SHIFT RIGHT

(1) Input format

LSR S : D -> R

where:
S: (Source) is a data storage register or constant to be shifted.
D: (Destination) is a shift-bit-count storage register or a constant.
R: (Result) is an operation result (shifted value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Shifting word data right

The LSR instruction shifts a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 4 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Shifting long-word data right

The LSR instruction shifts a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 5 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

Result (R)

(MSB) 215 20 (LSB)

(MSB) 215 20 (LSB)

0 to 0

As many 0-bits as necessary are entered here.

Shifting as many bits as specified in
Destination (D) to the right

Source (S)

Result (R)

(MSB) 231 20 (LSB)

(MSB) 231 20 (LSB)

0 to 0

As many 0-bits as necessary are entered here.

Shifting as many bits as specified in
Destination (D) to the right

2. ARITHMETIC FUNCTIONS

2-120

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LSR instruction
shifts the content of RW100 as many bits as specified in DW000 to the right and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 LSR

RW100 : DW000 = RW110 F

DW000

H0005

(MSB)

RW100 1

0

1

1

0

2

0

3

0

4

1

5

0

6

0

7

1

8

0

9

1

10

1

11

0

12

0

13

1

14

0

15 (LSB)

(Shifting 5 bits to the right)

RW110 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1

2. ARITHMETIC FUNCTIONS

2-121

LSL LOGICAL SHIFT LEFT

(1) Input format

LSL S : D -> R

where:
S: (Source) is a data storage register or constant to be shifted.
D: (Destination) is a shift-bit-count storage register or a constant.
R: (Result) is an operation result (shifted value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Shifting word data left

The LSL instruction shifts a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 4 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Shifting long-word data left

The LSL instruction shifts a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 5 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

Result (R)

(MSB) 215 20 (LSB)

(MSB) 215 20 (LSB)

0 to 0

As many 0-bits as necessary are entered here.

Shifting as many bits as specified in
Destination (D) to the left

Source (S)

Result (R)

(MSB) 231 20 (LSB)

(MSB) 231 20 (LSB)

0 to 0

As many 0-bits as necessary are
entered here.

Shifting as many bits as specified in
Destination (D) to the left

2. ARITHMETIC FUNCTIONS

2-122

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LSL instruction
shifts the content of RW100 as many bits as specified in DW000 to the left and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 LSL

RW100 : DW000 = RW110 F

DW000

H0005

(MSB)

RW100 1

0

1

1

0

2

0

3

0

4

1

5

0

6

0

7

1

8

0

9

1

10

1

11

0

12

0

13

1

14

0

15 (LSB)

(Shifting 5 bits to the left)

RW110 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

2. ARITHMETIC FUNCTIONS

2-123

ASR ARITHMETIC SHIFT RIGHT

(1) Input format

ASR S : D -> R

where:
S: (Source) is a data storage register or constant to be shifted.
D: (Destination) is a shift-bit-count storage register or a constant.
R: (Result) is an operation result (shifted value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Shifting word data right

The ASR instruction shifts a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right, keeping the sign bit as is, and stores the resulting
value in Result (R).

 As the shift-bit-count, only the low-order 4 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Shifting long-word data right

The ASR instruction shifts a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right, keeping the sign bit as is, and stores the resulting
value in Result (R).

 As the shift-bit-count, only the low-order 5 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

Result (R)

(MSB) 215 20 (LSB)

(MSB) 215 20 (LSB)

The bits entered here are the same as the high-order bit.

Shifting as many bits as specified in
Destination (D) to the right

Source (S)

Result (R)

(MSB) 231 20 (LSB)

(MSB) 231 20 (LSB)

The bits entered here are the same as the high-order bit.

Shifting as many bits as specified in
Destination (D) to the right

2. ARITHMETIC FUNCTIONS

2-124

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ASR instruction
shifts the content of RW100 as many bits as specified in DW000 to the right and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 ASR

RW100 : DW000 = RW110 F

DW000

H0005

(MSB)

RW100 1

0

1

1

0

2

0

3

0

4

1

5

0

6

0

7

1

8

0

9

1

10

1

11

0

12

0

13

1

14

0

15 (LSB)

(Shifting 5 bits to the right)

RW110 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1

2. ARITHMETIC FUNCTIONS

2-125

ASL ARITHMETIC SHIFT LEFT

(1) Input format

ASL S : D -> R

where:
S: (Source) is a data storage register or constant to be shifted.
D: (Destination) is a shift-bit-count storage register or a constant.
R: (Result) is an operation result (shifted value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Shifting word data left

The ASL instruction shifts a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 4 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Shifting long-word data left

The ASL instruction shifts a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the shift-bit-count, only the low-order 5 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

Result (R)

(MSB) 231 20 (LSB)

(MSB) 231 20 (LSB)

0 to 0

As many 0-bits as necessary are
entered here.

Shifting as many bits as specified in
Destination (D) to the left

Source (S)

Result (R)

(MSB) 215 20 (LSB)

(MSB) 215 20 (LSB)

0 to 0

As many 0-bits as necessary are entered here.

Shifting as many bits as specified in
Destination (D) to the left

2. ARITHMETIC FUNCTIONS

2-126

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ASL instruction
shifts the content of RW100 as many bits as specified in DW000 to the left and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
V: Set to 1 if the sign bit changes at least once during the shift operation; otherwise, set to

0.
All the other flags then V remain unchanged.

 If an overflow occurs in the operation (the V-flag is set), one of the following full-scale

values will be stored in Result (R):

 Word Long-word
When (S) > 0: H7FFF H7FFFFFFF
When (S) < 0: H8000 H80000000

R000 ASL

RW100 : DW000 = RW110 F

DW000

H0005

(MSB)

RW100 0

0

0

1

0

2

0

3

0

4

1

5

0

6

0

7

1

8

0

9

1

10

1

11

0

12

0

13

1

14

0

15 (LSB)

(Shifting 5 bits to the left)

RW110 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

2. ARITHMETIC FUNCTIONS

2-127

ROR ROTATE RIGHT

(1) Input format

ROR S : D -> R

where:
S: (Source) is a data storage register or constant to be rotated.
D: (Destination) is a rotating-bit-count storage register or a constant.
R: (Result) is an operation result (rotated value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Rotating word data right

The ROR instruction rotates a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right and stores the resulting value in Result (R).

 As the rotating-bit-count, only the low-order 4 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Rotating long-word data right

The ROR instruction rotates a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the right and stores the resulting value in Result (R).

 As the rotating-bit-count, only the low-order 5 bits of a data value specified in Destination
(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

(MSB) 215 20 (LSB)

Result (R)

Rotating as many bits as specified in Destination (D) to the right

Source (S)

(MSB) 231 20 (LSB)

Result (R)

Rotating as many bits as specified in Destination (D) to the right

2. ARITHMETIC FUNCTIONS

2-128

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ROR instruction
rotates the content of RW100 as many bits as specified in DW000 to the right and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 ROR

RW100 : DW000 = RW110 F

DW000

H0004

(MSB)

RW100 1

0

0

1

0

2

1

3

1

4

1

5

0

6

0

7

0

8

1

9

1

10

1

11

0

12

1

13

1

14

0

15 (LSB)

(Rotating 4 bits to the right)

RW110 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1

2. ARITHMETIC FUNCTIONS

2-129

ROL ROTATE LEFT

(1) Input format

ROL S : D -> R

where:
S: (Source) is a data storage register or constant to be rotated.
D: (Destination) is a rotating-bit-count storage register or a constant.
R: (Result) is an operation result (rotated value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between
the parameters. The symbols “:” and “->” may be omitted.

(2) Function
 Rotating word data left

The ROL instruction rotates a 16-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the rotating-bit-count, only the low-order 4 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 15.

 Rotating long-word data left

The ROL instruction rotates a 32-bit data value specified in Source (S) as many bits as
specified in Destination (D) to the left and stores the resulting value in Result (R).

 As the rotating-bit-count, only the low-order 5 bits of a data value specified in Destination

(D) are effective.
 The values that may be specified in Destination (D) are in the range 0 to 31.

Source (S)

(MSB) 215 20 (LSB)

Result (R)

Rotating as many bits as specified in Destination (D) to the left

Source (S)

(MSB) 231 20 (LSB)

Result (R)

Rotating as many bits as specified in Destination (D) to the left

2. ARITHMETIC FUNCTIONS

2-130

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ – – √
D √ √ – – – – √
R √ – √ – – – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word or long-word). If the two are of
different types, an input error will result. The type of D must always be word.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ROL instruction
rotates the content of RW100 as many bits as specified in DW000 to the left and stores the
resulting value in RW110.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

R000 ROL

RW100 : DW000 = RW110 F

DW000

H0004

(MSB)

RW100 1

0

0

1

0

2

1

3

1

4

1

5

0

6

0

7

0

8

1

9

1

10

1

11

0

12

1

13

1

14

0

15 (LSB)

(Rotating 4 bits to the left)

RW110 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1

2. ARITHMETIC FUNCTIONS

2-131

LIM LIMITER

(1) Input format

LIM S : D1 : D2 -> R

where:
S: (Source) is an input-value storage register or a constant.
D1: (Destination 1) is an upper-limit-value storage register or a constant.
D2: (Destination 2) is a lower-limit-value storage register or a constant.
R: (Result) is an operation result (limit-controlled output value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The LIM instruction checks if an input value specified in Source (S) is within the upper and
lower limits specified in Destination 1 (D1) and Destination 2 (D2), and stores in Result (R)
an output value that is controlled within those limits.

 Limit control over word data
 The LIM instruction exerts limit control over 16-bit data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range -32768 to 32767.

(D2)

215 20

(S)

215 20

> , then:

(D1)

215 20

(S)

215 20

< , then:

(D2)

215 20

(S)

215 20

≤

(D2)

215 20

(R)

215 20

→

(D1)

215 20

(R)

215 20

→

(S)

215 20

(R)

215 20

→ (D1)

215 20

≤ , then:

(R): Output value

(D1): Upper limit value

(S): Input value

(D2): Lower limit value

2. ARITHMETIC FUNCTIONS

2-132

 Limit control over long-word data
 The LIM instruction exerts limit control over 32-bit data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2) are in the range -2147483648 to 2147483647.

 Limit control over floating data
 The LIM instruction exerts limit control over floating data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range:
0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ √ √ √

D1 √ √ √ √ √ √ √
D2 √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D1, D2, and R must be the same (i.e., either word, long-word, or floating). If
the four are of different types, an input error will result.

(D2)

Floating value

(S)

Floating value

> , then:

(D1)

Floating value

(S)

Floating value

< , then:

(D2)

Floating value

(S)

Floating value

≤

(D2)

Floating value

(R)

Floating value

→

(D1)

Floating value

(R)

Floating value

→

(S)

Floating value

(R)

Floating value

→ (D1)

Floating value

≤ , then:

(D2)

231 20

(S)

231 20

> , then:

(D1)

231 20

(S)

231 20

< , then:

(D2)

231 20

(S)

231 20

≤

(D2)

231 20

(R)

231 20

→

(D1)

231 20

(R)

231 20

→

(S)

231 20

(R)

231 20

→ (D1)

231 20

≤ , then:

2. ARITHMETIC FUNCTIONS

2-133

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LIM instruction
checks if the content of FW000 is within the limits specified in FW001 and FW002, and
stores in FW003 an output value that is controlled within those limits.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if Destination 1 (D1) is smaller than Destination 2 (D2); otherwise, set to 0.
All the other flags then E remain unchanged.

 If the E-flag is set, this instruction does not make a check against (D1) and (D2).

R000 LIM

FW000 : FW001 : FW002 = FW003 F

H0023 (input value)

H0010 (upper-limit value)

HFFF0 (lower-limit value)

H0010 (output value)

FW000

FW001

FW002

FW003 LIM

2. ARITHMETIC FUNCTIONS

2-134

BND DEAD BAND

(1) Input format

BND S : D1 : D2 -> R

where:
S: (Source) is a dead-band input-value storage register or a constant.
D1: (Destination 1) is a dead-band upper-limit-value storage register or a constant.
D2: (Destination 2) is a dead-band lower-limit-value storage register or a constant.
R: (Result) is an operation result (dead-band-controlled output value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The BND instruction checks if an input value specified in Source (S) is within the upper and
lower limits of dead band specified in Destination 1 (D1) and Destination 2 (D2), and stores in
Result (R) an output value that is controlled within those limits -- that is, if the input value is
within the limits (dead band), a value of zero (0) is stored in Result (R).

 Dead-band control over word data
 The BND instruction exerts dead-band control over 16-bit data values in the following

way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2) are in the range -32768 to 32767.

(R): Output value

(D1): Upper limit value

(S): Input value

(D2): Lower limit value

Output value = 0

(D2)

215 20

(S)

215 20

 , then:

(D1)

215 20

(S)

215 20

 , then:

(D2)

215 20

(S)

215 20

≤

(S)

215 20

(D2)

215 20

–

(S)

215 20

(D1)

215 20

–

(D1)

215 20

≤ , then:

(R)

215 20

→

(R)

215 20

→

(R)

215 20

0 →

2. ARITHMETIC FUNCTIONS

2-135

 Dead-band control over long-word data
 The BND instruction exerts dead-band control over 32-bit data values in the following

way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2
(D2) are in the range -2147483648 to 2147483647.

 Dead-band control over floating data
 The BND instruction exerts dead-band control over floating data values in the following

way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range:
0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ √ √ √

D1 √ √ √ √ √ √ √
D2 √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D1, D2, and R must be the same (i.e., either word, long-word, or floating). If
the four are of different types, an input error will result.

(D2)

231 20

(S)

231 20

 , then:

(D1)

231 20

(S)

231 20

 , then:

(D2)

231 20

(S)

231 20

≤

(D2)

231 20

(R)

215 20

→

(D1)

231 20

(R)

215 20

→

(R)

215 20

0 → (D1)

231 20

≤ , then:

(S)

231 20

–

(S)

231 20

–

(D2)

Floating value

(S)

Floating value

 , then:

(D1)

Floating value

(S)

Floating value

 , then:

(D2)

Floating value

(S)

Floating value

≤

(D2)

Floating value

(R)

Floating value

→

(D1)

Floating value

(R)

Floating value

→

(R)

Floating value

0 → (D1)

Floating value

≤ , then:

(S)

Floating value

–

(S)

Floating value

–

2. ARITHMETIC FUNCTIONS

2-136

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the BND instruction
checks if the content of DW000 is within the limits specified by the constants H0010 and
HFFF0, and stores in FW000 an output value that is controlled in reference to the dead band.

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:
V: When the type of given data is word:

 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.
When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Set to 1 if Destination 1 (D1) is smaller than Destination 2 (D2);
 Otherwise, set to 0.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
±2-126 to ±2128

All the other flags then V and E remain unchanged.

R000 BND

DW000 : H0010 : HFFF0 = FW000 F

H0023 (input value) DW000

H0013 (output value) FW000 BND

H0010 (upper-limit value)

HFFF0 (lower-limit value)

2. ARITHMETIC FUNCTIONS

2-137

 If (D1) < (D2), the error flag (E-flag) is set, with the overflow flag (V-flag) reset. Result (R)
remains unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a word
or long-word value causes an overflow.)

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored

in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-138

ZON DEAD ZONE

(1) Input format

ZON S : D1 : D2 -> R

where:
S: (Source) is an input-value storage register or a constant for zone control.
D1: (Destination 1) is a positive-bias-value storage register or a constant.
D2: (Destination 2) is a negative-bias-value storage register or a constant.
R: (Result) is an operation result (zone-controlled output value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The ZON instruction adds a positive or negative bias value specified in Destination 1 (D1) or
Destination (D2) to an input value specified in Source (S) and stores the resulting value in
Result (R).

 Zone control over word data
 The ZON instruction exerts zone control over 16-bit data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range -32768 to 32767.

(R): Output value

(D2): Negative bias value

(S): Input value

(D1): Positive bias value

0

(S)

215 20

(S)

215 20

＋  0, then: (D1)

215 20

→ (R)

215 20

(S)

215 20

= 0, then: 0 → (R)

215 20

(S)

215 20

(S)

215 20

＋  0, then: (D2)

215 20

→ (R)

215 20

2. ARITHMETIC FUNCTIONS

2-139

 Zone control over long-word data
 The ZON instruction exerts zone control over 32-bit data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range -2147483648 to 2147483647.

 Zone control over floating data
 The ZON instruction exerts zone control over floating data values in the following way:

 The values that may be specified in Source (S), Destination 1 (D1), and Destination 2

(D2) are in the range:
0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ √ √ √

D1 √ √ √ √ √ √ √
D2 √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D1, D2, and R must be the same (i.e., either word, long-word, or floating). If
the four are of different types, an input error will result.

(S)

231 20

(S)

231 20

+  0, then: (D1)

231 20

→ (R)

231 20

(S)

231 20

= 0, then: 0 → (R)

231 20

(S)

231 20

(S)

231 20

+  0, then: (D2)

231 20

→ (R)

231 20

(S)

Floating value

(S)

Floating value

+  0, then: (D1)

Floating value

→ (R)

Floating value

(S)

Floating value

= 0, then: 0 → (R)

Floating value

(S)

Floating value

(S)

Floating value

+  0, then: (D2)

Floating value

→ (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-140

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ZON instruction
adds the content of FW001 or FW002 to the content of FW000 and stores in FW003 an output
value that is controlled in reference to the dead zone.

(5) Error handling
 Operation result flags

X E P N Z V

– – – –

where:
V: When the type of given data is word:

 Set to 0 if Result (R) is in the range -32768 to 32767; otherwise, set to 1.
When it is long-word:
 Set to 0 if Result (R) is in the range -2147483648 to 2147483647; otherwise, set to

1.
When it is floating:
 Not affected by the result of the operation performed; it remains unchanged.

E: When the type of given data is word or long-word:
 Set to 1 if Destination 1 (D1) is smaller than Destination 2 (D2);
 Otherwise, set to 0.

When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
±2-126 to ±2128

All the other flags then V and E remain unchanged.

R000 ZON

FW000 : FW001 : FW002 = FW003 F

H0023 (input value)

H0010 (positive bias value)

HFFF0 (negative bias value)

H0033 (output value)

FW000

FW001

FW002

FW003 ZON

2. ARITHMETIC FUNCTIONS

2-141

 If (D1) < (D2), the error flag (E-flag) is set, with the overflow flag (V-flag) reset. Result (R)
remains unchanged.

 If an overflow occurs in the operation, one of the following full-scale values will be stored

in Result (R):

 In case of a positive
overflow:

In case of a negative
overflow:

Word H7FFF H8000
Long-word H7FFFFFFF H80000000
Floating +3.402823E38 -3.402823E38

If a floating value causes an overflow, the V-flag is not set. (The V-flag is set only if a word
or long-word value causes an overflow.)

 If a floating value causes an underflow, a value of zero (0) with correct sign will be stored

in Result (R), the operation result flags remaining unchanged.

2. ARITHMETIC FUNCTIONS

2-142

SQR SQUARE ROOT

(1) Input format

SQR S -> R

where:
S: (Source) is a data storage register or a constant from which to compute a square root.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
 Square root of word data
 The SQR instruction computes the square root of a 16-bit data value specified in Source

(S) and stores only the integer portion of the result in Result (R).

 If Source (S) is smaller than zero (0), the instruction stores a value of zero (0) in Result
(R).
 The values that may be specified in Source (S) are within the range -32768 to 32767.

 Square root of long-word data
 The SQR instruction computes the square root of a 32-bit data value specified in Source

(S) and stores only the integer portion of the result in Result (R).

 If Source (S) is smaller than zero (0), the instruction stores a value of zero (0) in Result
(R).
 The values that may be specified in Source (S) are within the range -2147483648 to

2147483647.

 Square root of floating data
 The SQR instruction computes the square root of a floating data value specified in Source

(S) and stores the result in Result (R).

 If Source (S) is smaller than zero (0), the instruction stores a value of zero (0) in Result
(R).
 The values that may be specified in Source (S) are within the range:

0, ±2-126 to ±2128

(S)
215 ・・・・・・ 20

Only integer
portion

(R)

215 ・・・・・・ 20

(S)
231 ・・・・・・・・・ 20

Only integer
portion

(R)
231 ・・・・・・・・ 20

(S)

Floating value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-143

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S and R must be the same (i.e., either word, long-word, or floating). If the two
are of different types, an input error will result.

(4) Example program
 Computing the square root of word data

In this example, if the contact R000 (input condition) is closed (ON), the SQR instruction
computes the square root of the content of FW000 and stores the result (integer portion
only) in FW001.

 Computing the square root of floating data

In this example, if the contact R000 (input condition) is closed (ON), the SQR instruction
computes the square root of the content of LF0000 and stores the result in LF0001.

R000 SQR

LF0000 = LF0001 F

R000 SQR

FW000 = FW001 F

H0008

H0002

FW000

FW001 SQR

650

25.4951

LF0000

LF0001 SQR

2. ARITHMETIC FUNCTIONS

2-144

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: When the type of given data is word or long-word:

 Not affected by the result of the operation performed; it remains unchanged.
When it is floating:
 Set to 1 if Result (R) is a non-zero value and out of the range shown below;

otherwise, set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

2. ARITHMETIC FUNCTIONS

2-145

SIN SINE

(1) Input format

SIN S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute the sine of

the angle.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The SIN instruction computes the sine of an angle specified in Source (S) and stores the result
in Result (R).
The angle specified in Source (S) must be expressed in radians (i.e., angle × π/180).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

SIN () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-146

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the SIN instruction
computes the sine of the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if Result (R) is a non-zero value and out of the range shown below; otherwise,

set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

2.617993

0.50000006

LF0000

LF0001 SIN

R000 SIN

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-147

COS COSINE

(1) Input format

COS S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute the cosine

of the angle.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The COS instruction computes the cosine of an angle specified in Source (S) and stores the
result in Result (R).
The angle specified in Source (S) must be expressed in radians (i.e., angle × π/180).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

COS () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-148

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the COS instruction
computes the cosine of the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – –– –

where:
E: Set to 1 if Result (R) is a non-zero value and out of the range shown below; otherwise,

set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

1.047197

0.49999997

LF0000

LF0001 COS

R000 COS

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-149

TAN TANGENT

(1) Input format

TAN S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute the

tangent of the angle.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The TAN instruction computes the tangent of an angle specified in Source (S) and stores the
result in Result (R).
The angle specified in Source (S) must be expressed in radians (i.e., angle × π/180).

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

TAN () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-150

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the TAN instruction
computes the tangent of the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if Result (R) is a non-zero value and out of the range shown below; otherwise,

set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

2.356194

-1.000001

LF0000

LF0001 TAN

R000 TAN

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-151

ASIN ARC SINE (SIN-1)

(1) Input format

ASIN S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute an arc

sine.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The ASIN instruction computes an angle from a sine value specified in Source (S) and stores
the result in Result (R).
The sine values that may be specified in Source (S) are within the range -1.0 to 1.0.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

SIN-1 () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-152

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ASIN instruction
computes an arc sine from the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if the value specified in Source (S) is out of the range -1.0 to 1.0; otherwise,

set to 0. In addition, it is also set to 1 if Result (R) is a non-zero value and out of the
range shown below; otherwise, it is set to 0.

±2-126 to ±2128
All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains

unchanged.)

0.5

0.5235988

LF0000

LF0001 ASIN

R000 ASIN

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-153

ACOS ARC COSINE (COS-1)

(1) Input format

ACOS S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute an arc

cosine.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The ACOS instruction computes an angle from a cosine value specified in Source (S) and
stores the result in Result (R).
The cosine values that may be specified in Source (S) are within the range -1.0 to 1.0.

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

COS-1 () (S)

Floating value

(R)

Floating value

2. ARITHMETIC FUNCTIONS

2-154

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ACOS instruction
computes an arc cosine from the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if the value specified in Source (S) is out of the range -1.0 to 1.0; otherwise,

set to 0. In addition, it is also set to 1 if Result (R) is a non-zero value and out of the
range shown below; otherwise, it is set to 0.

±2-126 to ±2128
All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains

unchanged.)

0.5

1.047198

LF0000

LF0001 ACOS

R000 ACOS

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-155

ATAN ARC TANGENT (TAN-1)

(1) Input format

ATAN S -> R

where:
S: (Source) is an angle-data storage register or a constant from which to compute an arc

tangent.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The ATAN instruction computes an angle from a tangent value specified in Source (S) and
stores the result in Result (R).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

TAN-1 () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-156

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ATAN instruction
computes an arc tangent from the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － －

where:
E: Set to 1 if Result (R) is a non-zero value and out of the range shown below; otherwise,

it is set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

2.356194

-1.000001

LF0000

LF0001 ATAN

R000 ATAN

F LF0000 = LF0001

2. ARITHMETIC FUNCTIONS

2-157

EXP EXPONENTIAL

(1) Input format

EXP S -> R

where:
S: (Source) is a power-data storage register or a constant to which to raise e.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The EXP instruction raises e (=2.71828...) to a power specified in Source (S) and stores the
result in Result (R).

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

EXP () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-158

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the EXP instruction
raises e to the content of LF0000 (power) and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – –

where:
E: Set to 1 if Result (R) is a non-zero value and out of the range shown below; otherwise,

it is set to 0.
±2-126 to ±2128

All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains
unchanged.)

13

442413.4

LF0000

LF0001 EXP

R000 EXP

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-159

LOG NATURAL LOGARITHM

(1) Input format

LOG S -> R

where:
S: (Source) is a data storage register or constant from which to compute a natural logarithm.
R: (Result) is an operation result storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbol “->” may be omitted.

(2) Function
The LOG instruction computes the logarithm of a data value specified in Source (S) to the
base e (e = 2.71828...) and stores the result in Result (R).
The values that may be specified in Source (S) are limited to positive integers.

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S – – – – √ √ √
R – – – – √ – √

√: May be specified.
–: May not be specified.

(S)

Floating value

LOG () (R)

Floating value

2. ARITHMETIC FUNCTIONS

2-160

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the LOG instruction
computes the natural logarithm of the content of LF0000 and stores the result in LF0001.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － －

where:
E: Set to 1 if Source (S) is a negative value; and set to 0 if it is a positive value. In

addition, it is also set to 1 if Result (R) is a non-zero value and out of the range shown
below; otherwise, it is set to 0.

±2-126 to ±2128
All the other flags then E remain unchanged.

 If the E-flag is set, this instruction performs no further processing. (Result (R) remains

unchanged.)

10

2.302585

LF0000

LF0001 LOG

R000 LOG

LF0000 = LF0001 F

2. ARITHMETIC FUNCTIONS

2-161

MAX MAXIMUM VALUE

(1) Input format

MAX S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result (maximum value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The MAX instruction compares the data values specified in Source (S) and Destination (D)
and stores the larger value in Result (R).

 Obtaining maximum values of type word
 The MAX instruction compares two given 16-bit data values in the following way and

stores the larger value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range
-32768 to 32767.

 Obtaining maximum values of type long-word
 The MAX instruction compares two given 32-bit data values in the following way and

stores the larger value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range
-2147483648 to 2147483647.

(S)

215 20
≥ (D)

215 20
, then: (S)

215 20
→ (R)

215 20

(S)

215 20
 (D)

215 20
, then: (D)

215 20
→ (R)

215 20

(S)
231 20

≥ (D)
231 20

, then: (S)
231 20

→ (R)
231 20

(S)
231 20

 (D)
231 20

, then: (D)
231 20

→ (R)
231 20

2. ARITHMETIC FUNCTIONS

2-162

 Obtaining maximum values of type floating
 The MAX instruction compares two given floating data values in the following way and

stores the larger value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range:
0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If the
three are of different types, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MAX instruction
compares the contents of FW000 and FW001 and stores the larger value in DW000.

(5) Error handling
 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

H0033

H001F

FW000

FW001

MAX H0033 DW000

R000 MAX

FW000 : FW001 = DW000 F

(S)

Floating value

≥ (D)

Floating value

, then: (S) → (R)

(S)  (D) , then: (D) → (R)

Floating value Floating value

Floating value Floating value

Floating value Floating value

2. ARITHMETIC FUNCTIONS

2-163

MIN MINIMUM VALUE

(1) Input format

MIN S : D -> R

where:
S: (Source) is a source storage register or a constant.
D: (Destination) is a destination storage register or a constant.
R: (Result) is an operation result (minimum value) storage register.

Note: Spaces must be inserted between the function name and the first parameter and between

the parameters. The symbols “:” and “->” may be omitted.

(2) Function
The MIN instruction compares the data values specified in Source (S) and Destination (D) and
stores the smaller value in Result (R).

 Obtaining minimum values of type word
 The MIN instruction compares two given 16-bit data values in the following way and

stores the smaller value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range
-32768 to 32767.

 Obtaining minimum values of type long-word
 The MIN instruction compares two given 32-bit data values in the following way and

stores the smaller value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range
-2147483648 to 2147483647.

(S)

231 20
≤ (D)

231 20
, then: (S)

231 20
→ (R)

231 20

(S)

231 20
 (D)

231 20
, then: (D)

231 20
→ (R)

231 20

(S)
215 20

≤ (D)
215 20

, then: (S)
215 20

→ (R)
215 20

(S)
215 20

 (D)
215 20

, then: (D)
215 20

→ (R)
215 20

2. ARITHMETIC FUNCTIONS

2-164

 Obtaining minimum values of type floating
 The MIN instruction compares two given floating data values in the following way and

stores the smaller value in Result (R).

 The values that may be specified in Source (S) and Destination (D) are within the range:
0, ±2-126 to ±2128

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ √ √ √ √ √
D √ √ √ √ √ √ √
R √ – √ – √ – √

√: May be specified.
–: May not be specified.

The types of S, D, and R must be the same (i.e., either word, long-word, or floating). If the
three are of different types, an input error will result.

(4) Example program

In this example, if the contact R000 (input condition) is closed (ON), the MIN instruction
compares the contents of FW000 and FW001 and stores the smaller value in DW000.

(5) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

H0033

H001F

FW000

FW001

MIN H001F DW000

R000 MIN

FW000 : FW001 = DW000 F

(S)

Floating value

≤ (D)

Floating value

, then: (S) → (R)

(S)  (D) , then: (D) → (R)

Floating value Floating value

Floating value Floating value

Floating value Floating value

2. ARITHMETIC FUNCTIONS

2-165

CLR CLEAR

(1) Input format

XCLR
YCLR
GCLR
RCLR
KCLR
TCLR
UCLR
CCLR
VCLR
ECLR
FCLR

Note: All the above variations of the CLR instruction require no parameters.

(2) Function
Any of the following CLR variations clears a predetermined I/O area:
[1] XCLR: Clear the X-area (external input).
[2] YCLR: Clear the Y-area (external output).
[3] GCLR: Clear the G-area (global link registers).
[4] RCLR: Clear the R-area (internal registers).
[5] KCLR: Clear the K-area (keep relays).
[6] TCLR: Clear the T-area (ON-delay timers and counts).
[7] UCLR: Clear the U-area (one-shot timers and counts).
[8] CCLR: Clear the C-area (up-down counters and counts).
[9] VCLR: Clear the V-area (edge contacts).
[10] ECLR: Clear the E-area (event registers).
[11] FCLR: Clear the operation result flags (X, E, P, N, Z, and V).

2. ARITHMETIC FUNCTIONS

2-166

(3) Example program

In this example, if the contact R000 (input condition) makes a transition from OFF to ON
state, the XCLR, YCLR, TCLR, UCLR, CCLR, VCLR, and ECLR instructions clear the X-,
Y-, T-, U-, C-, V-, and E-areas only once.

(4) Error handling

All variations of the CLR instruction always end their execution normally.

R000 XCLR V000

F

YCLR

F

TCLR

F

UCLR

F

CCLR

F

VCLR

F

ECLR

F

2. ARITHMETIC FUNCTIONS

2-167

JT JUMP IF TRUE

(1) Input format

JT LAB

where:
LAB: Is the label name given to the destination of a jump to be made.

Note: At least one space must be inserted between the function name and parameter.

(2) Function
The JT instruction jumps to a specified label if a given condition is true; otherwise, it proceeds
to the next step in normal sequence.

(3) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ADD instruction
adds the contents of DW000 and DW001 together and stores the result in FW001. Then, if the
contents of FW000 and FW001 are equal, the JT instruction jumps to the label LAB04 and, if
the contact X010 therein is closed (ON), the coil Y010 becomes ON. On the other hand, if the
contents of FW000 and FW001 are not equal, the JT instruction proceeds to the next step
without jumping to the label LAB04 and, if the contact X020 is closed (ON), the coil Y000
becomes ON. Then, the step with LAB04 and the subsequent steps, if any, are executed.

LAB04
FW000, FW001

X010 Y010

=

ADD R000
DW000 + DW001 = FW001

JT

LAB04

X020 Y000

F

F

ON OFF

Condition

JT

Sequence cycle

A jump is made every time the condition is true (ON).

2. ARITHMETIC FUNCTIONS

2-168

(4) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

Notes:
 No jump instruction can jump to any label that appears before the step in which the

jump instruction is being executed in normal sequence. (This restriction is imposed to
prevent any endless loop in the ladder program.)

 The coil(s) that are skipped by a jump instruction in normal sequence stay in the same

states as before the execution of the jump instruction.

X010
LAB01

X020 Y020

R000
LAB01

Y010

JT

F

R000

X020 Y020

X010

LAB03

Y010

X030 Y030

The states of Y010 and
Y020 remain unchanged.

LAB03

JT

F

2. ARITHMETIC FUNCTIONS

2-169

JMP UNCONDITIONAL JUMP

(1) Input format

JMP LAB

where:
LAB: Is the label name given to the destination of a jump to be made.

Note: At least one space must be inserted between the function name and parameter.

(2) Function

The JMP instruction jumps to a specified label unconditionally.

(3) Example program

In this example, if the contact R000 (input condition) is closed (ON), the ADD instruction
adds the contents of DW000 and DW001 together and stores the result in FW001. Then, if the
contents of FW000 and FW001 are equal, the JT instruction jumps to the label LAB04 and, if
the contact X010 therein is closed (ON), the coil Y010 becomes ON. Then, if the contact
X020 is closed (ON), the coil Y020 becomes ON. On the other hand, if the contents of FW000
and FW001 are not equal, the JMP instruction unconditionally jumps to the label LAB05
regardless of the ON/OFF status of R001. Then, if the contact X020 is closed (ON), the coil
Y020 becomes ON.

LAB04

R001
LAB05

FW000, FW001

X010

X020

Y010

Y020

=

ADD R000
DW000 + DW001 = FW001

JT

JMP

LAB04

LAB05

F

F

F

ON OFF

Condition

JT

Sequence cycle

A jump is always made regardless of the condition.

2. ARITHMETIC FUNCTIONS

2-170

(4) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

Notes:
 No jump instruction can jump to any label that appears before the step in which the

jump instruction is being executed in normal sequence. (This restriction is imposed to
prevent any endless loop in the ladder program.)

 The coil(s) that are skipped by a jump instruction in normal sequence stay in the same

states as before the execution of the jump instruction.

X010
LAB01

X020 Y020

R000
LAB01

Y010

JMP

F

R000

X020 Y020

X010

LAB03

Y010

X030 Y030

The states of Y010 and
Y020 remain unchanged.

LAB03

JMP

F

2. ARITHMETIC FUNCTIONS

2-171

JSE CONDITIONAL JUMP to SEND

(1) Input format

JSE

(2) Function

The JSE instruction jumps to the end of the currently running N-coil program, or SEND (*), if
a given condition is true (ON).
(*) The symbol SEND is an abbreviation of SequenceEND and denotes the end of an N-coil

program.

(3) Example program

In this example, if the contact X010 (input condition) is closed (ON), the JSE instruction
jumps to the SEND.

X010 JSE

X020 Y020

X0F0 Y0F0

：
：

The instructions in this
range are not executed.

F

2. ARITHMETIC FUNCTIONS

2-172

(4) Error handling
 Operation result flags

X E P N Z V

－ － － － － －

All the above flags remain unchanged.

Note: The coil(s) that are skipped by a jump instruction in normal sequence stay in the same
states as before the execution of the jump instruction.

R000

X020 Y020

X010 Y010

The states of Y010 and Y020
remain unchanged.

JSE

F

2. ARITHMETIC FUNCTIONS

2-173

2.7 Ethernet Communication Instructions

2.7.1 Functional overview
To perform TCP and UDP communications in ladder programs, use system extension
arithmetic functions for Ethernet communication.
The LADDER DIAGRAM SYSTEM/S10VE makes the following interface available as the
system arithmetic functions for Ethernet communication.

Instruction Function
TOP Opens a TCP connection (client).
TPOP Opens a TCP connection (server).
TCLO Closes a TCP connection.
TRCV TCP reception
TSND TCP transmission
UOP Opens UDP.
UCLO Closes UDP.
URCV UDP reception
USND UDP transmission

The table below shows the specifications of communications performed by the system
arithmetic functions.

Item Specification Remarks
The maximum number of
sockets usable at a time

CPU: 16 This number is the total number of sockets
that can be used at a time for TCP/UDP
transmissions and/or receptions.

ET.NET (main module): 16
ET.NET (submodule): 16

Transmission/reception
data size

For TCP communications:
0 to 4096 bytes

For UDP communications:
0 to 1472 bytes

Port number 1 to 65535 Users are recommended to use port
numbers in the range 10000 to 59999. The
port numbers 60000 onwards are reserved
for the system.

2. ARITHMETIC FUNCTIONS

2-174

Each time a system extension arithmetic function for Ethernet communication is executed,
its execution result is flagged in one of the system registers S09C0 through S09EF
according to the management number used, which is predefined in one-to-one
correspondence with an available socket. When the execution of such an arithmetic function
is terminated normally or abnormally, the result is flagged by setting the system register
associated with the management number to 0 or 1, respectively.

Register type Management
number

Remarks
Word Bit

SW09C0

S09C0 1
For Ethernet
communication
(channel 1 or 2 as specified
by the user) performed by
the CPU module

S09C1 2
:
:

:
:

S09CE 15
S09CF 16

SW09D0

S09D0 17
For Ethernet
communication
(channel 1 or 2 as specified
by the user) performed by
the ET.NET (main module)

S09D1 18
:
:

:
:

S09DE 31
S09DF 32

SW09E0

S09E0 33

For Ethernet
communication
(channel 1 or 2 as specified
by the user) performed by
the ET.NET (submodule)

S09E1 34
:
:

:
:

S09EE 47
S09EF 48
S06AF 80

2. ARITHMETIC FUNCTIONS

2-175

2.7.2 Usage
System arithmetic functions for Ethernet communication perform processing according to
the parameters supplied by the user in the [Set Ethernet Communication] window of the
LADDER DIAGRAM SYSTEM/S10VE. Therefore, users have to set all necessary
parameters in the [Set Ethernet Communication] window before executing their ladder
program. The procedure is as flowcharted below.

Start

Set parameters for Ethernet
communication.

Create and send the ladder
program.

End

(1)

(2)

2. ARITHMETIC FUNCTIONS

2-176

When you set parameters in the window, use the figure given below as a reference. The
items shown in boldface are those set in the [Set Ethernet Communication] window. For
details on the settings in the [Set Ethernet Communication] window, see the description
under the heading “(1) Setting Ethernet communication parameters” below.

Transmission to destination

Reception from destination

Send data

Receive data

Execution flag data

Details result code data

Ethernet communication arithmetic function

Send size

Receive size

Send address

Receive address

Internal memory

Execution result stored

Remote reception port
(other port number)

Local reception port (self-port number)

Ethernet

Destination IP address
(other IP address)

Communication mode (TCP/UDP)

Execution flag

Details result code

S10VE

Communication destination

2. ARITHMETIC FUNCTIONS

2-177

(1) Setting Ethernet communication parameters
To set parameters in the [Set Ethernet Communication] window, select [Utility] – [Set
Ethernet Communication] – [Set Parameter] from the LADDER DIAGRAM
SYSTEM/S10VE’s menu. Then, the following [Ethernet Communication Setting List]
window appears on screen.

<[Ethernet Communication Setting List] window>

In this window, select the desired parameter information line and click the [Edit]
button. Alternatively, double-click the desired parameter information line. Then, the
[Set Ethernet Communication] window for the selected line will appear.
For details on the settings made in the window, refer to the S10VE Software Manual
Operation Ladder Diagram System for Windows® (manual number SEE-3-131).

2. ARITHMETIC FUNCTIONS

2-178

<[Set Ethernet Communication] window>

Each of the parameters shown above are described below.

Management No.:
Displays management numbers specified on [Ethernet Communication Setting List]
window.

Module name:

Displays the module for communication specified on [Ethernet Communication
Setting List] window.
The module name is fixed according to the management number and the module
shown below will be displayed.

Management No. Module name Port Remarks

1 to 16 CPU
ET1 (*1)
ET2 (*2)

17 to 32 ET.NET (main module)
CH1 (*3)

CH2 (*4)

33 to 48 ET.NET (submodule)
CH1 (*3)

CH2 (*4)

(*1) ET1: Select this when you use the ET1 Ethernet port on the CPU module of
the XR1000 for communication.

(*2) ET2: Select this when you use the ET2 Ethernet port on the CPU module of
the XR1000 for communication.

(*3) CH1: Select this when you use the CH1 Ethernet port on the S10VE ET.NET
(main module) or ET.NET (submodule) for communication.

(*4) CH2: Select this when you use the CH2 Ethernet port on the S10VE ET.NET
(main module) or ET.NET (submodule) for communication.

2. ARITHMETIC FUNCTIONS

2-179

Communication mode:
While in the combo box, select “TCP” or “UDP”. It is “TCP” by default.

Self-port No.:

Specify a port number for communication in decimal. (The specification range is
from 1 to 65535.) It is blank by default. (Using a number between 10000 and 59999
is recommended. The system reserves numbers for 60000 and above.)

Other port No.:

Specify the port number of the destination in decimal. (The specification range is
between 1 and 65535.) It is blank by default. (Using a number between 10000 and
59999 is recommended. The system reserves a number for 60000 and above.)

Other IP address:

Specify the IP address of the destination. It is blank by default. To broadcast data by
UDP transmission, specify the node address as 255, as in 255.255.255.255.

Send address:

Specify the starting address of sent data in word form (registers for longword and
floating only are in longword and floating forms) of PI/O. The system does not allow
you to specify a bit-type register, specify an area unassigned as a PI/O, or span two
or more registers. It is blank by default. The send address and send size are used to
calculate the final address of sent data and display it.

Send size:
Specify a send size for data in a hexadecimal number. It is blank by default. The unit
is the byte. For each communication type, the system allows you to specify either of
the following sizes:

TCP: 0x0 to 0x1000 (0 to 4096)
UDP: 0x0 to 0x5C0 (0 to 1472)

Receive address:

Specify the starting address of the area for storing received data in word form
(registers for longword and floating only are in longword and floating forms) of
PI/O. The system does not allow you to specify a bit-type register, specify an area
unassigned as PI/O, or span two or more registers. The receive address and the
receive size are used to calculate the final address of received data and display it.

2. ARITHMETIC FUNCTIONS

2-180

Receive size:
Specify a receive size for data in a hexadecimal number. It is blank by default and the
units are bytes. For each communication type, the system allows you to specify either
of the following sizes:

TCP: 0x0 to 0x1000 (0 to 4096)
UDP: 0x0 to 0x5C0 (0 to 1472)

Receive timeout:

Set a wait time for received data to arrive in case data cannot be received when a
reception instruction is issued. Specify a range between 0 and 100 (0 and 10 seconds)
in increments of 100 ms. (0 means no timeout.) It is set to 10 (1 second) by default.
Set a timeout setting. If a reception instruction causes a reception timeout, the
reception instruction will cause an error with no reception data (EWOULDBLOCK).

Execution flag:

Specify with a bit-type register that specifies whether an applied instruction for
Ethernet communication is being processed. It is blank by default.

Details result code:

Specify with a long-type register an area for storing a detail result code for the
execution result of an applied instruction for Ethernet communication. It is blank by
default.

Socket disconnection mode:

Can only be specified when the communication mode is “TCP”. Select “Waiting for
non-sent data sending” or “Non-sent data destruction” from the combo box. It is
“Waiting for non-sent data sending” by default. Here are the options and their
meanings:

Waiting for non-sent data sending: If data has not yet been sent, the system will
wait until the data flows. Any unread data will
be discarded.

Non-sent data destruction: If data has not yet been sent, the system will disconnect
the channel and relieve the socket without waiting for
the data to flow. In that case, the TCP of the destination
host will receive an RST. Since the disconnection takes
place differently from the way it usually occurs, be
careful as to how the system functions (the method of
reporting when an RST is received by the UP) when the
destination host receives an RST. Any unread received
data will be discarded.

2. ARITHMETIC FUNCTIONS

2-181

The following list shows the registers, which can be specified on the [Set Ethernet
Communication] window.

<Setting Registers>

No. Item Symbol Send address
Receive
address

Execution
flag

Details result
code

1 External input X √ √ √ √
2 External output Y √ √ √ √
3 Internal register R √ √ √ √
4 Keep relay K √ √ √ √
5 On-delay timer T √ √ √ √
6 One-shot timer U √ √ √ √
7 Up/down counter C √ √ √ √
8 Global link register G √ √ √ √
9 Nesting coil N √ √ √ √

10 Process register P √ √ √ √
11 Event register E √ √ √ √
12 Edge contact V √ √ √ √
13 System register S √ √ √ √
14 Data register DW √ √ – √
15 Work register FW √ √ – √
16 Internal register M √ √ √ √

17
Internal register
(Longword)

BD – – – –

18 For high speed RI/O input I √ √ – √

19
For high speed RI/O
output

O √ √ – √

20 Register for which HI-
FLOW and Ladder share
data.

J √ √ √ √

21 Q √ √ √ √

22 Work register LB √ √ √ √

23
Work register for word
only

LW √ √ – √

24
Work register for
longword only

LL √ √ – √

√: Enable to be specified
–: Disable to be specified

2. ARITHMETIC FUNCTIONS

2-182

The table below is a list of all details result codes returned by the system extension
arithmetic functions for Ethernet communication.

<Details result codes>

(1/2)
Value Meaning Required remedial action

0 Normal end (for TOP, TPOP,
TCLO, UOP, UCLO)

–

0 to 4096
Normal end (send/receive data size;
for TRCV, TSND, URCV, USND) –

0x80000005
(EIO)

A serious error is detected in the
adapter (device).

Consult the description of a remedial action given as
part of the error log information. (*1)

0x8000000D
(EACCES)

A broadcast address is specified as
the destination IP address.

The Ethernet communication settings contain an error.
Review the settings.

0x80000016
(EINVAL)

A disconnected socket is specified,
or the receive buffer length is a
negative value.

The Ethernet communication settings contain an error.
Review the settings.

0x800000DA
(EMSGSIZE)

A given send data length is out of
the permitted range.

The Ethernet communication settings contain an error.
Review the settings.

0x800000E2
(EADDRINUSE)

The port number is already in use
by another socket. Review the port number used.

0x800000E3
(EADDRNOTAVAIL)

A specified port number and IP
address contain an error.

The Ethernet communication settings contain an error.
Review the settings.

0x800000E4
(ENETDOWN)

The device is not initialized yet or
is stopped.

Consult the description of a remedial action given as
part of the error log information. (*1)

0x800000E5
(ENETUNREACH)

No routing information is present
for a given destination IP address.

Review the routing information settings (*2)

0x800000E7
(ECONNABORTED)

The connection is terminated
abruptly.

 Check the cable wiring.
 Review the program running in the connection

destination’s host.
0x800000E8
(ECONNRESET)

Connection is reset by the TCP of
the connection destination’s host.

Review the program running in the connection
destination’s host.

0x800000E9
(ENOBUFS)

Memory securing has failed.
Consult the description of a remedial action given as
part of the error log information. (*1)

0x800000EB
(ENOTCONN)

An attempt is made to send data to
a socket with which a connection is
not established yet.

Execution of TOP or TPOP has failed. Review the
program.

0x800000EC
(ESHUTDOWN)

The socket is released by some
other task.

Review the socket release processing.

0x800000EE
(ETIMEDOUT) A connection request is timed out.

 Check the cable wiring.
 Review the program running in the connection

destination’s host.

0x800000EF
(ECONNREFUSED)

The connection destination’s socket
is missing (a server task is not
bound yet).

Review the program running in the connection
destination’s host.

0x800000F6
(EWOULDBLOCK)

No data is received. Data cannot be
transmitted because TCP’s
transmission window is full.

 Check the cable wiring.
 Review the program.

0x800000F9
(ENSOCK)

The maximum number of sockets
that can be open at a time is
exceeded.

Review the program so that no more than 16 sockets
will be open at a time for each module. (only if
Ethernet is used)

0x80000516
(EBADF)

The Ethernet communication
instruction failed.

Execution of an Ethernet communication instruction
failed. Reset the CPU.

(*1) For details about how to view error log data, see 8.4.6.2 RAS menu: Error Log Display in the S10VE User’s
Manual General Description (manual number SEE-1-001).

(*2) To set the route information, use the Set Network window of BASE SYSTEM/S10VE.

2. ARITHMETIC FUNCTIONS

2-183

(2/2)
Value Meaning Remedial action required

0xFFFFFFFA
The management number is not
used.

The communication port is not open.
Review the ladder program.

0xFFFFFFFB The Ethernet module failed.
Reset the CPU module to restart the ET.NET module.
If the error persists, the ET.NET module might have
failed. Replace the ET.NET module.

0xFFFFFFFC No Ethernet module is installed. Make sure that an ET.NET module is installed.

0xFFFFFFFD Task startup failed.

Reset the CPU module to restart the ET.NET module.
If the error persists, the ET.NET module might have
failed. Replace the ET.NET module.

Management number Module to be replaced
1 to 16 CPU module
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

0xFFFFFFFE
The management number is already
used.

Check whether another ladder program uses the
Ethernet communication settings with the same
management number.

0xFFFFFFFF

A compatibility error (conflict with
the communication mode in the
parameter information) was
detected.

Check whether the communication method in the
Ethernet communication settings and the
communication mode in the ladder program match.

 Error type

0x8XXXXXXX: CPMS socket macro error (this code is created by adding the actual CPMS socket macro error code
and the value 0x80000000 together).

0xFXXXXXXX: System program or task error.

2. ARITHMETIC FUNCTIONS

2-184

(2) Creating a ladder program
When you create a ladder program, choose the desired management number from among
those that have been set in the [Set Ethernet Communication] window, and specify it as
the parameter to an appropriate Ethernet communication system function. The system
function is then able to perform processing according to the window-set information
piece identified by that management number.

<Example>

The information piece identified by management number 1 is one
that has been set in the [Set Ethernet Communication] window.

Note on creating a ladder program:

Do not specify an index as the management number of a system arithmetic function

for Ethernet communication. Although a ladder program in which an index is

specified can be compiled, a 0x3d00 0006 error ([E] Ladder Program error (Illegal

SH Instruction)(TN=232)) is logged when the ladder program is executed by S10VE.

F

M0000 TOP

1

Specify management number 1 here.

2. ARITHMETIC FUNCTIONS

2-185

2.7.3 Details on the instructions
Information in this section is concerning all available Ethernet communication system
extension function instructions and is organized as follows.
(1) Input format

Under this heading is shown the input format of each instruction.
(2) Function

Under this heading is provided a description of each instruction’s function. The system
registers mentioned in these descriptions are the system registers, S09C0 through S09EF,
that are used to store execution results of the system function instructions.

(3) Data types
Under this heading are listed the types of data that can be specified as parameters to each
instruction.

Example:

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – –

: May be specified.
–: May not be specified.

In the preceding example, the address of word data or a constant can be specified as S (source).
Note: Bit I/O areas, such as R000 and Y01FF, are handled as word data in arithmetic

functions. In these cases, only the LSB is valid and all the other bits are zero (0) in
reading and invalid in writing. For details, see Section 2.3.2, “Handling of bit
registers.”

(4) Example program

Under this heading is shown a simple ladder program using each instruction and its
operation.

(5) Error handling

Under this heading is described what processing will be done if an error occurs. The
operation result flag(s) reflecting the error are also shown under this heading.

This portion shows whether such
registers as DW000 and such
constants as H0001 may be used
with the instruction or not.

This portion shows whether such
registers as LLL0000 and such
constants as H04231556 may be
used with the instruction or not.

This portion shows whether such
registers as LF0000 and such
constants as 1.12E-002 may be
used with the instruction or not.

If a register may be specified,
this portion shows whether an
index may be specified or not.

2. ARITHMETIC FUNCTIONS

2-186

TOP OPEN A TCP CONNECTION (CLIENT)

(1) Input format

TOP S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Opening a TCP connection (client)

The TOP (TCP connection open [client]) instruction opens a socket and establishes a
connection with a destination by using its other port number and other IP address, which
have been set in the [Set Ethernet Communication] window. This instruction ends its
execution even if the initiated process is not completed. The result of the process is reported
by storing appropriate values in a given system register, [Execution flag], and [Details
result code], the latter two of which are parameters that have been set in the [Set Ethernet
Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index
specification Register Constant Register Constant Register Constant

S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-187

(4) Example program

(5) Error handling

If opening a TCP connection (client) succeeds, the system register and [Details result code]
are both set to 0. If it fails, the system register is set to 1 and the [Details result code] is set to
the error number (non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Opening using the management number 1 and execution flag R001:

 -------- An open instruction is
issued.

 -------- End-of-open monitoring
is turned on.

 -------- Open directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-open monitoring
is turned off.

M0000 TOP

F 1

1 = R000

0 = M0000

MOV

F

R001

R100

R101

0 = R000

S09C0

MOV

F

Send directive

S09C0

R000 R001

MOV
F

2. ARITHMETIC FUNCTIONS

2-188

TPOP OPEN A TCP CONNECTION (SERVER)

(1) Input format

TPOP S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Opening a TCP connection (server)

The TPOP (TCP connection open [server]) instruction opens a socket, accepts a connection
request from a client by using the server’s self-port number, which has been set in the [Set
Ethernet Communication] window, and establishes a connection between the server and
that client. This instruction ends its execution even if the initiated process is not completed.
The result of the process is reported by storing appropriate values in a given system
register, [Execution flag], and [Details result code], the latter two of which are parameters
that have been set in the [Set Ethernet Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-189

(4) Example program

(5) Error handling

If opening a TCP connection (server) succeeds, the system register and [Details result code]
are both set to 0. If it fails, the system register is set to 1 and the [Details result code] is set to
the error number (non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Opening using the management number 1 and execution flag R001:

M0000 TPOP

F 1

1 = R000

0 = M0000

MOV

F

R001

0 = R000

S09C0

 -------- An open instruction is
issued.

 -------- End-of-open monitoring is
turned on.

 -------- Open directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-open monitoring is
turned off.

MOV

F

Send directive

S09C0

R100

R101

MOV
F

R000 R001

2. ARITHMETIC FUNCTIONS

2-190

TCLO CLOSE A TCP CONNECTION

(1) Input format

TCLO S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Closing a TCP connection

The TCLO (TCP connection close) instruction logically disconnects a communication path
by the method ([Socket disconnection mode]) that has been specified in the [Set Ethernet
Communication] window and releases the socket. This instruction ends its execution even if
the initiated process is not completed. The result of the process is reported by storing
appropriate values in a given system register, [Execution flag], and [Details result code], the
latter two of which are parameters that have been set in the [Set Ethernet Communication]
window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-191

(4) Example program

(5) Error handling

If closing a TCP connection succeeds, the system register and [Details result code] are both
set to 0. If it fails, the system register is set to 1 and the [Details result code] is set to the error
number (non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

 -------- A close instruction is
issued.

 -------- End-of-close monitoring is
turned on.

 -------- Close directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-close monitoring is
turned off.

M0000 TCLO

F 1

1 = R000

0 = M0000

MOV

F

R001

R100

R101

0 = R000

S09C0

MOV

F

Closing using the management number 1 and execution flag R001:

Send directive

S09C0

R000 R001

MOV

F

2. ARITHMETIC FUNCTIONS

2-192

TRCV TCP RECEPTION

(1) Input format

TRCV S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

2. ARITHMETIC FUNCTIONS

2-193

(2) Function
 Reception by TCP

The TRCV (TCP receive) instruction receives as much message data as specified by the
[Receive size] from a given socket and stores the received data in the area specified by the
[Receive address], where the [Receive size] and [Receive address] are parameters that have
been set in the [Set Ethernet Communication] window. This instruction ends its execution
even if the initiated process is not completed. The result of the process is reported by
storing appropriate values in a given system register, [Execution flag], and [Details result
code], the latter two of which are parameters that have been set in the [Set Ethernet
Communication] window.
If there is no data to be received at the time of its issuance, this instruction monitors the
reception process for the time period specified by the [Receive timeout], which has been set
in the [Set Ethernet Communication] window. If the timeout has elapsed with no data
received, the reception process is terminated with the [Details result code] set to the value
“EWOULDBLOCK”. In this case, if you still want to receive data, re-issue this instruction.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to a positive value if data is received. This positive value indicates
the size of the received data. If the size of the received data is not equal
to the [Receive size] value, one of the following takes place:
If [Receive size] > size of received data:

All the received data is read in.
If [Receive size] < size of received data:

As much data as specified by the [Receive size] is read in from the
received data. The rest of the received data is retained and can be read
in by issuing the TRCV instruction again.

If the reception process fails, the [Details result code] is set to a negative
value, which is the error code.

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-194

(4) Example program

(5) Error handling

If the initiated reception process succeeds, the system register is set to 0 and the [Details result
code] is set to a value indicating the size of the received data. If it fails, the system register is
set to 1 and the [Details result code] is set to the error number (negative value). Whether the
initiated process has succeeded or not can be determined from the set value of the system
register.
If the process has failed, get error cause information from the [Details result code]. If the
[Details result code] is EWOULDBLOCK, you can re-issue the TRCV instruction to receive
data.

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Receiving using the management number 1, execution flag R001, detail result code LWL0000, and a
receive size of 1024 bytes, and performing a reception retry if no data is received:

 ------- A receive instruction is issued.

 ------- End-of-receive monitoring is turned on.

 ------- Receive directive is turned off.

 ---- Normal termination is made
(receive size = size of received data).

 ---- Normal termination is made
(receive size > size of received data).

 ---- EWOULDBLOCK for testing.

 ------- Abnormal termination is made.

 ------- A reception retry is made.

 ------- End-of-receive monitoring is turned off.

TRCV
1

1 = R000

0 = M0000

R101

LWL0000 : H800000F6 = R003

R001

Receive directive

LWL0000 : 1024 = R100

LWL0000 : 1024 = R102

1 = M0000

0 = R000

F

MOV
F

MOV
F

EQU
F

NEQ
F

EQU
F

MOV
F

MOV
F

R000

M0000 R001

S09C0

S09C0

R003

R003

2. ARITHMETIC FUNCTIONS

2-195

TSND TCP TRANSMISSION

(1) Input format

TSND S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Transmission by TCP

The TSND (TCP send) instruction transmits as much send data as specified by the [Send
size] from the area specified by the [Send address] to a given socket, where the [Send size]
and [Send address] are parameters that have been set in the [Set Ethernet Communication]
window. This instruction ends its execution even if the initiated process is not completed.
The result of the process is reported by storing appropriate values in a given system
register, [Execution flag], and [Details result code], the latter two of which are parameters
that have been set in the [Set Ethernet Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-196

(4) Example program

(5) Error handling

If the initiated transmission process succeeds, the system register and [Details result code] are
both set to 0. If it fails, the system register is set to 1 and the [Details result code] is set to the
error number (non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

 -------- A send instruction is
issued.

 -------- End-of-send monitoring is
turned on.

 -------- Send directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-send monitoring is
turned off.

M0000 TSND
F 1

1 = R000

0 = M0000

MOV

F

R001

R100

R101

0 = R000

S09C0

MOV

F

Transmitting using the management number 1 and execution flag R001:

Send directive

S09C0

R000 R001

MOV

F

2. ARITHMETIC FUNCTIONS

2-197

UOP OPEN UDP

(1) Input format

UOP S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Opening UDP

The UOP (UDP open) instruction opens a socket and assigns address information to that
socket by using the self-port number that has been set as a parameter in the [Set Ethernet
Communication] window. This instruction ends its execution even if the initiated process is
not completed. The result of the process is reported by storing appropriate values in a given
system register, [Execution flag], and [Details result code], the latter two of which are
parameters that have been set in the [Set Ethernet Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-198

(4) Example program

(5) Error handling

If opening UDP succeeds, the system register and [Details result code] are both set to 0. If it
fails, the system register is set to 1 and the [Details result code] is set to the error number
(non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Opening using the management number 1 and execution flag R001:

 -------- An open instruction is
issued.

 -------- End-of-open monitoring
is turned on.

 -------- Open directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-open monitoring
is turned off.

M0000 UOP

F 1

1 = R000

0 = M0000

MOV

F

R001

R100

R101

1 = R000

S09C0

MOV

F

Send directive

S09C0

R000 R001

MOV
F

2. ARITHMETIC FUNCTIONS

2-199

UCLO CLOSE UDP

(1) Input format

UCLO S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Closing UDP

The UCLO (UDP close) instruction logically disconnects a communication path and
releases the socket. This instruction ends its execution even if the initiated process is not
completed. The result of the process is reported by storing appropriate values in a given
system register, [Execution flag], and [Details result code], the latter two of which are
parameters that have been set in the [Set Ethernet Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-200

(4) Example program

(5) Error handling

If closing UDP succeeds, the system register and [Details result code] are both set to 0. If it
fails, the system register is set to 1 and the [Details result code] is set to the error number
(non-zero value).
Whether the initiated process has succeeded or not can be determined from the set value of the
system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Closing using the management number 1 and execution flag R001:

 -------- A close instruction is
issued.

 -------- End-of-close monitoring
is turned on.

 -------- Close directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-close monitoring
is turned off.

M0000 UCLO

F 1

1 = R000

0 = M0000

MOV
F

R001

R100

R101

1 = R000

S09C0

MOV
F

Send directive

S09C0

MOV
F

R000 R001

2. ARITHMETIC FUNCTIONS

2-201

URCV UDP RECEPTION

(1) Input format

URCV S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

2. ARITHMETIC FUNCTIONS

2-202

(2) Function
 Reception by UDP

The URCV (UDP receive) instruction receives as much message data as specified by the
[Receive size] from a given socket and stores the received data in the receive buffer area
specified by the [Receive address], where the [Receive size] and [Receive address] are
parameters that have been set in the [Set Ethernet Communication] window. This
instruction ends its execution even if the initiated process is not completed. The result of the
process is reported by storing appropriate values in a given system register, [Execution
flag], and [Details result code], the latter two of which are parameters that have been set in
the [Set Ethernet Communication] window.
If there is no data to be received at the time of its issuance, this instruction monitors the
reception process for the time period specified by the [Receive timeout], which has been set
in the [Set Ethernet Communication] window. If the timeout has elapsed with no data
received, the reception process is terminated with the [Details result code] set to the value
“EWOULDBLOCK”. In this case, if you still want to receive data, re-issue this instruction.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to a positive value if data is received. This positive value indicates
the size of the received data. If the size of the received data is not equal
to the [Receive size] value, one of the following takes place:
If [Receive size] > size of received data:

All the received data is read in.
If [Receive size] < size of received data:

As much data as specified by the [Receive size] is read in from the
received data. The rest of the received data is retained and can be read
in by issuing the URCV instruction again.

If the reception process fails, the [Details result code] is set to a negative
value, which is the error code.

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-203

(4) Example program

(5) Error handling

If the initiated reception process succeeds, the system register is set to 0 and the [Details result
code] is set to a value indicating the size of the received data. If it fails, the system register is
set to 1 and the [Details result code] is set to the error number (negative value). Whether the
initiated process has succeeded or not can be determined from the set value of the system
register.
If the process has failed, get error cause information from the [Details result code]. If the
[Details result code] is EWOULDBLOCK, you can re-issue the URCV instruction to receive
data.

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Receiving using the management number 1, execution flag R001, and detail result code LWL0000:

 --------A receive instruction is issued.

 --------End-of-receive monitoring is turned on.

 --------Receive directive is turned off.

 -----Normal termination is made
(receive size = size of received data).

 -----Normal termination is made
(receive size > size of received data).

 -----EWOULDBLOCK for testing.

 --------Abnormal termination is made.

 --------A reception retry is made.

 --------End-of-receive monitoring is turned off.

URCV

1

1 = R000

0 = M0000

R101

LWL0000 : H800000F6 = R003

R001

Receive directive

LWL0000 : 1024 = R100

LWL0000 : 1024 = R102

1 = M0000

0 = R000

F

MOV

F

MOV

F

EQU

F

NEQ

F

EQU

F

MOV

F

MOV

F

M0000

R000

R001

S09C0

S09C0

R003

R003

2. ARITHMETIC FUNCTIONS

2-204

USND UDP TRANSMISSION

(1) Input format

USND S

where:
S: (Source) is a communication identifier, which is one of the following module-specific

management numbers:

Management No. Module name
1 to 16 CPU
17 to 32 ET.NET (main module)
33 to 48 ET.NET (submodule)

One module can communicate with a maximum of 16 destinations at the same time via TCP
and UDP.

(2) Function
 Transmission by UDP

The USND (UDP send) instruction transmits as much send data as specified by the [Send
size] from the send buffer area specified by the [Send address] to a given socket, where the
[Send size] and [Send address] are parameters that have been set in the [Set Ethernet
Communication] window. This instruction ends its execution even if the initiated process is
not completed. The result of the process is reported by storing appropriate values in a given
system register, [Execution flag], and [Details result code], the latter two of which are
parameters that have been set in the [Set Ethernet Communication] window.

Execution flag: Set to 1 if the initiated process is in progress; otherwise (i.e., it is

completed), set to 0. When the initiated process is completed, its result is
reported by setting the system register and [Details result code] to
appropriate values. To obtain the information, be sure to monitor the
[Execution flag] constantly until the process is complete.

Details result code: Set to an appropriate value at the end of the initiated process, the value
that indicates the result of execution of the process. When the [Execution
flag] is set to 0, get information from this [Details result code].

(3) Data types

 Word Long-word Floating Index

specification Register Constant Register Constant Register Constant
S √ √ – – – – –

√: May be specified.
–: May not be specified.

2. ARITHMETIC FUNCTIONS

2-205

(4) Example program

(5) Error handling

If the initiated transmission process succeeds, the system register and [Details result code] are
both set to 0. If it fails, the system register is set to 1 and the [Details result code] is set to the
error number (non-zero value). Whether the initiated process has succeeded or not can be
determined from the set value of the system register.
If the process has failed, get error cause information from the [Details result code].

 Operation result flags

X E P N Z V

– – – – – –

All the above flags remain unchanged.

Transmitting using the management number 1 and execution flag R001:

 -------- A send instruction is
issued.

 -------- End-of-send monitoring
is turned on.

 -------- Send directive is turned
off.

 -------- Normal termination is
made.

 -------- Abnormal termination is
made.

 -------- End-of-send monitoring
is turned off.

M0000 USND

1

1 = R000

0 = M0000

MOV

R001

R100

R101

0 = R000

S09C0

MOV

Send directive

S09C0

R000 R001

MOV

F

F

F

F

2. ARITHMETIC FUNCTIONS

2-206

2.7.4 Sample programs
This section shows two sample programs each of which opens a socket, sends and receives
data, and closes the socket, all by using Ethernet communication system extension
functions. It is assumed that the sample programs are provided with the following parameter
settings: the management number 1, execution flag R001, and detail result code LWL0000.

(1) TCP client

 -------- An open instruction is
issued.

 -------- End-of-open monitoring is
turned on.

 -------- Open directive is turned
off.

 -------- Opening process is
terminated normally.

 -------- Opening process is
terminated abnormally.

 -------- End-of-open monitoring is
turned off.

 -------- A send instruction is
issued.

 -------- End-of-send monitoring is
turned on.

 -------- Sending process is
terminated normally.

 -------- Sending process is
terminated abnormally.

 -------- End-of-send monitoring is
turned off.

 -------- Receive directive is turned
on.

 -------- A receive instruction is
issued.

 -------- End-of-receive monitoring
is turned on.

 -------- Receive directive is turned
off.

1

1 = R000

0 = M0000

1 = M0001

0 = M0001

R100 R001

M0010

0 = R000

1

1 = M0002

1 = M0003

0 = M0002

1

TOP

F

MOV

F

MOV

F

MOV

F

TSND

F

MOV

F

MOV

F

MOV

F

TRCV

F

MOV

F

MOV

F

M0000

M0002

R000

R001

R001 S09C0 R100

R001 S09C0

S09C0

R001

R102 V000

R102

R103

S09C0 R101

2. ARITHMETIC FUNCTIONS

2-207

 ------ Receiving process is terminated
abnormally
(receive size  size of received data).

 ------ EWOULDBLOCK for testing.

 --------- Receiving process is terminated

abnormally.

 --------- A reception retry is made.

 --------- End-of-receive monitoring is turned

off.

 --------- A close instruction is issued.

 --------- End-of-receive flag is reset.

 --------- End-of-close monitoring is turned on.

 --------- Closing process is terminated

normally.

 --------- Closing process is terminated

abnormally.

 --------- End-of-close monitoring is turned off.

0 = R104

1

1 = M0004

1 = M0002

0 = M0003

0 = M0004

M0003

LWL0000 : H800000F6 = R107

LWL0000 : 1024 = R104

LE

MOV

F

MOV

TCLO

F

MOV

F

MOV

F

MOV

F

EQU

F

F

F

R001 S09C0

S09C0

R107

R107

R001 R103

R104

R105

M0004 R001 S09C0

S09C0

R105

R108

R109

2. ARITHMETIC FUNCTIONS

2-208

(2) TCP server

 -------- An open instruction is issued.

 -------- End-of-open monitoring is turned on.

 -------- “Start communication” directive is

turned off.

 -------- Opening process is terminated

normally.

 -------- Opening process is terminated

abnormally.

 -------- End-of-open monitoring is turned

off.

 -------- Receive directive is turned on.

 -------- A receive instruction is issued.

 -------- End-of-receive monitoring is turned

on.

 -------- Receive directive is turned off.

 ----- Receiving process is terminated

abnormally
(receive size  size of received data).

 ----- EWOULDBLOCK for testing.

 -------- Receiving process is terminated

abnormally.

 -------- A reception retry is made.

 -------- End-of-receive monitoring is

turned off.

EQU

0 = M0000

0 = M0001

1

0 = R000

1 = M0001

1 = M0001

1 = M0002

LWL0000 : H800000F6 = R105

LWL0000 : 1024 = R102

1

1 = R000

0 = M0002

MOV

F

TPOP

F

MOV

F

MOV

F

TRCV

F

MOV

F

MOV

F

LE

F

F

MOV

F

MOV

F

M00000

M00001

M0002

R001

R100

R001 S09C0

R001 S09C0 R000

V000

R001

S09C0

R101

R100

MOV

F

R103

S09C0

2. ARITHMETIC FUNCTIONS

2-209

0 = R102

0 = M0004

1

0 = M0003

0 = M0004

R001 R103

R106

R107

 -------- A send instruction is
issued.

 -------- End-of-send monitoring is
turned on.

 -------- End-of-receive flag is
reset.

 -------- Sending process is
terminated normally.

 -------- Sending process is
terminated abnormally.

 -------- End-of-send monitoring is
turned off.

 -------- A close instruction is
issued.

 -------- End-of-close monitoring
is turned on.

 -------- Closing process is
terminated normally.

 -------- Closing process is
terminated abnormally.

 -------- End-of-close monitoring
is turned off.

1

1 = M0003

TSND

F

MOV

F

MOV

F

MOV

F

TCLO

F

MOV

F

MOV

F

M0004

M0003

R001 R102

R001 S09C0

S09C0

R001 S09C0

S09C0

R106

R107

R108

R109

This Page Intentionally Left Blank

SUPPLEMENT A CHECKING OUT THE AVERAGE SCAN TIME

Z-1

SUPPLEMENT A CHECKING OUT THE AVERAGE SCAN TIME

There are two methods available for finding out the average scan time used in ladder programs: 1)
by using the sequence cycle monitoring function of the LADDER DIAGRAM SYSTEM/S10VE
(model S-7898-02) and 2) by adding a special circuit to the ladder program.

A.1 Check-out using the LADDER DIAGRAM SYSTEM/S10VE

The LADDER DIAGRAM SYSTEM/S10VE’s sequence cycle monitoring function can be
used to check out the instant value, maximum value, minimum value, and average value of
scan times. The procedure is as described below.
To start the monitoring function, choose [Utility] – [Monitor control status] – [Sequence
cycle monitor] from the LADDER DIAGRAM SYSTEM/S10VE’s menu.
For information on how to operate the sequence cycle monitor, refer to the S10VE Software
Manual Operation Ladder Diagram System for Windows® (manual number SEE-3-131).

<[Sequence cycle monitor] window>

SUPPLEMENT A CHECKING OUT THE AVERAGE SCAN TIME

Z-2

A.2 Check-out using a ladder program
It becomes possible to check out the average scan time in ladder programs if you add the
following circuit to the ladder program. The average scan time obtained is the average of scan
times (milliseconds) measured at 8-second intervals during the execution of the ladder
program and is stored in FWBFF.

Figure A-1 Scan Time-Indicating Circuit

F
MOV S0012

MOV S013C VFFE

SUB

DIV

MOV VFFF

DIV

SUB

8000→FWBFC

SW0140→FWBFD

FWBFD–FWBFE→FWBFE

FWBFC/FWBFE→FWBFF

SW0140→FWBFE

FWBFE–FWBFD→FWBFD

FWBFC/FWBFD→FWBFF

Average scan time indication area
(giving indications as soon as the monitor is started)

F

F

F

F

F

F

	Cover
	Copyringt
	SAFETY PRECAUTIONS
	Revision History
	PREFACE
	CONTENTS
	FIGURES
	TABLES
	CHAPTER 1 LADDER INSTRUCTIONS
	1.1 Ladder Programs
	1.2 Operation Sequence of Ladder Programs
	1.3 Ladder Program Instructions
	1.3.1 Ladder program instructions
	1.3.2 a-contacts
	1.3.3 b-contacts
	1.3.4 Rising-edge and falling-edge contacts
	1.3.5 Operation result push, read, and pop
	1.3.6 Operation result push + a-contact, read + a-contact, and pop + a-contact
	1.3.7 Operation result push + b-contact, read + b-contact, and pop + b-contact
	1.3.8 Block union -- parallel connection (ORB)
	1.3.9 NOT
	1.3.10 Coils
	1.3.11 Set and reset coils
	1.3.12 Comparison instructions
	1.3.13 Specifying indices in ladder instructions
	1.3.14 Circuits and steps

	1.4 Register Statuses at a Reset, Power Recovery, and State Transition between STOP and RUN
	1.5 Registers
	1.5.1 Registers usable in ladder instructions
	1.5.2 Register numbers

	1.6 Ladder Watchdog Timer
	1.6.1 An outline of the ladder watchdog timer’s operation
	1.6.2 Range of settable monitoring time values
	1.6.3 Error information presented upon ladder WDT errors

	CHAPTER 2 ARITHMETIC FUNCTIONS
	2.1 Functional Overview
	2.2 Functional Specifications
	2.3 Registers Used in Arithmetic Functions
	2.3.1 Registers usable in arithmetic functions
	2.3.2 Handling of bit registers
	2.3.3 Relationships between bit registers and word registers

	2.4 Inputs to Arithmetic Functions
	2.5 Arithmetic Functions
	2.6 Details on the Instructions
	2.7 Ethernet Communication Instructions
	2.7.1 Functional overview
	2.7.2 Usage
	2.7.3 Details on the instructions
	2.7.4 Sample programs

	SUPPLEMENT A CHECKING OUT THE AVERAGE SCAN TIME
	A.1 Check-out using the LADDER DIAGRAM SYSTEM/S10VE
	A.2 Check-out using a ladder program

