
NXACP For Windows®
Operation

Software Manual

SEE-3-134(A)

NXACP For Windows®
Operation

Software Manual

First Edition, October 2020, SEE-3-134(A)

All Rights Reserved, Copyright © 2020, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Printed in Japan.

<IC> (FL-MW2007)

S-1

 WARNING

NOTICE

SAFETY PRECAUTIONS

 Read this manual thoroughly and follow all the safety precautions and instructions given in this

manual before operations such as system configuration and program creation.
 Keep this manual handy so that you can refer to it any time you want.
 If you have any question concerning any part of this manual, contact your nearest Hitachi branch

office or service engineer.
 Hitachi will not be responsible for any accident or failure resulting from your operation in any

manner not described in this manual.
 Hitachi will not be responsible for any accident or failure resulting from modification of software

provided by Hitachi.
 Hitachi will not be responsible for reliability of software not provided by Hitachi.
 Make it a rule to back up every file. Any trouble on the file unit, power failure during file access

or incorrect operation may destroy some of the files you have stored. To prevent data destruction
and loss, make file backup a routine task.

 Furnish protective circuits externally and make a system design in a way that ensures safety in
system operations and provides adequate safeguards to prevent personal injury and death and
serious property damage even if the product should become faulty or malfunction or if an
employed program is defective.

 If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it must be
positioned external to the programmable controller. If you do not observe this precaution,
equipment damage or accident may occur when this programmable controller becomes defective.

 Before changing the program, generating a forced output, or performing the RUN, STOP, or like
procedure during an operation, thoroughly verify the safety because the use of an incorrect
procedure may cause equipment damage or other accident.

 This manual contains information on potential hazards that is intended as a guide for safe use of
this product. The potential hazards listed in the manual are divided into four hazard levels of
danger, warning, caution, and notice, according to the level of their severity. The following are
definitions of the safety labels containing the corresponding signal words DANGER,
WARNING, CAUTION, and NOTICE.

: This safety label identifies precautions that, if not heeded, will result in
death or serious injury.

: Identifies precautions that, if not heeded, could result in death or serious
injury.

: Identifies precautions that, if not heeded, could result in minor or moderate
injury.

: This safety label without a safety alert symbol identifies precautions that,
if not heeded, could result in property damage or loss not related to
personal injury.

Failure to observe any of the CAUTION and NOTICE statements used in this manual
could also lead to a serious consequence, depending on the situation in which this product is used.
Therefore, be sure to observe all of those statements without fail.

 DANGER

 CAUTION

S-2

The following are definitions of the phrases “serious injury,” “minor or moderate injury,” and
“property damage or loss not related to personal injury” used in the above definitions of the safety
labels.

Serious injury: Is an injury that requires hospitalization for medical treatment, has aftereffects,
and/or requires long-term follow-up care. Examples of serious injuries are as follows: vision loss,
burn (caused by dry heat or extreme cold), electric-shock injury, broken bone, poisoning, etc.

Minor or moderate injury: Is an injury that does not require either hospitalization for medical
treatment or long-term follow-up care. Examples of minor or moderate injuries are as follows: burn,
electric-shock injury, etc.

Property damage or loss not related to personal injury: Is a damage to or loss of personal
property. Examples of property damages or losses not related to personal injury are as follows:
damage to this product or other equipment or their breakdown, loss of useful data, etc.

The safety precautions stated in this manual are based on the general rules of safety applicable to
this product. These safety precautions are a necessary complement to the various safety measures
included in this product. Although they have been planned carefully, the safety precautions posted
on this product and in the manual do not cover every possible hazard. Common sense and caution
must be used when operating this product. For safe operation and maintenance of this product,
establish your own safety rules and regulations according to your unique needs. A variety of
industry standards are available to establish such safety rules and regulations.

S-3

Revision record

Revision No. Revision record (revision details and reason for revision) Month, Year Remarks

A First edition October 2020

This Page Intentionally Left Blank.

i

PREFACE

NXACP is a communication platform for building a cooperative autonomous distributed system on
the S10VE system. This manual describes NXACP’s features and linkage (interface) specifications
of macro calls.
Note that the target audience of this manual is people who have a basic knowledge of CPMS (real-
time OS used in this system), Windows®, and sockets used on a workstation (hereinafter
abbreviated as WS).

<Organization of this manual>

PART 1 OVERVIEW
Describes the features, system configuration, basic terminology, and functional overview of
NXACP.

PART 2 FUNCTION GUIDE
Describes the basic functions of NXACP necessary for system construction, program
development, test, and operation, by organizing them into the following 8 chapters.

CHAPTER 1 MULTICAST COMMUNICATION FUNCTION
CHAPTER 2 DATA FIELD MANAGEMENT FUNCTION
CHAPTER 3 DUPLEXED LAN CONTROL FUNCTION
CHAPTER 4 TEST FUNCTION
CHAPTER 5 SYSTEM MANAGEMENT FUNCTION
CHAPTER 6 OPERATION MANAGEMENT FUNCTION
CHAPTER 7 NETWORK - SHARED MEMORY FUNCTION
CHAPTER 8 SYSTEM CONSTRUCTION FUNCTION

PART 3 MACRO SPECIFICATIONS
Describes the functions and linkage specifications of macro calls offered by NXACP.

ii

<Related manuals>

Manual name Manual number
S10VE User’s Manual General Description SEE-1-001
User’s Manual REPLACEMENT for S10VE SEE-1-146
S10VE Software Manual CPMS General Description and Macro Specifications SEE-3-201
S10VE Software Manual Operation RPDP for Windows® SEE-3-133
NX Dlink GUIDE RS90-63-X050
NX Dlink REFERENCE RS90-63-X051

* The letter X in the manual number indicates a revision number.

<Trademarks>

Microsoft® Windows® is a registered trademark of Microsoft Corporation in the United States
and other countries.

<Note for storage capacity calculations>
 Memory capacities and requirements, file sizes and storage requirements, etc. must be

calculated according to the formula 2n. The following examples show the results of such
calculations by 2n (to the right of the equals signs).
1 KB (kilobyte) = 1,024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes
1 TB (terabyte) = 1,099,511,627,776 bytes

 As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1,000 bytes
1 MB (megabyte) = 1,0002 bytes
1 GB (gigabyte) = 1,0003 bytes
1 TB (terabyte) = 1,0004 bytes

iii

CONTENTS

PART 1 OVERVIEW

CHAPTER 1 OVERVIEW .. 1-2
1.1 Introduction to NXACP ... 1-2
1.2 Hardware Configuration .. 1-3
1.3 Software Configuration .. 1-4

CHAPTER 2 DEFINITIONS OF TERMINOLOGY .. 1-5
2.1 Definitions of Basic Terminology .. 1-5

CHAPTER 3 FUNCTIONAL OVERVIEW ... 1-11
3.1 Multicast Communication Function ... 1-11
3.2 Data Field Management Function .. 1-14
3.3 Duplexed LAN Control Function .. 1-17
3.4 Test Function .. 1-18
3.5 System Management Function ... 1-19
3.6 Operation Management Function ... 1-21
3.7 Network-Shared Memory Function ... 1-22
3.8 System Construction Function ... 1-24

PART 2 FUNCTION GUIDE

CHAPTER 1 MULTICAST COMMUNICATION FUNCTION 2-2
1.1 Characteristics of Communication ... 2-2

1.1.1 Basic unit of message communication .. 2-2
1.1.2 Splitting and reassembling a message ... 2-3
1.1.3 Structure of a user program ... 2-4
1.1.4 Message Processing Order ... 2-8

1.2 Message Transmission Function .. 2-10
1.2.1 Network Transmission ... 2-10
1.2.2 Local node transmission .. 2-17

1.3 Message Reception Function ... 2-18
1.3.1 Message reception ... 2-18
1.3.2 Receive timeout monitoring .. 2-22
1.3.3 Defining multicast groups .. 2-23

1.4 Remote Data Field Control Function ... 2-25
1.4.1 System connection topology .. 2-25
1.4.2 Message transmission and reception ... 2-27

1.5 Buffer Management ... 2-29

CHAPTER 2 DATA FIELD MANAGEMENT FUNCTION 2-30
2.1 Alive Signal Transmission Function .. 2-30
2.2 Alive Status Monitor and Status Change Notification Function .. 2-32

CHAPTER 3 DUPLEXED LAN CONTROL FUNCTION 2-36
3.1 Message Transmission and Reception on Duplexed LANs ... 2-36
3.2 Alive Signal Transmission and Reception on Duplexed LANs ... 2-39

iv

CHAPTER 4 TEST FUNCTION ... 2-40
4.1 Message I/O Control .. 2-40
4.2 Test Configuration ... 2-42
4.3 Remote Data Field and Mode .. 2-44

CHAPTER 5 SYSTEM MANAGEMENT FUNCTION 2-46
5.1 Failure Notification Function ... 2-46
5.2 User Task Management Function .. 2-51

CHAPTER 6 OPERATION MANAGEMENT FUNCTION 2-53
6.1 Operation Management of NXACP and Data Fields ... 2-54

6.1.1 Starting data fields ... 2-55
6.1.2 Stopping data fields ... 2-57
6.1.3 Setting and updating a mode .. 2-59
6.1.4 Updating construction information .. 2-60

CHAPTER 7 NETWORK-SHARED MEMORY FUNCTION 2-61
7.1 Terminology ... 2-61
7.2 Specifications of Transfer Memory ... 2-63
7.3 Cautions on Construction ... 2-69
7.4 Overview of Macros ... 2-70

CHAPTER 8 SYSTEM CONSTRUCTION FUNCTION 2-72
8.1 Loading the Main Part of NXACP ... 2-74
8.2 System Construction and Loading ... 2-77

8.2.1 Initialization ... 2-77
8.2.2 Setting up construction information .. 2-78
8.2.3 Compiling construction information .. 2-86
8.2.4 Loading configuration information .. 2-87

8.3 Estimating Required Memory Capacity ... 2-88

PART 3 MACRO SPECIFICATIONS

CHAPTER 1 INTRODUCTION .. 3-2
1.1 Macro Types and Macro List ... 3-2

CHAPTER 2 MULTICAST COMMUNICATION MACROS 3-3
2.1 nx_put ... 3-3
2.2 nx_get ... 3-5

CHAPTER 3 OPERATION MANAGEMENT MACROS 3-8
3.1 nx_init .. 3-8
3.2 nx_dfup .. 3-9
3.3 nx_dfdwn ... 3-12
3.4 nx_quit ... 3-13

CHAPTER 4 SHARED MEMORY MACROS ... 3-14
4.1 nx_init_tm .. 3-14
4.2 nx_ctl_tm ... 3-18
4.3 nx_get_tm ... 3-20

v

4.4 nx_write_tm ... 3-21
4.5 nx_read_tm ... 3-23

APPENDIXES

APPENDIX A RETURN CODE DETAILS .. A-2

APPENDIX B LOG FORMAT ... A-9

APPENDIX C NODE STATUS CHANGE NOTIFICATION FORMAT A-15

APPENDIX D DHP RECORD LIST ... A-16

APPENDIX E CONTROL TRACE ... A-17

APPENDIX F MESSAGE HEADER FORMAT .. A-18

APPENDIX G ALIVE SIGNAL HEADER FORMAT .. A-19

vi

FIGURES

Figure 1-1 Minimum Network Configuration ... 1-3
Figure 1-2 Maximum Network Configuration ... 1-3
Figure 1-3 Software Configuration .. 1-4
Figure 1-4 Description of NXACP Elements .. 1-5
Figure 1-5 Data Field ... 1-6
Figure 1-6 Local Data Field and Remote Data Field ... 1-6
Figure 1-7 Message .. 1-7
Figure 1-8 Transaction Code .. 1-8
Figure 1-9 Logical Node .. 1-9
Figure 1-10 Multicast Node 1 Group ... 1-9
Figure 1-11 Port ... 1-10
Figure 1-12 Multicast Communication .. 1-11
Figure 1-13 Multicast Group .. 1-11
Figure 1-14 Splitting and Reassembling a Message .. 1-12
Figure 1-15 Receiving Pinpoint Data in a Message ... 1-12
Figure 1-16 Message Filtering ... 1-13
Figure 1-17 Alive Signal .. 1-14
Figure 1-18 Node Status Management ... 1-15
Figure 1-19 Status Monitoring Node (1) .. 1-16
Figure 1-20 Status Monitoring Node (2) .. 1-16
Figure 1-21 Duplexed LANs .. 1-17
Figure 1-22 Duplexed LAN Communication Method ... 1-17
Figure 1-23 Test Function .. 1-18
Figure 1-24 Failure Notification .. 1-19
Figure 1-25 Trace ... 1-20
Figure 1-26 UP Task Management .. 1-20
Figure 1-27 NXACP Operation Management ... 1-21
Figure 1-28 Network-Shared Memory ... 1-22
Figure 1-29 Characteristics of Shared Memory ... 1-23
Figure 1-30 System Construction .. 1-24
Figure 1-31 NXACP Configuration Environment ... 1-24
Figure 2-1 Unit of Communication .. 2-2
Figure 2-2 nx_put Macro ... 2-4
Figure 2-3 Detecting Failure Information (Transmission) ... 2-5
Figure 2-4 nx_get Macro .. 2-6
Figure 2-5 Detecting Failure Information (Reception) .. 2-7
Figure 2-6 Processing Order .. 2-8
Figure 2-7 Restrictions on Using Priority Levels .. 2-9
Figure 2-8 Data Field Number and Transmission Area ... 2-10
Figure 2-9 Data Field Numbers and Network Segments ... 2-10
Figure 2-10 Multicast and Selective Reception ... 2-11
Figure 2-11 Remote Data Field (1) .. 2-12
Figure 2-12 Remote Data Field (2) .. 2-12
Figure 2-13 Remote Data Field (3) .. 2-13
Figure 2-14 Transmission to a Specific Node (1) .. 2-15
Figure 2-15 Transmission to a Specific Node (2) .. 2-16
Figure 2-16 Local Node Communication .. 2-17
Figure 2-17 Characteristics of nx_get() ... 2-18

vii

Figure 2-18 Reception Process Flow ... 2-19
Figure 2-19 Shared Reception .. 2-20
Figure 2-20 Receiving Pinpoint Data ... 2-20
Figure 2-21 Receiving Pinpoint Data and Memory Usage .. 2-20
Figure 2-22 Send Destination Multicast Groups and Receive Multicast Groups 2-24
Figure 2-23 Data Field Types .. 2-25
Figure 2-24 Remote Data Field (1) .. 2-26
Figure 2-25 Remote Data Field (2) .. 2-26
Figure 2-26 Sending and Receiving a Message to and from a Remote Data Field 2-28
Figure 2-27 Alive Signal .. 2-30
Figure 2-28 Change Notification ... 2-33
Figure 2-29 Time Sequence for Change Notifications (Timeout) ... 2-34
Figure 2-30 Time Sequence for Change Notifications (Scheduled SHUTDOWN) 2-34
Figure 2-31 Message Transmission and Reception on Duplexed LANs 2-36
Figure 2-32 Duplexed LANs and Remote Data Field (1) .. 2-37
Figure 2-33 Duplexed LANs and Remote Data Field (2) .. 2-37
Figure 2-34 Duplexed LANs and Remote Data Field (3) .. 2-38
Figure 2-35 Duplexed LANs and Remote Data Field (4) .. 2-38
Figure 2-36 Duplexed LANs and Alive Signals .. 2-39
Figure 2-37 Message I/O Control .. 2-41
Figure 2-38 Test Configuration (1) .. 2-42
Figure 2-39 Test Configuration (2) .. 2-42
Figure 2-40 Test Configuration (3) .. 2-43
Figure 2-41 Remote Data Field and Mode (1) ... 2-44
Figure 2-42 Remote Data Field and Mode (2) ... 2-45
Figure 2-43 Remote Data Field and Mode (3) ... 2-45
Figure 2-44 Example Configuration .. 2-48
Figure 2-45 Buffer Status Output Timing .. 2-49
Figure 2-46 Task State Check at Message Arrival .. 2-51
Figure 2-47 Post-ABORT Processing .. 2-52
Figure 2-48 NXACP Operation Management ... 2-53
Figure 2-49 Operation Management of NXACP and Data Fields ... 2-53
Figure 2-50 Macros and Operation Management .. 2-54
Figure 2-51 Order of Initialization for Data Fields .. 2-55
Figure 2-52 Effect on Remote Data Fields (1) ... 2-58
Figure 2-53 Effect on Remote Data Fields (2) ... 2-58
Figure 2-54 Mode Change Procedure .. 2-59
Figure 2-55 Software Transfer Memory .. 2-61
Figure 2-56 Transfer Memory Identifiers (TMID) .. 2-62
Figure 2-57 Write/Read Area ... 2-62
Figure 2-58 Perception of Transfer Memory and Multicast Group ... 2-64
Figure 2-59 Mutual Exclusion for Software Transfer .. 2-65
Figure 2-60 Duplication Check for Software Transfer .. 2-66
Figure 2-61 Processing of Periodic Transmission Type Software Transfer 2-67
Figure 2-62 Processing of Split Transmission Type Software Transfer 2-67
Figure 2-63 Status Transition of Transfer Memory ... 2-70
Figure 2-64 Transfer Memory and Data Field Status .. 2-71
Figure 2-65 Deployment of Resources .. 2-72
Figure 2-66 NXACP Construction Procedure ... 2-73
Figure 2-67 Construction Environment ... 2-77

viii

TABLES

Table 1-1 List of Category A Communication Functions .. 1-2
Table 1-2 List of Communication Specifications .. 1-2
Table 2-1 Buffer Size ... 2-3
Table 2-2 Multicast Group Numbers and Ports ... 2-11
Table 2-3 Correspondence between Transaction Codes and User Tasks 2-14
Table 2-4 Correspondence between Multicast Groups and Nodes .. 2-15
Table 2-5 Correspondence between Transaction Codes and Nodes .. 2-16
Table 2-6 Correspondence between Transaction Codes and User Tasks 2-19
Table 2-7 Multicast Group Numbers and Receive Port Numbers ... 2-23
Table 2-8 Multicast Group Numbers and Send/Receive Port Numbers 2-23
Table 2-9 Data Field Types and Buffer Definition .. 2-29
Table 2-10 Alive Signal Types ... 2-31
Table 2-11 Additional Information in an Alive Signal .. 2-31
Table 2-12 Node Mode and Message Mode .. 2-40
Table 2-13 Mode and Port Number ... 2-41
Table 2-14 EAS Notification Event List .. 2-46
Table 2-15 Examples of Failure Monitor ... 2-48
Table 2-16 Data Field Startup Routines ... 2-55
Table 2-17 Data Field Shutdown Routines .. 2-57
Table 2-18 Valid Range of Mode Settings ... 2-60
Table 2-19 Attributes for Each Transfer Type ... 2-63
Table 2-20 List of Transfer Support Models ... 2-68
Table 2-21 Transfer Macro List ... 2-70
Table 2-22 Resource Allocation .. 2-75
Table 2-23 Configuration File List .. 2-78
Table 2-24 Capacity Calculation Sheet .. 2-88
Table 3-1 Macro List .. 3-2
Table 3-2 Parameter List .. 3-17

PART 1 OVERVIEW

1. OVERVIEW

1-2

CHAPTER 1 OVERVIEW

1.1 Introduction to NXACP

NXACP is a generic term for an autonomous distributed online package for programmable
controllers. NXACP/S10VE is a communication platform targeted for the S10VE system.
NXACP software also works together with NX Dlink (an autonomous distributed online
package) running on a WS or personal computer (hereinafter abbreviated as PC), in a
coordinated manner to provide an autonomous distributed network environment.
NXACP/S10VE supports the following functions listed as “Category A” in “Open
Autonomous Distributed Interface Technical Manual V1.1”.

Table 1-1 List of Category A Communication Functions

Primary function Secondary function
Class
name

Function name Class name Function name

A-Base-1 Multicast communication function Y A-Opt-1-a
Duplexed LAN control multicast
communication function

Y

A-Base-2 Alive signal transmission function Y A-Opt-2-a
Fault information transmission
function

Y

A-Opt-3
One-to-one communication
function (up to 16 KB)

N

A-Opt-4
Construction-via-network
function

N

Y: Supported, N: Not supported

[Note] Priority control defined in the cooperative autonomous distributed protocol
specifications is not supported.
NXACP/S10VE always sends messages at priority level (PRI) 0.
Received messages are processed in order of reception, not according to priority level.

The following shows the main communication specifications of NXACP/S10VE.

Table 1-2 List of Communication Specifications

Item Specification
Network Ethernet
Communication protocol UDP/IP
Message size Up to 16384 bytes
Number of registered local data fields Up to 7 DFs (including local node communication)
Number of registered remote data fields Up to 8 DFs per local data field
Total number of registered data fields Up to 16 DFs
Number of registered send multicast groups Up to 128 groups
Number of registered receive multicast groups Up to 32 groups (per DF)
Number of output transaction codes Up to 8 TCDs per task (per DF)
Number of input transaction codes Up to 8 TCDs per task (per DF)
Number of tasks to which the same transaction
code is input

Up to 8 tasks per TCD (per DF)

[Note] For information about the valid selectable range of each item, see “PART 2 CHAPTER
8 SYSTEM CONSTRUCTION FUNCTION”.

1. OVERVIEW

1-3

1.2 Hardware Configuration

Figures 1-1 and 1-2 describe hardware configurations necessary for using the features of this
system.
 Minimum configuration

The minimum configuration comprises of an S10VE and one of the following: a POC, a
PADT, or a PC, to which the S10VE is connected through the Built-in Ethernet module by
using Ethernet.

Figure 1-1 Minimum Network Configuration

 Maximum configuration

The maximum configuration uses two network lines (Duplexed built-in Ethernet).

Figure 1-2 Maximum Network Configuration

You can use the routing function to communicate with (send data to and receive data from)
another network over routers or gateways. However, an S10VE can communicate with up
to 8 network segments by way of one directly-connected network segment. In total, an
S10VE can communicate with up to 16 network segments including the directly-connected
segments and segments connected by way of routers or gateways (up to 15 if you define a
data field for local node communication).

Connected to
Built-in Ethernet

S10VE

Ethernet

POC/PADT/PC

Duplex

S10VE

Ethernet

1. OVERVIEW

1-4

1.3 Software Configuration

Figure 1-3 shows the position and the software configuration of this system. The following
pieces of software are prerequisites.
 CPMS/S10VE (Realtime monitoring system)
 RCTLNET/S10VE (Ethernet or NETWORK-1000 driver)
 RPDP/S10VE (Realtime system development package)
 BASE SYSTEM/S10VE (basic system)

Figure 1-3 Software Configuration

S10VE

CPMS RCTLNET

NXACP/S10VE

Middleware

Applications

Execution system

NXACP/S10VE construction tool

Windows®

RPDP

Development system

Ethernet

POC/PADT/PC

BASE SYSTEM

2. DEFINITIONS OF TERMINOLOGY

1-5

CHAPTER 2 DEFINITIONS OF TERMINOLOGY

2.1 Definitions of Basic Terminology

NXACP is constructed using the elements shown in Figure 1-4.
Unlike previous network packages, NXACP uses abstract terms that do not depend on how
the network is constructed.
This section describes each element shown in Figure 1-4. The numbered descriptions below
the figure pertain to the numbers in parentheses () in Figure 1-4.

Figure 1-4 Description of NXACP Elements

Data field (1)

Multicast
group (5)

TCD Data

Message (2)

Receive port
(6)

NXACP

TCD (3)

User task

Logical node (4)

Send port
(6)

NXACP

Logical node (4)

User task

2. DEFINITIONS OF TERMINOLOGY

1-6

(1) Data field
A data field (DF) is defined as an area that circulates messages with specific attribute
information. In NXACP, a data field is defined as one LAN segment, and includes
multiple devices. The purpose of using a data field is to define the scope in which
messages can be transmitted.
A “data field number” (DFN) is assigned to each data field for identification purposes in a
distributed system.

Figure 1-5 Data Field

There are two types of data fields: local data field and remote data field.
 Local data field: Data field to which the local node is directly connected
 Remote data field: Data field to which the node is indirectly connected through routers

or gateways

(Example) Node 1 is directly connected to Data field 1, which is therefore a local data
field of Node 1, and Data fields 2 and 3 are remote data fields of Node 1.

Figure 1-6 Local Data Field and Remote Data Field

Message Data field (DFN1)

LAN

Device 1

NXACP

Device 2

NXACP

Device N

NXACP

Node 1 Node 1

Node 2

DFN3

DFN2

Router

Router

Node 1

DFN1

If seen from this node

Remote data
field

Local data field

2. DEFINITIONS OF TERMINOLOGY

1-7

(2) Message

A message is a basic unit of transaction data transmitted within NXACP, and consists of
user data and NX headers.

Figure 1-7 Message

Data field

User program

Transmission
 request

Message

NXACP

Built-in Ethernet

Packet

Sent to LAN Received from LAN

User data

Transmission
 request

User data

User
data

NX
header

User
data

NX
header

User
data

NX
header

UDP
header

IP
header

User
data

NX
header

UDP
header

IP
header

User
data

NX
header

User
data

NX
header

User
data

NX
header

UDP
header

IP
header

User
data

NX
header

UDP
header

IP
header

2. DEFINITIONS OF TERMINOLOGY

1-8

(3) Transaction code

A transaction is a business deal or process of doing business, related to products, services,
and real-time events. Purchasing goods in a shop and receiving tourist services at a travel
agency are both examples of business deals that can be called “transactions”. Transaction
processing means to execute, monitor, and record such transactions.
For this reason, everything a business application does after receiving data, such as plant
data and stock exchange data (including database update processing and notification
processing to other business applications), can be called transaction processing.
In fact, all data that circulates in a data field is processed as a transaction by this system.
An identifier for a transaction is called a transaction code (TCD).
Correspondence between TCDs and messages can be defined by a user as desired, in the
same way as a function code (FC) supported by LNSP. A user program specifies a TCD
when sending and receiving a message.
The TCD specified by a user program is stored in the NX headers of each message.

Figure 1-8 Transaction Code

Data field

Node 1

NXACP

UP

Reception request
for TCD1

TCD1 User data

Node 2

NXACP

UP

Transmission
request for TCD1

Node N

NXACP

UP

Reception request
for TCD1

2. DEFINITIONS OF TERMINOLOGY

1-9

(4) Logical node

A device that belongs to a data field is called a logical node. A number called a logical
node number (LNN) is assigned to each logical node so that each logical node in the data
field can be uniquely identified. In NXACP, a CPU is handled as a logical node.

Figure 1-9 Logical Node

Each node has a mode that indicates whether it is running online, or undergoing tests. A
node that is running online is called an online node, and a node that is undergoing tests is
called a test node.

(5) Multicast group

A multicast group is a group that is defined based on whether to receive each message that
is broadcast to the data field from a logical node. Multicast groups are managed on a per-
data-field basis. Multiple multicast groups can be defined in one data field. A logical node
in the data field can belong to multiple multicast groups.
Each multicast group is mapped to one pair of port numbers (online and test port
numbers). A number called a multicast group number (MGN) is assigned to each multicast
group so that each multicast group in the data field can be uniquely identified.

Figure 1-10 Multicast Node 1 Group

Data field (DFN1)

Node 1 Node 2 Node 3 Node n

MGN1 MGN2 MGN3 MGN4

Node number 2 Node number 3 Node number 4

DFN1

Device 1 Device 2 Device 3

Device 4

DFN2

Device 5

Node number 1

Node number 1

Node number 2

2. DEFINITIONS OF TERMINOLOGY

1-10

(6) Port
Relay points called “send ports” and end points called “destination ports” must be defined
in order to manage the attributes of the senders and receivers in a unified way when you
send and receive messages using the same physical transmission network. Note that the
port numbers mapped from a multicast group are destination port numbers.

Figure 1-11 Port

If port number 6 above is mapped from Multicast group 1, Nodes 2 and 3 therefore belong
to Multicast group 1. Mapping between multicast group numbers and port numbers must
be uniquely defined for all nodes in the same data field.
In NXACP, a destination port number is specified for a send multicast group, and a receive
port number (port bound by bind()) is specified for a receive multicast group in the
construction information.

NXACP

Port=6

Node 2

NXACP

Port=6

Node 3

Node 1

NXACP

Port=5

NXACP

Port=7

Node 4

Broadcast

LAN

Can be received by a node that is bound to Port=6 by
bind().

A message is sent to the destination port (Port=6).

Cannot be received by a node that is not
bound to Port=6 by bind().
(Discarded as junk data)

One send port is set up for each node. Use this port
to broadcast data to the data field.

3. FUNCTIONAL OVERVIEW

1-11

CHAPTER 3 FUNCTIONAL OVERVIEW

3.1 Multicast Communication Function

Multicast communication is the basis of NX protocol, and has the following characteristics.
 Efficient data transmission. You can send the same message to multiple nodes at the same

time.
 Easy to use. It is not required to handle node dependencies when sending or receiving

messages. A procedure to establish a connection is not necessary.
When sending messages, the sender node specifies information such as the target data field,
multicast group, and transaction code. Each receiver node autonomously receives only
necessary messages.
As a result, for example, “recognition of communication peers” and “synchronization with
communication peers” are no longer necessary, thus increasing independence between devices
or user programs, while enhancing system expandability.
In multicast communication, data is broadcast to the network segment corresponding to a
specified data field number. If a multicast group or transaction code for data is not specified
for the receiver node, the data is discarded as unnecessary messages by that node.

Figure 1-12 Multicast Communication

Figure 1-13 Multicast Group

Node 1

UP

Transmission
request

TCD=3

DFN=1,
MGN=2,
TCD=3

DFN1

MGN2

Discarded Node 2

No message reception request for DFN=1, TCD=3

Node 3

Message reception request for DFN=1, TCD=3

Nodes 2 and 3
belong to
Multicast group
2.

Received

DFN=1
MGN=2
TCD=3

User data

Message Data field 1

Node 1

NXACP

Node 4

NXACP

Node 2

NXACP

Node 3

NXACP

Multicast group 2

Not received
because the
message’s
multicast
group is not
registered for
the receiver
node.

Discarded
because the
message’s
transaction
code is not
registered for
the receiver
node.

3. FUNCTIONAL OVERVIEW

1-12

A user can send/receive a message by specifying the TCD of the sending/receiving message
and issuing the nx_put()/nx_get() macro respectively. User data is then handled as follows.
(1) 16 KB data transmission/reception

A user program (UP) can send or receive up to 16 KB of data in one
transmission/reception request. When data is actually transmitted over the network, the
data is split into multiple network frames (MTU) and transmitted as packets. Splitting and
reassembling the data is controlled by NXACP.

Figure 1-14 Splitting and Reassembling a Message

(2) Transmission/reception area

The area where a message is sent to (transmission area of the message) differs depending
on the specified data field number.
If 0 is specified for DFN in a transmission request, the message is only sent to within the
local node.
If a non-zero value is specified for DFN in a transmission request, the message is only sent
to the network and cannot be sent to within the local node.
In the same way, a message from within the local node can be received when 0 is specified
for DFN. If you want to receive a message from another node connected over the network,
specify a non-zero value for DFN.
When you send data, you must specify the data field number as a parameter of the
nx_put() macro.
When you receive data, specify the data field number in the construction information.

(3) Sharing a TCD and receiving pinpoint data
One message can be received by multiple user programs. To increase the efficiency of
communication, it is recommended that a sender packs multiple business data items into a
single message of about the packet size (MTU size) rather than sending them in multiple
messages smaller than the MTU size and that, at the receiver side, a single message with
multiple business data items is received by multiple user programs.
Note that each receiver user program can receive only the necessary part of the data. By
doing this, you can minimize the memory usage and time required to copy data.

Figure 1-15 Receiving Pinpoint Data in a Message

Split data is reassembled.

Sending data is split into
suitably-sized packets.

UP

nx_put()

16 KB

One transmission
request

One reception
request

Splitting and reassembling data is
executed inside NXACP.

UP

nx_get()

16 KB

TCDA Data for
Function A

Data for
Function B

Multiple business data
items are packed into
one message and sent.

UP for function A

Data for
Function A

UP for function B

Data for
Function B

The same TCD
is distributed to
multiple UPs.

Use OFFSET and
SIZE to receive
the necessary part.

3. FUNCTIONAL OVERVIEW

1-13

[Note: Filtering function]

In the S10VE, RCTLNET can filter out unnecessary messages. This is called the “filtering
function”.
The filtering function determines which received messages are necessary, and allows
unnecessary messages to be discarded in order to reduce CPU load.
In the S10VE, the filtering function filters out messages based on port number. For this
reason, for a user of NXACP, the filtering function filters out messages based on multicast
group number.
In NXACP, RCTLNET discards messages addressed to the multicast group numbers for
which the user does not define construction information.

Figure 1-16 Message Filtering

Discarded because
message is
addressed to
undefined port

Register port for
NXACP from
construction
information

Discarded because TCD is
undefined

S10VE

CPU

NXACP

RCTLNET

Built-in Ethernet

Addressed to PORT=M
TCD=A

Addressed to PORT=N
TCD=B

UP

PORT=N

Addressed to PORT=N
TCD=A

DFN=2

3. FUNCTIONAL OVERVIEW

1-14

3.2 Data Field Management Function

Data field management monitors the connection status of the nodes connected to a data field,
and also notifies the status of the local node to other nodes.
In NXACP, inside each data field, each node in the data field periodically transmits a message
called an “alive signal”. This message allows the connection status between each node in the
data field to be monitored by other nodes, allowing the connection status of the whole system
to be managed.
 Alive signal transmission

NXACP starts sending an alive signal message periodically when NXACP receives a start
request from a user. When an alive signal message is sent, information such as the node
mode, system startup time, IP address, and alive signal mode is also included in the
message. The transmission cycle for alive signal messages is specified by a user in the
construction information.

Figure 1-17 Alive Signal

Alive signals are sent to the data field.

Node 1 Node 2 Node 3

Broadcast
DF#1

3. FUNCTIONAL OVERVIEW

1-15

 Monitoring the connection status of nodes

This function monitors the connection status of other nodes connected to a data field. If the
status changes, the change will be notified to a user. The following status changes will be
reported: “Alive: Alive signals have just started to be received.” and “Dead: Timeout
monitoring time has passed since alive signals stopped.” You can also check the current
status using the nx_dfsts() macro.

Figure 1-18 Node Status Management

Alive signal sender node

NXACP Alive signal Alive signal Alive signal

Alive signal receiver node

NXACP

Timeout
Time

No alive signals
have been
received.

Node 1 is in the dead
state.

At least one alive
signal has been
received.

No alive signals can
be received “at a
constant interval”.

“Alive” notification
UP

“Dead” notification

Node 1 is in the alive
state.

No alive signals can
be received.

Node 1 is in the alive
state.

……………………

In duplexed LAN configuration, alive signals are sent and monitored for each LAN.

3. FUNCTIONAL OVERVIEW

1-16

In NXACP, sending alive signals automatically starts after a start request from a user.
However, for monitoring the status of other nodes, a user can specify whether to enable the
monitoring (in the construction information). The purpose of this is to allow you to reduce the
load of the controller for receiving alive signals and monitoring the status change of nodes. If
it is not required for a node to monitor the status change of other nodes, we recommend
running that node with its connection status monitoring turned off.
If WSs or PCs are connected to the network system, we recommend, if possible, using them to
monitor the status change of nodes, and not allow controllers to receive alive signals.

Figure 1-19 Status Monitoring Node (1)

If you must monitor the status change of nodes when WSs or PCs are not connected to the
network system, we recommend assigning specific controllers for this purpose, and not allow
the other controllers to receive alive signals. In this case, we also recommend that the
controllers in charge of monitoring the status change of nodes are dedicated to data field
monitoring tasks only.

Figure 1-20 Status Monitoring Node (2)

PC(NX Dlink)

PC(NX Dlink) The status change of nodes
is monitored by these.

Alive signal

PLC(NXACP) PLC(NXACP) PLC(NXACP)

The status change of nodes
is monitored by these.

Alive signal

PLC(NXACP) PLC(NXACP) PLC(NXACP)

PLC(NXACP) PLC(NXACP)

3. FUNCTIONAL OVERVIEW

1-17

3.3 Duplexed LAN Control Function

In NXACP, you can duplex the network that constitutes a data field. The reliability of data
communication can be improved by using duplexed LANs for a data field. To use this
function, you must set up duplexed-LAN-related information in the data field definition at
system construction.
Even when duplexed LANs are used for a data field, a user sees the two physical LANs as one
data field (as shown in the following figure), and does not have to handle the two LANs
directly.

Figure 1-21 Duplexed LANs

When duplexed LANs are used, NX multicast communication uses dual paths, therefore, a
user does not have to deal with complex configuration management (including master/slave
arbitration of the network).
This communication method has the following characteristics.
 A message is sent to both LANs.
 A message is received from both LANs. If the same message is received twice, the message

that arrives first is accepted and the later one discarded.
 A user does not have to manage master/slave arbitration of the network.

Figure 1-22 Duplexed LAN Communication Method

In the same way as the multicast communication described above, when sent periodically by
NXACP, alive signals are sent over dual paths, and data field connection of nodes is
monitored independently for each LAN.

[Caution]

You cannot specify a particular LAN to be used for communication if you send and receive
data over duplexed LANs.

LAN1

Node 1 Node 2 Node 3

LAN2

<Physical configuration> <User’s viewpoint>

Node 1 Node 2 Node 3

Data field

LAN1

LAN2

Node 2 If the same message is
received as the one
preciously received, the
message is discarded.

Node 1

3. FUNCTIONAL OVERVIEW

1-18

3.4 Test Function

The test function allows you to test each logical node independently on a system currently
running online.
If a node is currently running online, the node is called an online-mode node (hereinafter
abbreviated as “online node”). If a node is currently undergoing tests, the node is called a test-
mode node (hereinafter abbreviated as “test node”). By setting the nodes you want to test to
the test mode, they can be tested without disturbing online nodes.
A mode is also given to a message transmitted over a data field as follows: a message sent by
an online node is called an online-mode message (hereinafter abbreviated as “online
message”), and a message sent by a test node is called a test-mode message (hereinafter
abbreviated as “test message”). By doing so, the following test configurations can be used.
 Messages are sent as test messages from test nodes. Only online messages are received by

online nodes. This allows tests to be performed without disturbing online nodes in the online
environment.
 By allowing online messages to be received by test nodes in the settings, you can perform

tests using online data.
In NXACP, for each test node, you can select one of the following two message modes that
determine how messages are received at the test node. You can construct a variety of test
system configurations other than the ones described above.
 Message mode that allows only online messages to be received
 Message mode that allows only test messages to be received

Figure 1-23 Test Function

[Note]
As described above, test messages are not allowed to enter online nodes, and the online nodes
should not be affected. But when you use the test function, the network load must be
considered because test messages are transmitted over the network.
Note that the network-shared memory function is not under the control of the message I/O
control function with node modes and message modes. As for the software transfer function,
this function is under the control of the message I/O control function with node modes and
message modes.

At online nodes, only
online messages are
received. Test messages
are discarded.

Online
node 1

NXACP

Discarded

This test node
receives online
messages during
the test.

Test
node 2

NXACP

Discarded

This test node
receives only test
messages during
the test.

Test
node 3

NXACP

Discarded

Data field
: Online messages : Test messages

3. FUNCTIONAL OVERVIEW

1-19

3.5 System Management Function

This system has the following system management features.
 Failure notification/logging function
 DHP acquisition/control trace function
 User task state management function

 Failure notification/logging function

The following types of failures are reported to a user using the error log, EAS, or the
IRSUB dedicated to failure notification.
A user can detect these types of failures in a timely manner, and take appropriate action.
 Communication failure

NX protocol failures and socket failures are reported. Hardware-related failures are
reported by RCTLNET.
 Change in resource usage (for example, buffers)

When usage values of resources (such as buffers) in the NXACP specified by a user in the
construction information exceed threshold values or overflow, the situation is reported.

Figure 1-24 Failure Notification

In the case of node connection status change, it links to (calls) the IRSUB dedicated for
change notification. When you use the alive monitoring function for other nodes, status
change of the connection to the DF is reported for each LAN and for each node.

 DHP acquisition/control trace function

CPMS keeps track of when one of the predefined processing points is passed.
These records are recorded in the DHP buffer in order of occurrence. The information
recorded in the DHP buffer is retrieved along with error information when an error occurs,
and can be retrieved using a command. If a failure occurs, you can use this information and
access information of other subsystems to analyze the behavior of a user task.
At the same time, the control information of sent and received messages is recorded in the
trace buffer in order of occurrence. A user must specify whether to use the trace function
and buffer area size at system construction.

S10VE

EAS

NXACP

A failure is
detected.

Failure handling routine

Error info
is logged.

CPMS

User built-in
subroutine

RCTLNET

Error log
area

EAS notification

3. FUNCTIONAL OVERVIEW

1-20

Figure 1-25 Trace

 User task state management function

This function monitors the states of user tasks that receive messages. The purpose of this
function is to prevent buffer overflow when messages cannot be received.
NXACP checks the states of user tasks when a message is received, and if the state of a
user task is DORMANT, IDLE, or NON-EXIST, the message is not distributed to the task.
In addition, when a user task is transitioning to DORMANT, the messages currently being
processed to be received by the task or going to be received by the task are discarded.

Figure 1-26 UP Task Management

I/O and control
information is recorded.

Recorded when each macro
starts and finishes.

S10VE

UP

RCTLNET

NXACP Trace buffer
CPMS

DHP buffer

Memory

Messages

Data field

Checks the task states managed
by CPMS. When messages
cannot be received, the
messages are discarded.

An ABORT event
causes unreceived
messages to be
discarded.

S10VE

UP

ABORT
UP

Discarded

Discarded

NXACP

PCB

Messages
Data field

CPMS

States other than
below

DORMANT,
NON-EXIST, or
IDLE

3. FUNCTIONAL OVERVIEW

1-21

3.6 Operation Management Function

NXACP services can be started and stopped at users’ discretion.
NXACP is started and stopped by issuing nx_init() and nx_quit() respectively.
Apart from starting and stopping NXACP, you can start and stop a data field service by
issuing nx_dfup() and nx_dfdwn() respectively.
(1) Starting NXACP

A user must issue nx_init() when the system starts. When nx_init() is issued, NXACP
prepares to accept a service start request for each data field.

(2) Starting a data field service
To request a data field to start sending and receiving messages, issue nx_dfup() to the data
field. Note that you must also issue nx_dfup() to a data field dedicated to local node
communication, which does not use any networks.
If you define multiple data fields, you must issue nx_dfup() for each data field, which
means you must issue nx_dfup() multiple times. Even if a data field is constructed on
duplexed LANs, issue nx_dfup() once to the data field.

(3) Stopping a data field service
If you want only specific data fields to stop sending and receiving messages while the
system is kept running, issue nx_dfdwn() to each of the data fields. By using this function,
you can change node modes without stopping the system. If you want a data field
dedicated to local node communication to stop sending and receiving messages, issue
nx_dfdwn() to the data field.
When nx_dfdwn() is issued to a local data field, nx_dfdwn() notifies that this is a
scheduled stop (SHUTDOWN mode alive signal) to other nodes, and then stops the
send/receive service.
If you want to restart a data field service that you stopped by using nx_dfdwn(), reissue
nx_dfup() to the data field.

(4) Stopping NXACP
If you want to stop NXACP or all data fields at once while the system is kept running,
issue nx_quit(). Similar to nx_dfdwn(), when nx_quit() is issued, nx_quit() notifies that
this is a scheduled stop to other nodes, and then stops the send/receive service.
If you want to restart NXACP that you stopped by using nx_quit(), issue nx_init() to
NXACP.

Figure 1-27 NXACP Operation Management

nx_init()

nx_dfup(DF1,..)

nx_dfup(DF2,..)

nx_dfdwn(DF1,..)

nx_dfdwn(DF2,..)

nx_quit()

NXACP service available

Transmission/reception possible for DF1

Transmission/reception possible for DF2

During this period, you can
issue send/receive requests
(such as nx_put(), or
nx_get()).

3. FUNCTIONAL OVERVIEW

1-22

3.7 Network-Shared Memory Function

Network-shared memory connects the nodes that belong to a data field over the network using
a memory image. Data written by each node is transferred at a constant interval to reading
nodes.
The same memory address can be written by only one node but read by multiple nodes (after
data is transferred).

Figure 1-28 Network-Shared Memory

The software supports transfer intervals in milliseconds.

Node A

UP

UP UP

Node B Node C

Transferred
periodically Shared memory in the data field

Written by one node and
read by multiple nodes

3. FUNCTIONAL OVERVIEW

1-23

Network-shared memory supported by NXACP has the following characteristics.
 Encapsulation of the communication procedure

A user can communicate using a memory interface.
 A more economical solution using software transfer

Transfer memory over Ethernet using software is supported. This makes it easier for a user
to set up memory-interface-based communication without purchasing special hardware.

Figure 1-29 Characteristics of Shared Memory

[Note]
The network-shared memory function of NXACP does not have a ladder interface, unlike
other functions of NXACP.

S10VE

Middleware / UP

NXACP transfer API

Software transfer control

NX protocol

RCTLNET

Built-in Ethernet

Ethernet

NXACP

Only software transfer can be used.

Different transfer
processing
location but the
same API

Software transfer
processing location

3. FUNCTIONAL OVERVIEW

1-24

3.8 System Construction Function

To set up NXACP, define its construction information on POC, and then load the construction
information to the target RPDP management site information by using the NXACP
construction command.
To perform remote loading to S10VE, run the svrpl (remote loading) command of RPDP.

Figure 1-30 System Construction

In the S10VE, a multiprocessor configuration type (function distribution type) site can be
configured by RPDP generation.

Figure 1-31 NXACP Configuration Environment

Site directory structure of RPDP

For CPU (CP) For CPU (HP)

Unit name

CPU name

Site name
Site name

S10VE construction environment

renix nxacp_S10VE CPU name Site (CP)

CP-side
construction
databases

Site (HP)

HP-side
construction
databases

POC

Definitions

Configuration information

RPDP
management

Loading

S10VE

GLB area

NXACP definition
information

Remote
loading

Backup file

3. FUNCTIONAL OVERVIEW

1-25

The construction databases include the following construction information.
 Buffer information such as the number and size of cases in the buffer
 Alive signal information such as the alive signal transmission interval and whether to

receive alive signals
 Network signal such as network address and port number
 Transaction information such as TCD, MGN, and send/receive task number
Define the information listed above in a database file, compile the database file, and then load
it to a target site by using the NXACP construction information loading command. Since the
NXACP construction information loading command uses an RPDP command to load the
information to the GLB area, you must use the loading command after system generation is
complete.
Changing construction information online is not supported. When updating construction
information to a target machine, the construction loading command temporarily stops the
NXACP of the target machine.
Note that, during this period, an alive signal for scheduled SHUTDOWN is not sent.

This Page Intentionally Left Blank

PART 2 FUNCTION GUIDE

1. MULTICAST COMMUNICATION FUNCTION

2-2

CHAPTER 1 MULTICAST COMMUNICATION FUNCTION

1.1 Characteristics of Communication

The following explains the communication methods available for this system.

1.1.1 Basic unit of message communication

In this manual, a chunk of information input and output by a user is called “data”.
One piece of logical information handled in NXACP and created by adding NX headers to
the data specified by a user is called a “message”. One information unit that is transmitted
over the network is called a “packet”.
NXACP adds NX headers to the data specified by a user to form a message, and then sends
the message over the network as multiple packets. The NXACP on the receiver reassembles
the multiple packets into a message, deletes the NX header, and then passes the data to a
user.
The maximum length of data a user can specify is 16 KB.

Figure 2-1 Unit of Communication

Data

NX header Packet size
Message

Data specified by a user

<Data>
Up to 16 KB data can be specified.

<Message>
Split into packets, and then NX
headers are added.

<Packet>
Sent over the network one packet at
a time.

Data

m1 m2 m3

Split
NXACP

Message

UP

m1 m2 m3

Reassembled
NXACP

Message

UP

m3 m2 m1

One packet at a time
Data field

1. MULTICAST COMMUNICATION FUNCTION

2-3

1.1.2 Splitting and reassembling a message

The maximum length of sending data a user can specify is 16 KB. NXACP splits a message
into suitably-sized packets which are then reassembled at a receiver.
When a message is split, packet-size is calculated by adding the NX header size (64 bytes)
to the size of one case of buffer specified for each data field by a user in the construction
information.
The maximum size of one case of buffer you can specify is the same regardless of the
network type, as shown below.

Table 2-1 Buffer Size

Network type Maximum size of one case of buffer Packet size
Ethernet (Built-in Ethernet) 1408 bytes 1472

The NX header size is fixed at 64 bytes. Therefore, the length of user data in one packet is
the maximum packet size minus 64 bytes.
The following formula shows the relationship between the size of sending data specified by
a user and the number of cases used by packets.

 (Data size specified by a user - 1)
 Number of cases used by packets = + 1
 Size of one case of buffer

For example, if the maximum size of one case of buffer is selected in the construction
information and transmission of 16 KB is requested, the number of cases used by packets is
calculated as follows.

 (16384 - 1)
 Number of cases used by packets = + 1 = 11 + 1 = 12 cases
 1408

[Note]
For any given data field, the size of one case of buffer must be the same for all nodes.
When NXACP receives a packet larger than the size of one case of buffer, failure
information is notified to a user, and the received packet is discarded.

1. MULTICAST COMMUNICATION FUNCTION

2-4

1.1.3 Structure of a user program

When a user requests data to be sent or received, the user must issue the nx_put() macro or
the nx_get() macro respectively.
The nx_put() and nx_get() macros have the following characteristics. Note that these macros
can be issued by a task only when the task number of the task is between 1 and 208.
(1) Transmission request

When a user requests data to be sent, the user must issue the nx_put() macro.
In NXACP, the service for accepting a transmission request from a user and the service
for sending packets to the network are independent from each other. This allows the
transmission process in a user program to be executed asynchronously from hardware
processing. In addition, the service for sending packets to the network is woken up at a
fixed interval (defined in construction information) to reduce the number of times tasks
are switched.
Therefore, even when nx_put() finishes normally, it is not guaranteed that data has been
transmitted to the network normally. The information the nx_put() macro returns to a
user program in response to a transmission request (nx_put()) from the user program is
limited to the following information. Note that the transmission process is aborted when
either one of the following failures is detected.
 Error code for detecting an error in the operation environment check
 Error code for detecting a parameter error
 Error code for NXACP send buffer full
 Error code generated after a network failure is detected

When an error is detected during execution of the service for sending packets to the
network, to notify the error to a user, the network driver (not NXACP) notifies the error
to EAS. For details about failures reported to EAS, refer to the S10VE User’s Manual
General Description (manual number SEE-1-001).

Figure 2-2 nx_put Macro

RCTLNET Built-in Ethernet UP

nx_put()

Processed by nx_put()

Send queue
Send buffer

NXACP

Copying user
data to the send
buffer

Connecting
to the send
queue

Starting the
driver

Starting hardware

1. MULTICAST COMMUNICATION FUNCTION

2-5

Depending on the location of failure detection, a user might need to detect a failure using
EAS instead of a return code from nx_put(). In this case, the user must monitor reports
of failures detected by RCTLNET and failures detected by NXACP.

Figure 2-3 Detecting Failure Information (Transmission)

[Note]

 About a socket failure
The details of failures generated in hardware such as Built-in Ethernet are reported by
RCTLNET to EAS.
Failures reported by NXACP to EAS result from incorrect network construction, and
are called “socket failures”. For details about failures reported by NXACP to EAS, see
“5.1 Failure Notification Function”.
 About “transmission not possible”

If the network transmission process cannot continue due to a failure caused by
hardware (such as Built-in Ethernet), nx_put() returns the error “transmission not
possible” if a request is made after the failure. At the same time, all messages that
were requested before failing to be sent by nx_put() are discarded and kept in the send
queue, to await network transmission service.

UP

Retrying the
transmission process

NXACP RCTLNET Built-in Ethernet

Failure detected Failure detected Failure detected

Notification No

rtn＝nx_put()

Is rtn “send
buffer busy”?

Yes

EAS built-in
subroutine

Issue a
transmission
process abort

command.

Sent to the
network

Reporting a socket failure

 Parameter error
 Send buffer

overflow
 Transmission not

possible
(asynchronous)

1. MULTICAST COMMUNICATION FUNCTION

2-6

(2) Reception request
A user that requests data to be received must issue the nx_get() macro.
The reception process is similar to the transmission process in that the service for
accepting a reception request from a user and the service for interrupts from the network
are independent from each other. This allows the reception process in a user program to
be executed asynchronously from the handing of interrupts from hardware.
The information the nx_get() macro returns to a user program (in response to a reception
request) is limited to the cases below. Note also that, in these cases, the reception process
is always aborted.
 Error code for detecting an error in the operation environment check
 Error code for detecting a parameter error
 Error code for no message arrived within the predefined time (specified as a parameter

by UP)
 Error code for detecting NXACP has stopped

Failures generated during the message reception process in RCTLNET or hardware such
as Built-in Ethernet are reported by RCTLNET to EAS. Note that, even if failures are
generated in RCTLNET or hardware such as Built-in Ethernet, nx_get() does not return
an error.

Figure 2-4 nx_get Macro

It is recommended that a user task for issuing nx_get() is constructed as a loop and issues
a transaction reception request at the beginning of the loop. Compared to using exit() and
initial start for a user task, there is less overhead if a user task waits in nx_get() for a
receiving message to arrive, and has NXACP wake up the task when a message arrives.

RCTLNET Built-in Ethernet UP

Processed by nx_get()

Receive
queue for
each UP Receive buffer

NXACP

Copying data to
the user area

For each UP,
connecting to the
receive queue and
starting UP

Receiving
data Reception

interrupt

nx_get()

1. MULTICAST COMMUNICATION FUNCTION

2-7

Depending on the location of failure detection, a user may need to detect a failure in a
timely manner using EAS instead of detecting a failure based on a return code from
nx_get(). In this case, the user must monitor the report of failures detected by
RCTLNET, in addition to failures detected by NXACP.

Figure 2-5 Detecting Failure Information (Reception)

UP

 Parameter error
 Timeout

rtn＝nx_get()

NXACP RCTLNET Built-in Ethernet

EAS built-in
subroutine

Failure detected Failure detected Failure detected

Notification

Only NX protocol failures
are detected by NXACP.

1. MULTICAST COMMUNICATION FUNCTION

2-8

1.1.4 Message Processing Order

In the message transmission and reception process of NXACP, messages are serviced in
order of message generation (FCFS) for both transmission and reception. Therefore, sending
messages are serviced in order of transmission requests from a user (if task levels are the
same), and receiving messages are serviced in order of arrival for each multicast group.

Figure 2-6 Processing Order

[Note]
NXACP does not support message priority control.
NX protocol supports “message priority levels”. This feature allows you to prioritize
messages processed during transmission and reception. Messages with a higher priority will
have precedence when serviced.
If you use this feature, you can, for example, execute file transfer when the processing of
online messages is not busy, by assigning higher priorities to online messages and lower
priorities to file transfer data. This feature is not supported because controllers do not
handle data of the file transfer type.
NXACP always specifies 0 (zero) for the transmission level in the header when a message
is sent to the network.
If the transmission level of a message is 0 (zero), you can assign any priority level (for
reception) to the message in an NX family that supports assigning priority levels (for
example, NX Dlink). For details, refer to the manual of the NX support package for each
device.
Note that when messages are received from the network, the priority level in a header is not
evaluated, and messages are processed in order of arrival.

…

NXACP

First-come, first-served

UP

nx_get()

UP

nx_put()

Receive queue

…

Data field

Send queue

1. MULTICAST COMMUNICATION FUNCTION

2-9

[Restriction]

When NX Dlink is connected, note that the following restrictions apply to message priority
levels set by NX Dlink.
When NX Dlink sends long messages (a long message is a message that must be split into
and reassembled from two or more packets), the same priority level must always be used.

Figure 2-7 Restrictions on Using Priority Levels

NX Dlink send queue
(Separated based on level)

If sent in the order
of [1] [2] [3] [4].

●●

◎◎

○○○

Message will be
discarded!

Levels are not supported and
messages cannot be
reassembled correctly.

○◎●

NXACP receive queue
(No levels) [4] [1]

[2]

[3]

NX Dlink send queue
(Separated based on level)

Even if sent in
the order of [1]
[2] [3] [4].

●●

◎◎

○○○

Message can be
reassembled!

Using
priority
levels in
NX Dlink is
prohibited
to be used.

●●

NXACP receive queue
(No levels) [4] [1]

[2]

[3]

If only one priority
level is used for
messages sent to
the controller

This message is for communication between WSs and not sent
to NXACP.

This message is for communication between WSs and not sent to
NXACP.

●: One message consists of two packets.
◎: One message consists of two packets.
○: One message consists of three packets.

1. MULTICAST COMMUNICATION FUNCTION

2-10

1.2 Message Transmission Function
This section describes the transmission function of the nx_put() macro.
When a user task issues nx_put(), you must specify “data field number (DFN)” as the
destination of the transmission.
If you specify a non-zero value for the data field number, the message is sent to the network.
Specifying 0 for the data field number has a special meaning: communication within the local
controller.
 Network transmission (if a non-zero value is specified for DF)

If the sender and the receiver are on different nodes, the transmission is called a network
transmission.

 Local node transmission (if 0 is specified for DF)
If the sender and the receiver are on the same node, the transmission is called a local node
transmission.

Figure 2-8 Data Field Number and Transmission Area

1.2.1 Network Transmission
(1) Specifying a Transmission Area

To send a message to another node connected over the network, you must specify a non-
zero value for the data field number when you issue a transmission request.
Before transmission, you must define the mapping between data field numbers and
network addresses (INA) in the construction information. Data field numbers are
logically mapped to the addresses of the network segments you want to send messages
to; therefore, specify a data field number instead of a network address when you send a
message. In the following example, if you want to send a message from CTL to the
network where CPU11 is connected, specify 1 for the data field number when you issue
nx_put().

Figure 2-9 Data Field Numbers and Network Segments

Node

Network transmission

Node

Network
Local node
communication

Router

CPU11(128.1.0.1)

NET1(128.1): DF1

Router

CPU21(128.2.0.1)

NET2(128.2): DF2

CPU31(128.3.0.1)

NET3(128.3): DF3

CTL(128.3.0.99)

In NXACP, network segments and data fields are
mapped 1-to-1.

Mapping between DFNs and INAs in CTL
DFN INA Name

1 128.1 NET1
2 128.2 NET2
3 128.3 NET3

1. MULTICAST COMMUNICATION FUNCTION

2-11

In addition to a data field number, you must specify a multicast group number (MGN)
and a transaction code (TCD).
In addition, before transmission, multicast group numbers also must be mapped to port
numbers in the construction information for both online and test modes.

Table 2-2 Multicast Group Numbers and Ports

MGN
Online mode

destination port number
Test mode destination

port number
1 55001 57001
2 55002 57002
3 55003 57003
4 55004 57004

NXACP broadcasts a message to the network segment specified by the data field
number. The destination port number of the message is the port number mapped from
the specified multicast group number.
Therefore, the only nodes that can receive the sent message are those for which the port
mapped from the specified multicast group number is defined (as a receive multicast
group). In nodes where ports are not defined, messages are discarded at the OS level (in
the case of Built-in Ethernet).

Figure 2-10 Multicast and Selective Reception

In short, by specifying a multicast group number, the message is sent to only those nodes
connected to the data field, and to which the message is targeted. Mapping between
multicast group numbers and port numbers must be uniquely defined for all nodes
connected to the data field.
A transaction code is an ID used for determining the destinations of a message (user
tasks, in the case of NXACP) in the receiver node. For information about the relationship
between transaction codes and user tasks in NXACP, see “1.3 Message Reception
Function”.

One multicast group is
mapped to two ports, one
for each mode.

CPU CPU CPU CPU CPU

CTL CTL CTL

A sent message is
broadcast to the
specified network.

A node can
receive the
message only if
the port is
defined for the
node.

■ ■

1. MULTICAST COMMUNICATION FUNCTION

2-12

(2) Transmission to a remote data field

In a case where you send a message to a remote data field connected by way of a router,
you must specify a data field number when you issue a transmission request for the
message. Only one path can be specified for the transmission path to the remote data
field. If you want to duplex the path, use the duplexed LAN control function (described
later).
In Figure 2-11, there are two paths you can use for sending a message from Node A to
Node B: a path by way of Data field 3, and a path by way of Data field 2. NXACP
selects one of the paths statically as specified by a user (in the construction information).
For this reason, you cannot specify multiple paths, and if an error occurs, you cannot
switch paths by detecting the error.

Figure 2-11 Remote Data Field (1)

In addition, the following configuration and transmission/reception method are not
allowed. That is, a remote data field must be connected to only one local data field.

Figure 2-12 Remote Data Field (2)

S10VE

S10VE

Node B

Node A

Router Router

DF3

DF1

DF2

Specifying multiple
paths is not supported.

S10VE

S10VE

Node B

Node A

Router Router

DF3

DF1

DF2

Specifying multiple
paths is not supported.

1. MULTICAST COMMUNICATION FUNCTION

2-13

A remote data field must correspond to only one local data field and be assigned only
one path.
If you want to improve the reliability of communication, we recommend duplexing the
router and the network.

Figure 2-13 Remote Data Field (3)

[Caution] Cautions to take when using a remote data field

When designing a system that uses a remote data field, carefully consider
network traffic over remote/local data fields, and the characteristics of the
router to be used.

POC

S10VE

Node B

Node A

DF1

DF2

Only one path.
Duplex router and
LAN for higher
reliability.

Router

1. MULTICAST COMMUNICATION FUNCTION

2-14

(3) Sending back to the local node

If you issue a transmission request of a message to a non-zero data field number, the
message will not be sent to the local node. If the multicast group number of the sent
message is set to the received multicast number for the local node, the message is
discarded by NXACP. In the reception process of NXACP, the sender node number is
checked. If the sender node is the local node, the message is discarded.
In short, a message transmission request for a non-zero data field number is dedicated
only to sending a message to other nodes.

(4) Send buffer management
The send buffer is managed on a per-data-field basis, meaning that when the send buffer
for one data field is busy, other data fields are not affected.
In constructing a system, specify the number of cases in the buffer for each data field.

(5) Transmission permission check

If you intend to allow user tasks to send messages by using NXACP, we recommend
that, at system construction, you define which transaction codes are to be sent by each
task. Based on this definition, nx_put() checks whether the sender user task matches the
transmission transaction code, and if the sender user task tries to send an undefined
transaction code, the process is aborted as an error.
Using this function is optional, and the above definition is not mandatory. But it is
recommended that correspondence between transaction codes and sender user tasks is
defined and managed in the construction information.
The maximum number of transaction codes one user task can send per data field is 8
TCDs.

Table 2-3 Correspondence between Transaction Codes and User Tasks

TCD Sender TN1 Sender TN2 Sender TN3 … Sender TN8
33 1 41 25 111
48 41 – – –
76 37 112 55 –
99 25 39 40 41

The definitions for user tasks and transmission transaction codes must be defined on a
per-data-field basis. If transmission permission check is not necessary, you can skip
these definitions.
You can select whether to enable transmission permission check on a per-user-task basis.
If transmission permission check is enabled for a user task, define transmission
transaction codes for the user task in all the construction files in the destination data
field.

1. MULTICAST COMMUNICATION FUNCTION

2-15

(6) Sending to a specific node
NXACP supports only multicast transmission: you cannot specify a destination node for
a transmission. However, by assigning a multicast group number or transaction code to a
specific logical node, you can send a message to the node.
This can be done in either of the following ways.
(a) Assigning a multicast number to a destination node number

By assigning a multicast group to a specific destination node, you can facilitate
transmission to that node.
 Dedicate the receive port number of one multicast group to each node. In the case

of duplexed CPUs, assign one multicast group to two nodes.
 All nodes in a data field must have their own dedicated multicast group number.

Table 2-4 Correspondence between Multicast Groups and Nodes

MGN
Destination
port number

Corresponding
node number

1 55001 A
2 55002 B
3 55003 C
4 55004 D, E

Figure 2-14 Transmission to a Specific Node (1)

In NXACP, you can define, per data field, up to 128 send multicast groups and up to
32 receive multicast groups.

Unique across all
nodes

Node A

Node B

Node C

Node D

Node E

MG4

DF1

MG3

Duplexed CPUs

Can be received by a
node only if 55003 is
defined as a receive
port for the node.

Can be received by a
node only if 55004 is
defined as a receive
port for the node.

1. MULTICAST COMMUNICATION FUNCTION

2-16

(b) Assigning a transaction code to a destination node number

By assigning a transaction code to a destination node, you can facilitate transmission
to a specific node.
 Dedicate one specific transaction code to each node respectively. In the case of

duplexed CPUs, assign one transaction code to two nodes.
 All nodes in a data field must have their own dedicated transaction code.

Table 2-5 Correspondence between Transaction Codes and Nodes

MGN TCD
Corresponding
node number

1 1 to 10 A
1 11 to 20 B
1 21 to 30 C
2 31 to 40 D, E

Figure 2-15 Transmission to a Specific Node (2)

When methods (a) and (b) are compared, unnecessary messages are discarded by
hardware or at the OS level in the case of (a), or by NXACP on a CPU in the case of
(b). We recommend using method (a) to minimize CPU load.

Unique across all
nodes

Node A

Node B

Node C

Node D

Node E

MG2

DF1

MG1

Duplexed CPUs

Can be received by a
node only if 38 is
defined as a reception
TCD for the node.

TCD=38

TCD=22

TCD=22

TCD=38

Can be received by a
node only if 22 is
defined as a reception
TCD for the node.

1. MULTICAST COMMUNICATION FUNCTION

2-17

1.2.2 Local node transmission

Data field # 0 is dedicated to local node transmission.
If you specify 0 for the data field number and send a message, the message is passed using
the buffer dedicated to communication inside the local node. This data field cannot send or
receive messages to or from external nodes.
When you specify 0 for the data field number and send a message, specify 0 for the
multicast group number because the multicast group number is meaningless. Even if a user
specifies a non-zero value for the multicast group number, NXACP interprets the multicast
group number as zero.
Transaction codes used here are the ones for the data field dedicated to the local node
transmission. This is because transaction codes are uniquely defined for each data field.
Nevertheless, we recommend that assignment of functions to transaction codes is uniquely
defined for the whole network because messages sent within the local node and messages
sent from other nodes can be received using the same procedure by a receiver task.

Figure 2-16 Local Node Communication

Send buffers are managed on a per-data-field basis, and consequently, local node
communication has a send buffer dedicated to data field #0. In constructing a system,
specify the number of cases in the buffer in the same way as other data fields. Even though
the size of one case of buffer is also managed on a per-data-field basis (and you can specify
a different value for the local node communication than for other data fields), we
recommend that you use the same size as other data fields.
Local node communication uses one buffer as both send and receive buffers (managed as a
receive buffer).
You do not have to set up both send and receive buffers independently. When you define
construction information, define only a receive buffer.

■

Messages targeted
to DF#0 cannot be
sent to the
network.

Sender UP Receiver UP
DF#=0
TCD=N

DF0

Node 2 Node 3

OR reception for both
DF=0 and DF0
messages is possible.

DF1

×

Node 1

■

1. MULTICAST COMMUNICATION FUNCTION

2-18

1.3 Message Reception Function

This section describes the reception function of the nx_get() macro.
When a user task issues nx_get(), you must define transaction codes for each data field that
receives messages. This definition information is necessary for each data field to receive
messages from NXACP. In this way, a user task that issues nx_get() can receive messages in
the same way for local node communication or inter-node communication.

1.3.1 Message reception

The data reception function of nx_get() has the following characteristics.
 Multiple data fields and transaction codes can be defined to be received by one user task.

Note that only one message can be received by one reception request. Also note that you
can check the control information of a received message, such as the sender address.
 One message can be shared and received by multiple user tasks. By using this feature, you

can pack multiple business data items into one message to improve the efficiency of
communication.
 When you receive a message, you can specify the offset and size of the data to be

received.
By using this feature, each user task can retrieve only necessary information when
multiple business data items are packed in one message.

Figure 2-17 Characteristics of nx_get()

■ ■

Only the
necessary part
of the message
can be
received.

Local area for X

Node 1

The same
message can be
received by
multiple UPs.

Messages from
multiple DFs can
be received.

TCDA

TCDB

Local area for Y

TCDA

TCDA TCDB

X Y
Receiver

UP

Node 12 Node 13

DF1

Node 22 Node 23

DF2
■ ■

1. MULTICAST COMMUNICATION FUNCTION

2-19

(1) Definition information and return information

To allow user tasks to receive messages by using NXACP, you must define the data field
numbers and transaction codes received by each task at system construction.
The reason why this information is not included in the parameters of nx_get() is to make
user tasks and the reception management information independent, and to improve user
task portability.
Per data field, the maximum number of transaction codes one user task can receive is 8.
The maximum number of tasks that can receive the same TCD is 8. In addition, multiple
data field numbers can be defined to be received by one user task. Note that only one
message can be received each time nx_get() is issued.
Received messages are processed on a first-come-first-served basis, and then passed to
user tasks. For all data fields and transaction codes defined at system construction, which
data field and transaction code apply to a received message is notified to a user in return
information.

Table 2-6 Correspondence between Transaction Codes and User Tasks

TCD Receiver TN1 Receiver TN2 Receiver TN3 … Receiver TN8
33 1 41 25 111
48 41 – – –
76 37 112 55 –
99 25 39 40 41

Figure 2-18 Reception Process Flow

Return information of the nx_get()
typedef struct {

unsigned char dfn; /* Sender data field number */
char fu1; /* For future use */
unsigned short mgn; /* Multicast group number */
unsigned short tcd; /* Transaction code */
short fu2; /* For future use */
unsignid long sa; /* Sender address */
unsignid long rcvlen; /* Receive message size */

}nx_ginfo;

Registered TCDs (at construction)

Data field

Received
data

m3

m1

33

48

99

NXACP

First-come,
first-served

One message is received for one
reception request.
Message attributes are reported in the
return information.

nx_get()

Processing a transaction

TN=41

m2

1. MULTICAST COMMUNICATION FUNCTION

2-20

(2) Shared transaction code reception

One transaction code can be shared by multiple user tasks, and messages with this
transaction code can be received by these user tasks. By using this feature, you can pack
the data of multiple business messages into one message to improve the efficiency of
network communication. You can also reduce the number of interrupts from the network
to reduce the CPU load.
At the user task side, multiple business messages can be processed by each business task
in parallel.

Figure 2-19 Shared Reception

Each user task that shares the same transaction code receives only the necessary part of
the data. By using this feature, you can minimize memory usage and the time required
for copying data.
Which part of the data is received must be specified in parameters of the nx_get() macro.

Figure 2-20 Receiving Pinpoint Data

Figure 2-21 Receiving Pinpoint Data and Memory Usage

Reception

TCD＝27

Data
field

TN=25

TN=99

m3 m2 m1

TCD
27

Specify offset
and buflen to
receive only the
necessary part.

TN=99

Data for
Function
A

Data for
Function
B

Multiple business
data items are
packed into one
message and sent.

Data for
Function
B

Data for
Function
A

offset

buflen

buf

A received message in the NXACP receive buffer

Work area in a UP

buf: The start address in the work area in a UP
buflen: Data size to be received. Also, the size of the receive work area.
offset: Relative address of the pinpoint message to be received

(In relative address, the start address of the whole message is 0.)

1. MULTICAST COMMUNICATION FUNCTION

2-21

[Caution]

A message received by multiple user tasks is cleared from the buffer when the message
is received by all user tasks that must receive the message. If user tasks with different
processing durations and priorities receive the same transaction code, buffer efficiency
may be reduced, and in worst cases, messages may be discarded due to the receive
buffer being full.

(3) Receive buffer usage check

To avoid overflow of the receive buffer caused by malfunction of a specific task, you
can define the maximum number of buffer cases used by each transaction code. If this
maximum number is exceeded, messages with that transaction code will be discarded
when received. By using this feature, you can prevent messages with a specific
transaction code from using up the receive buffer.
A user must specify the maximum number of buffer cases used by each transaction code
at system construction. You must allocate a large number of buffer cases to transaction
codes that must not be discarded.

1. MULTICAST COMMUNICATION FUNCTION

2-22

1.3.2 Receive timeout monitoring

In NXACP, it is recommended that a user task is constructed as an event-driven structure
(loop structure).
This is because, if a user task for issuing nx_get() is constructed as a loop and issues a
transaction reception request at the beginning of the loop, overhead can be reduced.
However, if a message cannot be received within a certain amount of time, the user task
may need to exit from the loop. To allow this, nx_get() has a timeout monitoring feature.
(1) Specifying the timeout monitoring time

Specify the timeout monitoring time in a parameter “time” for nx_get().
You can specify between 0 and 3600 (in seconds: maximum error is 1).
If you specify 0, nx_get() waits indefinitely for a message to arrive. If you do not want
to wait for a message to arrive, specify “-1” for “time”.

(2) Detecting a timeout
The nx_get() macro returns control to the user task with return code 0 when a message is
received normally. At the same time, the received data size is set in “rcvlen” in “ginfo”.
The nx_get() macro returns control to the user task with a non-zero return code when
terminated with an error.
If a message cannot be received, nx_get() returns control to the user task with return
code 0 because nx_get() exits normally as a routine in NXACP, but “-1” is set in
“rcvlen” in “ginfo”. If you enable timeout monitoring when you issue nx_get() (time >
0), check the value of “rcvlen” in “ginfo” after you check the return code. Then,
determine whether nx_get() exits from the wait due to timeout or because a message has
been received, and then handle the result of nx_get() accordingly. Similarly, if you
specify non-blocking reception (time = -1), check the value of “rcvlen” in “ginfo”. Then,
determine whether nx_get() exits from the wait because a message is not available or
because a message has been received, and then handle the result of nx_get() accordingly.

1. MULTICAST COMMUNICATION FUNCTION

2-23

1.3.3 Defining multicast groups

For a data field for a network segment (non-zero DF), you must define the mapping between
the multicast group numbers to be received and the receive port numbers. If this definition is
not set up, messages targeted to these multicast groups cannot be received.
This mapping must be uniquely defined in all nodes that are connected to the data field.

Table 2-7 Multicast Group Numbers and Receive Port Numbers

MGN Receive port number

1 5501

11 5511

You must also define the mapping between the multicast group numbers to be sent and the
send destination port numbers. The send destination port number and receive port number
corresponding to the same multicast group number must be uniquely defined in all nodes in
a data field.

Table 2-8 Multicast Group Numbers and Send/Receive Port Numbers

MGN Send destination port number
1 5501

11 5511

MGN
Receive port

number
Send destination

port number
1 5501 5501

11 5511 5511

A user task specifies a multicast group number when sending a message. This message is
broadcast by NXACP to the send destination port number corresponding to the multicast
group number specified by the user.
On the other nodes, if the above send destination port number is not defined as a receive
port, the message is discarded by hardware or OS. The message can be received by a node
only if the same port number as the send destination port number is defined as a receive port
on that node.

[Caution]

Note that, if you define both send and receive ports for a multicast group on one node, the
node can receive message from other nodes but cannot receive messages from the local
node.

Define the receive port in the nodes
where you want to receive MG1.
Define the send destination port in the
nodes where you want to send MG1.

This mapping must be unique.

This mapping must be unique.

This mapping must be unique.

1. MULTICAST COMMUNICATION FUNCTION

2-24

Figure 2-22 shows the relationship between ports and multicast group numbers for
transmission and reception.

Figure 2-22 Send Destination Multicast Groups and Receive Multicast Groups

■

Can be received
because 5501 is
defined.

Node 1
UP UP

Broadcast to Port
5511.

Transmission
request to MG11

UP UP

× ×

Node 2

Cannot be received
because MG1 is
defined but 5501 is
not.

Cannot be received
because 5511 is not
defined.

Can be received
because 5511 is
defined.

Broadcast to Port
5501.

Local send port
(uniquely defined as 1025)

UP UP

Transmission
request to MG1

Node 3

SPORT: Definition of the send destination port
(not the local send port used for transmission)

RPORT: Definition of the receive port
Number in the table: Port number

Discarded by
hardware

Definition information for Node 1 (MGN and PORT only)

 MG1 MG11
SPORT None 5511
RPORT 5501 None

Definition information for Node 2 (MGN and PORT only)

 MG1 MG11
SPORT None 5511
RPORT 5511 None

When the definition is
wrong.

Definition information for
Node 3
(MGN and PORT only)

RPORT None 5511
SPORT 5501 None
 MG1 MG11

■

1. MULTICAST COMMUNICATION FUNCTION

2-25

1.4 Remote Data Field Control Function

By connecting multiple LANs with routers and nodes and using the routing function of
Internet Protocol (IP), the S10VE can access to a large-scale network.

1.4.1 System connection topology

In a large-scale network configuration, seen from one node, LANs fall into two categories: a
LAN where the local node is connected to directly (local data field), and a LAN where the
local node is connected indirectly through a router, etc. (remote data field).
A remote data field must be connected to only one local data field.

Figure 2-23 Data Field Types

[Caution]

Transmission to a remote data field uses the routing function of Internet Protocol (IP).
The routing function is implemented in RCTLNET, not NXACP.

Remote data field
Seen from Node A

S10VE

Node C

Router

DF3

Remote data field
Seen from Node A

S10VE

Node B

Router

DF2

Local data field
Seen from Node A

DF1
S10VE Node A

1. MULTICAST COMMUNICATION FUNCTION

2-26

A remote data field must correspond to only one local data field as a transmission path. You
cannot let one remote data field correspond to N local data fields (1-to-N relationship).
If you want to duplex a communication path to improve reliability, see “CHAPTER 3
DUPLEXED LAN CONTROL FUNCTION”.

Figure 2-24 Remote Data Field (1)

Figure 2-25 Remote Data Field (2)

S10VE

S10VE

Node B

Node A

Router Router

DF3

DF1

Cannot be
sent.

× DF2

DF1 can connect
to either DF3 or
DF2 but not both.

Cannot be
received.

S10VE

S10VE

Node B

Node A

Router Router

DF3

DF1

×

DF2

Seen from both Node
A and B, RDF1
corresponds to one
LDF.

POC

Node B

Router

DF1

S10VE

Node A

DF2

1. MULTICAST COMMUNICATION FUNCTION

2-27

1.4.2 Message transmission and reception

(1) Destination of communication

You can send a message to a multicast group defined in a data field, regardless of
whether the data field is remote or local. However, note that, a message cannot be sent to
multiple data fields or multiple multicast groups at the same time in one transmission
request.
As for reception, each node can join a multicast group defined in a local data field but
cannot join a remote multicast group. Therefore, a node can receive a message sent to
the local data field but cannot receive a message sent to a remote data field.

(2) Sending and receiving a message

When you send a message, specify the destination data field number, multicast group
number, and transaction code, and issue a transmission request (nx_put()), regardless of
whether the destination data field is remote or local. Then, the message can be received
only in the specified destination data field.
Even when a message is sent to a remote data field through one or two routers, the
message cannot be received in any data fields (data fields in the path, or local data fields)
other than the destination data field. However, a received message is always connected
to the receive queue of the local data field where the message is sent to, regardless of
whether the sender node is remote or local. Therefore, to receive a message, you must
define the local data field number and the transaction code and issue a reception request
(nx_get()). Note that you can receive only messages sent to the local data fields.
The transmission/reception service to a remote data field is processed by the program for
the local data field the remote data field corresponds to. If this local data field is not
working, you cannot send a message to the remote data field.

1. MULTICAST COMMUNICATION FUNCTION

2-28

Figure 2-26 summarizes how a message is sent to and received from a remote data field.

Figure 2-26 Sending and Receiving a Message to and from a Remote Data Field

Operation of a remote data field is affected by the operating status of the local data field.
For details about operation, see “CHAPTER 6 OPERATION MANAGEMENT
FUNCTION”.

A reception request is issued to a local data field.
The sender can be identified in the detailed
information from nx_get().

S10VE

Node C

S10VE

Node B

DF3

DF2

DF1

nx_get(, ,) nx_get(, ,)

nx_put(df=3, ,)

S10VE

Node A

nx_put(df=3, ,) nx_put(df=1, ,)

Router

×

A message is sent with the
destination data field specified.

Cannot issue a receive request
with the remote data field
specified.

If DF1 stops on Node A,
transmission to DF2 and DF3
also stops.

Router

1. MULTICAST COMMUNICATION FUNCTION

2-29

1.5 Buffer Management

Send/receive buffers are managed on a per-data-field basis, and also independently for
transmission and reception. You must define a buffer independently for transmission and
reception for all local and remote data fields. As an exception, define only a receive buffer for
the data field for local node communication (data field number = 0).

Table 2-9 Data Field Types and Buffer Definition

Local data field (for local

node communication)
Local data field (not for

local node communication)
Remote data field

Send buffer Definition is not required. Definition is required. Definition is required.
Receive buffer Definition is required. Definition is required. Definition is required.

As buffer management functions, the detection function for the buffer overflow/HIGH-
WATER alarm/LOW-WATER alarm and the EAS notification function are supported. For
details about buffer management, see “5.1 Failure Notification Function”.

2. DATA FIELD MANAGEMENT FUCTION

2-30

CHAPTER 2 DATA FIELD MANAGEMENT FUNCTION

NXACP provides the following status management functions for data fields.
 Transmission of alive signals from the local node
 Alive status monitor function and status change notification function for other nodes
Each node where NX is installed sends an “alive signal” by broadcasting at a constant interval to all
local data fields the node is directly connected to. Other nodes can receive this alive signal.
Consequently, the alive/dead state of each node in the data field can be monitored.
In the NX protocol, alive signals have the following three modes.
 Alive report (normal mode)
 Scheduled SHUTDOWN report (scheduled device shutdown)
 Scheduled maintenance report (temporary device shutdown for maintenance)
Out of these three NX protocol alive signal modes, NXACP supports an alive report and a
scheduled SHUTDOWN report. A scheduled maintenance report is handled as the equivalent of a
scheduled SHUTDOWN report.

2.1 Alive Signal Transmission Function

When NXACP accepts an initial request (nx_dfup() is issued), NXACP starts transmitting an
alive signal for an “alive” report at a constant interval (specified at system construction).
When NXACP accepts a shutdown request, (nx_dfdwn() or nx_quit() is issued), and then
NXACP transmits an alive signal for a “scheduled SHUTDOWN” report. This “scheduled
SHUTDOWN” report allows other nodes to determine whether the shutdown is scheduled or
caused by an error.

Figure 2-27 Alive Signal

ノード1 Node 2 Node 3

DF1

Alive signals are sent to local
data fields.

Two types of alive signals:
“Alive” report and
“SHUTDOWN” report.

Broadcast

Router

Node 31 Node 32 Node 33

DF3

DF2

Node 21

Alive signals are not sent to
remote data fields. ×

Node 1

2. DATA FIELD MANAGEMENT FUCTION

2-31

By using alive signals, you can monitor the connection status of other nodes on a per-data-
field basis. “Monitor” here does not mean to check whether a specific node is working
properly in the system, but rather to monitor whether, for each data field used as the basis of
business applications, each node is properly connected to the data field and can work with
other nodes cooperatively.
In the example in Figure 2-27, Node 3 is connected to Data fields 1 and 2. If a communication
device (cable, Ethernet module, etc.) at the interface between Data field 1 and Node 3 in this
configuration fails, other nodes connected to Data field 1 recognize that the status of Node 3 is
changed from “alive” to “dead” and notify a user of the change. But in Data field 2, Node 3 is
still recognized by other nodes as “alive”.
Table 2-10 summarizes the types of alive signals sent from NXACP.

Table 2-10 Alive Signal Types

Report type Alive report Scheduled SHUTDOWN
Transmission start

timing
nx_dfup() request

from a UP
nx_dfdwn()/nx_quit() request from a UP

Number of
transmissions

Indefinitely until a
stop request

Three times

Transmission
interval

Specified by a user (in
seconds)

Immediately, one second, and two seconds after
nx_dfdwn()/nx_quit() is issued.

The nxdfup()/nx_dfdwn()/nx_quit() macros are used for starting or stopping NXACP on a per-
data-field basis. (For details, see “CHAPTER 6 OPERATION MANAGEMENT
FUNCTION”.)
To summarize, when nx_dfup() is called to issue a start request to a data field, an alive signal
for “alive report”starts being sent at a constant interval.
When nx_dfdwn() or nx_quit() is called to issue a shutdown request, an alive signal for
“scheduled SHUTDOWN” is sent three times, namely immediately after the macro is called,
one second later, and two second later.
The value of the transmission interval of “alive report” can be specified in seconds by a user
at system construction. At the same time, a user can define the following information shown
in Table 2-11. Each piece of information is attached to an alive signal and broadcast. The
contents can be checked by the dfstat command of NX Dlink.

Table 2-11 Additional Information in an Alive Signal

User-defined information Description

Node number Number uniquely assigned in each data field
Node name Name uniquely assigned in each data field
Alive signal timeout monitoring
time

The time it takes to recognize the state is changed to
“death” after alive signals are cut off. (For details
see “2.2 Alive Status Monitor and Status Change
Notification Function”.)

IP address INA assigned to each logical node

The node mode when an alive signal is transmitted is set to the mode specified in a
parameter of nx_dfup().

2. DATA FIELD MANAGEMENT FUCTION

2-32

2.2 Alive Status Monitor and Status Change Notification Function

The alive status monitor function monitors the arrival of alive signals sent at a constant
interval from other nodes on a per-node basis. This function checks whether alive signals are
cut off or whether the received alive signal is changed from an “alive” report to a “scheduled
SHUTDOWN (scheduled maintenance)” report.
The status change notification function notifies the change and the node number to a user
when the status of one of the other nodes has changed.
Alive status monitor must be enabled or disabled by a user at system construction. Status
change notification can be used only when alive status monitor is enabled.

[Caution]

Note that, when the alive status monitor function is enabled, the load of a controller that
receives alive signals may significantly rise depending on the number of nodes connected to
the monitored data field and the alive signal transmission interval of other nodes. Under
normal circumstances, it is recommended that alive signals are monitored by a WS or PC, or
by a controller dedicated to data field monitoring (if no WSs or PCs are installed in the data
field).
The alive signal transmission interval is especially critical. If all nodes connected to the data
field send an alive signal simultaneously, the maximum number of nodes that can be
monitored in Built-in Ethernet is 64. If the S10VE monitors 64 or more nodes, an alive node
can be detected as “dead”, regardless of whether the node is alive, because alive signals
cannot be received.
If you want to monitor the alive status of more than 64 nodes, use a WS or PC for this
purpose.

(1) Status management
The following lists the node statuses recognized by NXACP.
Alive (connected): An alive signal (alive report) arrives periodically.

The node is considered to be connected to the data field and healthy.
Dead (disconnected): No alive signals have arrived for a predefined amount of time.

Or a scheduled SHUTDOWN (scheduled maintenance) report has
arrived.
The node is considered to be disconnected from the data field and
dead.

The predefined amount of time equals the alive signal timeout monitoring time specified
by a user in construction information. The alive signal timeout monitoring time defines
the time it takes to recognize a node is dead after alive signals supposed to arrive
periodically from the node are cut off. Therefore, the following relationship must be
observed between the alive signal timeout monitoring time and the alive signal
transmission interval.

Alive signal timeout monitoring time > Alive signal transmission interval

Due to the instability and excessive load of the network, alive signal packets can be lost.
It is recommended that the alive signal timeout monitoring time is long enough to assure
that missing only one alive signal does not cause the node to be detected as dead.

2. DATA FIELD MANAGEMENT FUCTION

2-33

(2) Change notification

NXACP notifies to a user when the status change of a node is detected.
Note that both an alive signal for scheduled SHUTDOWN and an alive signal for
scheduled maintenance are handled in the same way, and reported as “dead due to
scheduled SHUTDOWN”.

Figure 2-28 Change Notification

Alive
notification

Scheduled
SHUTDOWN

notification

Timeout
notification

(Crash)

Dead

Alive signal received

No signals for the
predefined time

Scheduled SHUTDOWN
or scheduled maintenance
received

2. DATA FIELD MANAGEMENT FUCTION

2-34

The following shows the time sequence of change notifications reported to a user when
status change occurs.

Figure 2-29 Time Sequence for Change Notifications (Timeout)

Figure 2-30 Time Sequence for Change Notifications (Scheduled SHUTDOWN)

Change notification to
a user for starting
reception of alive
signals

Monitored
node

Monitoring
node

Status
managed by
the monitoring
node

Dead to
alive

× × ×

Alive signal transmission interval The message is lost due
to noise or other reasons.

Failure occurred.

Alive
signal

Dead

Time

If the next alive signal
arrives within the alive
signal timeout
monitoring time, the
monitoring time is reset
and the node continues
to be alive.

Alive

Change notification
to a user due to
alive signal timeout
monitoring time

Alive to
dead

Dead

Alive signal timeout
monitoring time

Notification
to a user

Monitored
node

Monitoring
node

Status
managed by
the monitoring
node

Dead to
alive

Alive signal

Dead

Time

Alive

Changed to dead when
even one scheduled
SHUTDOWN is received.

Alive to
dead

Dead

Notification
to a user

(Scheduled SHUTDOWN)

Change notification to a
user due to scheduled
SHUTDOWN

 Receiving scheduled maintenance is also notified to a user as “alive to dead due to scheduled SHUTDOWN”.

2. DATA FIELD MANAGEMENT FUCTION

2-35

(3) Conditions on notification to a user

Status change notification to a user always links to IRSUB (#332). For details, see
“APPENDIX C NODE STATUS CHANGE NOTIFICATION FORMAT”. The
following describes the timing of a notification and its nature.
Node status change notifications can be detected only by a user (UP) on a node that uses
the status monitoring function and that is in the local data field of the local node.
“Change to alive” is notified to a user when an alive signal from one of the other nodes
arrives after nx_dfup() is issued. However, “change to dead” is not notified to a user when
scheduled SHUTDOWN or scheduled maintenance is received from one of the other
nodes if no alive signals for an alive report have ever been received from the node.
“Change to dead” is reported for a node only if at least one alive signal for alive report
has been received from the node after nx_dfup() is issued. “Change to dead” is detected at
the following time: when alive signal timeout occurs and when an alive signal for
scheduled SHUTDOWN or maintenance is received.

[Caution]

 Handling of the local node
As for status change of the local node, change to “alive” is notified to a user only once
when the processing of nx_dfup() is complete after nx_dfup() is issued. Note that
change to “dead” is not notified to a user when nx_dfdwn() or nx_quit() is issued.
 Handling of a stop request

After nx_dfdwn() or nx_quit() is issued to a data field, the processing of the data field
stops. Consequently, change to “dead” is not reported for all nodes in the data field,
including the local node. You must recognize all nodes as “dead” when processing of
nx_dfdwn() is complete.
 To enable change notification, the node must be in the mode that allows receiving of

alive signals (you must specify this in construction information), and IRSUB (#332)
must be registered before NXACP starts (nx_init()).

3. DUPLEXED LAN CONTROL FUNCTION

2-36

CHAPTER 3 DUPLEXED LAN CONTROL FUNCTION

Depending on the characteristics of the Ethernet network, packets might drop out when power to
the controller is turned on or off, or when network load increases. If this situation occurs,
transmission must be retried. However, these retries may increase the network/CPU load and may
result in excessive overall system load.
The purpose of duplexed LAN control in the NX multicast communication is to reduce loss of data
during transmission, and to i

3.1 Message Transmission and Reception on Duplexed LANs

The following shows some characteristics of the duplexed LAN control function in terms of
how the function is used.
 From a user task that uses NXACP, physically two LANs are seen as one data field. The

user task does not have to take care of LAN1 and LAN2 directly.
 In the duplexed communication method supported by NXACP, a message is sent to both

LANs, and a message is received from both LANs. If the same messages are received, the
redundant message is discarded by NXACP. As a destination send port number or receive
port number corresponding to a multicast group number, the same port number is used for
both LANs. Therefore, you do not have to switch LANs (configuration control) when one of
the LANs fails.

Figure 2-31 Message Transmission and Reception on Duplexed LANs

[Caution]

Only the same types of networks can constitute duplexed LANs. The rationale behind this is
as follows. If a message is sent to NXACP by way of duplexed LANs, and the arrival time of
the message is considerably different between both LANs due to a delay on network
communication paths, NXACP may mistake a message received for the first time as
redundant data, and may discard the message.

Seen simply as one
DF from the UP

Node 1

UP

Data
transmission
request

NXACP

Node 2

UP

Data

reception Redundant data
is discarded by
NXACP.

■ ■
LAN1

■ ■
LAN2

Sent on both LANs

Data field

Alive signal messages are also sent to both LANs. Therefore, messages are not
lost even when one of the LANs fails. Configuration control is not necessary when
one of the LANs fails.

3. DUPLEXED LAN CONTROL FUNCTION

2-37

If duplexed LANs are used to connect to a remote data field, both local and remote data fields
must be constructed as duplexed LANs.
 If both local and remote data fields are constructed as duplexed LANs, a message is

transmitted to corresponding LANs for each field. Make sure that routing addresses are
consistent throughout LANs and routers when you construct a system.

Figure 2-32 Duplexed LANs and Remote Data Field (1)

Also in duplexed configuration, LANs used in remote and local data fields must correspond 1-
to-1. Using multiple path setting is not allowed.

Figure 2-33 Duplexed LANs and Remote Data Field (2)

Node 1 S10VE
DFm

Router

S10VE

DFn
1-to-N is not
allowed.

Node 2

Node 1
S10VE

DF1

Router

S10VE

DFn
N paths are
not allowed.

Node 2

Router

DFm

Node 1 S10VE
DFm

Router

S10VE

DFn 1-to-1

Node 1 S10VE
DFm

Router

S10VE

DFn
Router

Node 2 Node 2

3. DUPLEXED LAN CONTROL FUNCTION

2-38

It is possible to use duplexed LANs in only one of the local and remote data fields. However,
the following restrictions apply.
 If the number of LANs is different between the local data field and remote data field, each

message must be sent the same number of times as the number of LANs in the destination
data field. If the remote data field uses duplexed LANs and the local data field uses a single
LAN, each message must be sent twice.

Figure 2-34 Duplexed LANs and Remote Data Field (3)

If the local data field uses duplexed LANs and the remote data field uses a single LAN, the
LAN defined first in the construction information for the local data field (LAN defined for
“UNO1” in the data field definition information) will correspond to the LAN in the remote
data field.

Figure 2-35 Duplexed LANs and Remote Data Field (4)

Node 1

S10VE
DFm

Router

S10VE

DFn

The same
data is sent
to the same
LAN twice.

Node 1

S10VE
DFm

Router

S10VE

DFn
Router

Node 2 Node 2

Node 1 S10VE
DFm

Router

S10VE

DFn
Sent only to the
corresponding
LAN.

Node 1 S10VE
DFm

Router

S10VE

DFn
Router

Node 2 Node 2

3. DUPLEXED LAN CONTROL FUNCTION

2-39

3.2 Alive Signal Transmission and Reception on Duplexed LANs

When a data field is constructed as duplexed LANs, alive signals are sent to both LANs. Other
nodes are monitored for each LAN, and as a result, this function allows you to determine
whether a failure is generated in the nodes or in the network.

Figure 2-36 Duplexed LANs and Alive Signals

(1) Sending an alive signal
When an alive signal is sent to duplexed LANs, an alive signal with the same format and
data as an alive signal for a single LAN is sent to both LAN1 and LAN2.

(2) Status monitor and change monitor

Status monitor and change monitor are performed for each LAN.
Consequently, even if alive signals are constantly coming from LAN1, when alive signals
from LAN2 are cut off and the alive signal timeout monitoring time has passed without
receiving any alive signals from LAN2, “Node N on LAN2 has changed from alive to
dead” is notified to a user. Also “dead to alive” is notified for each LAN.
Consequently, when status change occurs on a node, the status change is normally reported
to a user twice, one from LAN1 and the other from LAN2. However, note that due to the
possibility of packet loss or other reasons, status change notification is not guaranteed.
For details about the format of the status change notification, see “APPENDIX C NODE
STATUS CHANGE NOTIFICATION FORMAT”.

Alive signals are
sent to both LANs.

LAN1

Node 1 Node 3 Node 2
Alive monitor
function monitors
both LANs.

LAN2

4. TEST FUNCTION

2-40

CHAPTER 4 TEST FUNCTION

The test function is a support function that facilitates testing of user programs in a variety of test
configurations. As you gradually expand the system, you can test each node independently without
changing existing components that are running online and without creating a system only for a test.
In NXACP, to allow testing without affecting existing components, a mode is assigned to both
nodes and messages, and message I/O is controlled on a per-node basis by using the combination of
these two mode types. By limiting messages input to and output from nodes on a per-node basis, a
limited number of components can run in the system, while logically being isolated from the rest of
the system.
Note that the functions described in this chapter can be used only for multicast communication.

4.1 Message I/O Control
A user must specify message I/O control modes at system construction.
The possible combinations of node mode and message modes for message I/O control are as
follows.

Table 2-12 Node Mode and Message Mode

Node mode
Message mode of sending

messages
Message mode of messages

that can be received
Online Online Online

Test Test Test
Test Test Online

An online node sends only online messages and can receive only online messages. The ports
for test messages are not initialized and test messages are discarded at the OS level so that
applications are not disturbed by test messages.
A test node sends only test messages. You can select one of the following options for the
mode of messages that can be received by the node.
 Only test messages
 Only online messages
Regardless of which input option is selected, the ports for the mode unnecessary for reception
are not initialized and messages in the unnecessary mode are discarded at the OS level to
prevent messages in the unnecessary mode from disturbing applications.

4. TEST FUNCTION

2-41

Figure 2-37 Message I/O Control

In Figure 2-37, when the online node sends an online message to Multicast group N, NXACP
selects the online port number corresponding to Multicast group N as the destination send port
number and sends the message to the port. Therefore, when a user specifies a node to be an
online node at system construction, the user must define an online port number corresponding
to Multicast group N for transmission.
Similarly, when a node receives an online message from Multicast group N, a user must
define an online port number corresponding to Multicast group N for reception.
Note that the online port number corresponding to Multicast group N described above must be
the same across a data field.
In NXACP, one multicast group corresponds to (is mapped to) a pair of port numbers: one for
online, and the other for test.
A combination of message I/O control modes is specified in a parameter of nx_dfup(). To
allow necessary messages to be received and unnecessary messages to be discarded at the OS
level, you must ensure that the same mapping from multicast groups to online/test mode port
numbers is defined on all nodes in a data field so that the same combinations of mode,
multicast group number and port number are used across the data field.
Only the ports for the mode specified by a user in a parameter of nx_dfup() are actually used
by NXACP.

Table 2-13 Mode and Port Number

MGN Online mode port number Test mode port number

1 55001 57001

23 55023 57023

99 55099 57099

101 55101 57101

Online node

Test node

Online
message

Test
message

Online node

Test node (receiving test messages is selected)

Test node (receiving online messages is selected)

Test messages are
not received.

Online messages are
not received.

Test messages are not
received.

Online port

MGN＝N

DFN

Test port

×

×

×

The port numbers used by NXACP for transmission and reception
are the ones for the mode specified in a parameter of nx_dfup().

This correspondence must be used
in all nodes in the data field.

4. TEST FUNCTION

2-42

4.2 Test Configuration

The following shows examples of test configurations that use message I/O control.
(1) Test by receiving online messages

When you add or update a user program for the S10VE, you can test the program using
existing online messages, without the need to build a new system only for testing.

Figure 2-38 Test Configuration (1)

(2) Test by receiving test messages

For example, when you want to add a new S10VE and WS and perform a test where the
S10VE receives test messages from the WS and the S10VE returns the responses to the
WS, you can directly connect the test WS and S10VE to the online network, and then test
them without setting up a new test environment.

Figure 2-39 Test Configuration (2)

Test data does not
affect online
components.

WS (online)

S10VE
(online)

S10VE
(online)

S10VE(test)
Receives online

messages

…

× ×

×

: Online message : Test message

DF

Added/Updated
node

Receives online
data for testing.

Test data does not
affect online
components.

WS (online)

S10VE
(online)

S10VE
(online)

S10VE(test)
Receives test messages.

…

× ×

×

: Online message : Test message

DF

WS (test)

×

×

Logical rings are
constructed in the
same segment. Online system Test system (Added/Updated nodes)

Does not receive
online data.

4. TEST FUNCTION

2-43

(3) Test by receiving both test and online messages

When you want to add a new S10VE and WS, you can perform a test where the S10VE
receives test messages from an online WS and the S10VE returns the responses to the test
WS. If you use the journaling feature of NX Dlink, you can easily compare the processing
result between the online S10VE and the test S10VE.

Figure 2-40 Test Configuration (3)

Data primarily for the
online WS but also
received by the test
WS.

WS (online)

S10VE
(online)

S10VE
(online)

S10VE(test)
Receives online

messages

…

: Online message : Test message

Input data

WS (test)
Receives test and
online messages.

The results are
compared.

Output data
DF

4. TEST FUNCTION

2-44

4.3 Remote Data Field and Mode
You can select a node mode uniquely across one data field. Consequently, you can select the
mode of messages sent to a data field uniquely across the data field.
For example, in the following figure, if you set the node mode of the local data field (DF1) to
online and set the node mode of the remote data field (DF2) to test, the message mode of a
message broadcast to DF1 becomes online, and the message mode of a message broadcast to
DF2 becomes test.

Figure 2-41 Remote Data Field and Mode (1)

S10VE

Router

DF2
Message mode = test

S10VE

Remote DF

DF1

Local DF

Message mode = online

Node mode of DF1 = online
Node mode of DF2 = test

Local node

4. TEST FUNCTION

2-45

At a node that receives messages from a remote data field, the message mode of the messages
to be received at the local mode must be set to the same mode as the node mode set by the
sender node in the remote data field (that is, the message mode of the messages sent from the
sender node).

Figure 2-42 Remote Data Field and Mode (2)

Figure 2-43 Remote Data Field and Mode (3)

S10VE

Router

DF2

Node mode of DF1 = online
Node mode of DF2 = test

S10VE

Remote DF

DF1

Local DF Message mode = online

Receive message mode in DF1 = online
Receive message mode in DF2 = disabled

Local node

S10VE

Router

DF2

Node mode of DF1 = test
Node mode of DF2 = test

S10VE

Remote DF

DF1

Local DF Message mode = test

Receive message mode in DF1 = online
Receive message mode in DF2 = disabled

Local node
×

5. SYSTEM MANAGEMENT FUNCTION

2-46

CHAPTER 5 SYSTEM MANAGEMENT FUNCTION

When NXACP detects a failure and status change of a node, a description and detailed information
of the failure are reported to EAS. This function is called the failure notification function. NXACP
also provides a user task management function, which monitors the status of a user task that
receives messages, and if the task cannot receive messages, NXACP discards those messages.
Collectively, these functions are called the system management function.
In addition to the above, the system management function includes the DHP code trace function and
the control trace function.
For information about the DHP trace, see “APPENDIX D DHP RECORD LIST”. For information
about the control trace, see “APPENDIX E CONTROL TRACE”.

5.1 Failure Notification Function

When one of the following events occurs, NXACP passes detailed information of the event to
EAS or the dedicated IRSUB.
For details about EAS, refer to S10VE Software Manual CPMS General Description and
Macro Specifications (manual number SEE-3-201).

Table 2-14 EAS Notification Event List

Event name Event description
Node status

change
The status of the node changed (alive to dead or dead to alive).

Buffer status
report

The usage ratio of the send/receive buffer exceeded the threshold or the
buffer overflowed.

Protocol
error

An error was detected in the NX header of the received message.

Socket
failure

A socket-related failure was detected.

Transfer area
duplication

error

For the same area in the transfer memory, the write definition is
detected in 2 or more nodes. (For software transfer only).

For details about each event, see “APPENDIX B LOG FORMAT” and “APPENDIX C
NODE STATUS CHANGE NOTIFICATION FORMAT”.

[Note]

Failures generated in the Built-in Ethernet network module are notified to EAS by
RCTLNET.
For information about network module failures and how to troubleshoot them, refer to the
S10VE User’s Manual General Description (manual number SEE-1-001).

5. SYSTEM MANAGEMENT FUNCTION

2-47

(1) Node status change

Node status change is notified to a user only when alive signals are received from other
nodes (specified at system construction). Node status change is reported if the status of one
of the other nodes is changed from alive to dead or from dead to alive.
When duplexed LANs are used, a user is also notified of the LAN number of the LAN
where change is detected. This allows a user to detect which LAN has failed.
For this notification, the detection timing and others are different depending on the type of
status change.
 Dead to alive

[Condition]
Notified if the first alive signal is received after the node starts, or if an alive signal is
received again after the node is detected as dead.

[Detection timing]
Detected in the node status change check routine launched when an alive signal is
received from the network.

 Alive to dead
[Condition]
Notified if an alive signal for scheduled SHUTDOWN or scheduled maintenance is
received after a normal mode alive signal is received, or if a timeout occurs in the alive
signal timeout monitor function after a normal mode alive signal is received.

[Detection timing]
An alive signal for scheduled SHUTDOWN or scheduled maintenance is detected by
the node status change check routine launched when an alive signal is received from
the network. A timeout is detected by the node status change check routine in the node
status change monitor task activated every one second.

[Caution]

In NXACP, the status monitor function for other nodes is optional and must be enabled
by a user (in construction information) to use the function. The purpose of this is to
allow you to reduce the load of the controller for receiving alive signals and monitoring
the status change of nodes. Status change notifications are sent to the dedicated IRSUB
(#332). If it is not required for a node to monitor the status change of other nodes, we
recommend running the node with the node connection status monitoring being turned
off for the node.
If WSs or PCs are connected to the network system, we recommend, if possible, using
WSs or PCs for monitoring the status change of nodes. If you must monitor the status
change of nodes when WSs or PCs are not connected to the network system, we
recommend assigning specific controllers to monitor the status change of nodes and not
letting the other controllers receive alive signals.
We also recommend that the controllers in charge of monitoring the status change of
nodes are dedicated to this purpose and are given a sufficient margin in the system
design to accommodate the load of devices to be added in the future.

5. SYSTEM MANAGEMENT FUNCTION

2-48

In a system with duplexed LANs, this change notification allows you to determine whether
the failure location is isolated in a node or in the network, and to monitor the whole
system. Table 2-15 shows examples of system monitoring.
Failure monitor patterns in the system configuration in Figure 2-44 are shown as
examples.

Figure 2-44 Example Configuration

Table 2-15 Examples of Failure Monitor

Failure information
(information reported by

NXACP)

Failure location

Failure diagram Failure diagram

 The status of NODE-A
(LAN1) has changed to
dead.
 The status of NODE-A

(LAN2) stays alive (no
change notifications).
 The status of nodes next

to NODE-A (LAN1) stays
alive (no change
notifications).

  Built-in Ethernet of
NODE-A at LAN-1
 LAN transmission

line (including
bridges and
repeaters)

 The status of NODE-A
(both LAN1 and LAN2)
has changed to dead.
 The status of another node

(Node-B) stays alive (no
change notifications).

  NODE-A

 The status of NODE-A
and B (LAN1) has
changed to dead. All
nodes have changed to
dead at LAN1.
 The status of NODE-A

and B (LAN2) stays alive
(no change notifications).

  Built-in Ethernet of
NODE-C at LAN-1
 LAN transmission

line (including
bridges and
repeaters)

* You can determine
whether the failure
location is in the
LAN transmission
line or in the Built-in
Ethernet using
failure notifications
from the Built-in
Ethernet.

The failure information here means the information notified to NODE-C.

LAN-1

LAN-2

NODE-A NODE-B NODE-C

LAN-1

LAN-2

NODE-A NODE-B NODE-C
×

×

LAN-1

LAN-2

NODE-A NODE-B NODE-C ×

LAN-1

LAN-2

NODE-A NODE-B NODE-C
×

×

5. SYSTEM MANAGEMENT FUNCTION

2-49

(2) Buffer status report
A buffer means message storage memory used for sending and receiving messages. For
each data field, buffers for transmission and buffers for reception are managed separately.
By managing buffers separately in this manner, you can limit the area of buffers used up
by an erroneous user task, and minimize the disturbance on other business tasks by the
error.
The number of cases in each buffer is specified by a user at system construction.
In NXACP, if one of the below buffers overflows, or if the usage ratio goes over (or
under) a threshold, the event is logged, and the log data is reported to a user every one
second. The following shows the timing of buffer status reports.

Figure 2-45 Buffer Status Output Timing

[Condition]
Overflow: Logged if allocating space in the buffer fails for the first time after the usage

ratio goes over LOW-WATER.
HIGH-WATER: Logged if the usage ratio goes over HIGH-WATER for the first time

after the usage ratio goes over LOW-WATER.
LOW-WATER: Logged if the usage ratio goes under LOW-WATER for the first time

after HIGH-WATER, or Overflow occurs.
[Detection timing]
Send buffer: Detected when a message transmission request is received from a user and

space is attempted to be allocated in the buffer.
Receive buffer: Detected when a message arrives from the network, and space is

attempted to be allocated in the receive buffer.
[Action of NXACP when the condition is met]
Even when the condition for HIGH-WATER or LOW-WATER is met, NXACP operation
does not change. However, when an overflow occurs, NXACP takes the following
actions.

Send buffer: All transmission requests from user tasks are returned with an error
because space cannot be allocated in the buffer.

Receive buffer: The process for receiving messages from the network skips reading
messages. As a result, messages that arrive during receive buffer
overflow are discarded.

[User action]
Reduce the traffic, or increase the buffer capacity.

[Note] Threshold values for HIGH-WATER and LOW-WATER can be changed in the

construction information.

Log Log Log

Buffer
usage ratio

Time

OVER FLOW (100%)

HIGH-WATER (80%)

LOW-WATER (30%)

5. SYSTEM MANAGEMENT FUNCTION

2-50

(3) Protocol error

A protocol error means an error in an NX header added to each message when sent. This
error may occur due to construction errors in send/receive nodes.
When this error is detected, NXACP reports the detected header information (as it is) to a
user.
[Condition]
Notified if an error is detected in the header information.

[Detection timing]
Detected in the header check routine launched when a message is received from the
network.

[Action of NXACP when the condition is met]
The message with the error is discarded by NXACP after the error is reported to EAS.

[User action]
Check and correct the construction information of the sender node.

(4) Socket failure

Only hardware failures are reported to EAS by RCTLNET, and socket-interface-related
errors are reported with detailed information back to the caller of the socket macro.
NXACP reports this detailed information to EAS.
At the moment, this error is caused only by an error in the network address definition in
the remote data field.
[Condition]
Notified if the socket macro returns with an error (sendto(): ENETUNREACH).

[Detection timing]
Detected by the return code from the socket macro (sendto()) during the online process.

[Action of NXACP when the condition is met]
The transmission request that generated this error is canceled.

[User action]
Check and correct the construction information (network address in the remote data field).

(5) Transfer area duplication error

This error is notified if a write area is defined by multiple nodes for the same address in
the transfer memory. A user must specify whether to enable the duplication check at
initialization.
[Condition]
Notified if multiple nodes write to the same address in the transfer memory.

[Detection timing]
Detected when software transfer data sent by another node is received. Note that this error
is checked after (not before) the transmission/reception has started, or the reception
process has started for the software transfer of the local node.

[Action of NXACP when the condition is met]
If duplication is detected for the data received from software transfer, the data is
invalidated and not copied to the transfer memory.

[User action]
Check and reconfigure how the software transfer memory is divided into areas.

5. SYSTEM MANAGEMENT FUNCTION

2-51

5.2 User Task Management Function

Space in the receive buffer is allocated when data is received from the network and released
when a user task issues nx_get() and receives the data. That means, if a user task does not
issue nx_get(), the receive buffer will overflow.
To prevent receive buffer overflow, NXACP monitors the state of a user task, and if the task
is in a state that does not allow the task to call nx_get(), NXACP discards the messages
waiting to be received by and that arrive for the task.
(1) Check at message arrival

When a message arrives, NXACP checks the state of each task that accepts the transaction
code of the message, and if the state of a task is either DORMANT, IDLE, or NON-
EXIST, the message is not delivered to the task. If the state of all such tasks is one of the
states above, the message is discarded.

Figure 2-46 Task State Check at Message Arrival

UP

▽

△

A

B

RUNNABLE

DORMANT

independent receive
queue for each UP

[3] Delivered

NXACP

[4] Not delivered

×

[1] Data arrives.

[2]
Check the status of
TCD receiver tasks.

TCB in CPMS

RUNNABLE

DORMANT

The message is delivered to Task A in the RUNNABLE state (waiting for a message in nx_get()
or processing message reception), but not delivered to Task B in the DORMANT state.

▽

△

5. SYSTEM MANAGEMENT FUNCTION

2-52

(2) Check at transition to DORMANT

When a user task transitions to DORMANT, NXACP checks undelivered messages for the
user task and purges any undelivered messages in the receive queue. In addition, a
message is discarded when all user tasks that are to accept the message have already
completed reception or have entered the DORMANT state.

Figure 2-47 Post-ABORT Processing

Purging messages in the queue as described above is not executed when a user task
transitions to IDLE. The rationale behind this is as follows.
 Normally, a user task that calls nx_get() is constructed as a daemon type program

structure, and consequently, does not transition to the IDLE state.
 If this processing is built into the system built-in subroutine for EXIT, the load increases

significantly.
 When the next message arrives, the queue will be purged at the timing described in “(1)

Check at message arrival”.

RUNNABLE

DORMANT

independent receive
queue for each UP

ABORT event handling routine

[1] Purge process

UP
▽

△

ABORT

…

6. OPERATION MANAGEMENT FUNCTION

2-53

CHAPTER 6 OPERATION MANAGEMENT FUNCTION

The following figure shows the operation management steps of NXACP. This chapter explains the
steps after “Starting NXACP”.

Figure 2-48 NXACP Operation Management

The following operation management work is done in the actual S10VE.
 Starting and stopping NXACP
 Starting and stopping a service for each data field
 Removing and inserting a network module
At the step “Starting NXACP”, you must start NXACP (main program) before starting data field
services. Along with starting NXACP (main program), when you start the system, perform
initialization, and then start data fields just once before starting user programs.
At the step “Starting data field services”, start the transmission and reception process for each data
field. The data fields you defined at system construction will start receiving a request for the
transmission and reception process when you start the data field services. Issue a service start
request to each of the data fields you defined.
You can stop NXACP and data field services as necessary.

Figure 2-49 Operation Management of NXACP and Data Fields

Installation of NXACP

Construction of NXACP

Loading configuration information
to actual XR1000

Starting NXACP

Starting data field services

Starting user programs

This work is done in the S10VE cross environment.
For details about construction, see “CHAPTER 8
SYSTEM CONSTRUCTION FUNCTION”.

This work is done in the actual S10VE.

Starting NXACP
nx_init()

Starting DF
nx_dfup()

For each defined DF

NXACP

DF1

DF2
For each defined DF

Stopping NXACP
nx_quit()

Stopping DF
nx_dfdwn()

6. OPERATION MANAGEMENT FUNCTION

2-54

6.1 Operation Management of NXACP and Data Fields

To start and stop NXACP, use the nx_init() and nx_quit() macros respectively.
After you issue the nx_init() macro, you can start using the data field. Note that you cannot
send data to and receive data from data fields by issuing the nx_init() macro alone; you must
also issue the nx_dfup() macro for each data field after you issue the nx_init() macro.
When you issue the nx_quit() macro, all NXACP services are stopped. All running data fields
are also stopped, and consequently, the message transmission/reception for all data fields is
stopped. If you want to stop each data field individually, use the nx_dfdwn() macro.

Figure 2-50 Macros and Operation Management

nx_init() NXACP service available

nx_dfup(DF1,..) Transmission/reception possible for DF1

nx_dfup(DF2,..) Transmission/reception possible for DF2

nx_dfdwn(DF1,..)

nx_dfdwn(DF2,..)

nx_quit()
* Issuing nx_dfdwn() and issuing

nx_quit() are not required.

6. OPERATION MANAGEMENT FUNCTION

2-55

6.1.1 Starting data fields

In order for a user task to send and receive messages through a data field, you must start the
data field by using nx_dfup().
NXACP supports the following three types of data fields.
 Data field for local node communication
 Local data field
 Remote data field
Regardless of the type of a data field, use nx_dfup() for starting the data field.
When nx_dfup() is issued for a data field, the following routines are executed in the data
field.

Table 2-16 Data Field Startup Routines

 DF for local node
communication

Local DF Remote DF

Preparing for message transmission to the DF Y Y Y (*)
Starting message reception from the DF Y Y Y (*)
Starting alive signal transmission to the DF – Y –

Y: Executed –: Not executed
(*) You can send data to and receive data from a remote data field only when the local data field is up and

running.

To transmit messages between user tasks within a local node, the data field for local node
communication is used, and you must start the data field for local node communication
(DF#=0).
If you want to use a remote data field, you must first start the local data field (called a
source data field) through which the remote data field is connected, and then start the remote
data field. If the local data field has not been started, a message from the remote data field
will be discarded by NXACP.
In addition, a transmission request to the data field is treated as an error, and processing of
the transmission request is aborted.

Figure 2-51 Order of Initialization for Data Fields

Remote DF node Remote DF (DF2)

Router
Local DF (DF1)

Local DF
node

[3] nx_dfup(DF2)

Local node [1] nx_dfup(DF0) DF for local node communication (DF0)

[2] nx_dfup(DF1)

* Start the local DF, and then the remote DF. (Call nx_dfup(DF1),
and then nx_dfup(DF2).)

6. OPERATION MANAGEMENT FUNCTION

2-56

[Caution] Handling a failure in starting a data field
When a data field is constructed as a single LAN and an error such as a port
generation/configuration error is detected, starting a data field fails and nx_dfup()
returns an error. When the error is detected, the startup process for the data field is
aborted, the network-related settings are reset to the settings used before
nx_dfup() was issued (the ports generated so far are deleted), the data field is put
back to the stopped state, and then control is returned to a user.
The error is neither reported to EAS nor recorded in the error log. If a failure is
generated in Built-in Ethernet, RCTLNET reports the failure to EAS. You can
analyze the location of the failure based on the return code of nx_dfup() and the
error log information.
When a data field is constructed as duplexed LANs and a configuration error is
generated for both LANs, the startup process for the data field is aborted, the
network-related settings are reset to the settings used before nx_dfup() was issued
(the ports generated so far are deleted), the data field is put back to the stopped
state, and then control is returned to a user.
Even when nx_dfup() returns an error, other running data fields are not affected.

6. OPERATION MANAGEMENT FUNCTION

2-57

6.1.2 Stopping data fields

In order to stop sending and receiving messages through a data field while the data field is
running online, you must stop the data field.
If you want to change the mode of a node and the mode of messages to be received while
keeping user programs running, stop the data field temporarily, and then restart the data
field.
Regardless of the type of data field, use nx_dfdwn() to stop it.
Note that stopping NXACP by using nx_quit() stops all data fields together at the same
time. An alive signal for scheduled SHUTDOWN is not sent when NXACP is stopped by
using the construction information loading command to update construction data. If you
want to notify other nodes of scheduled SHUTDOWN, stop NXACP by using nx_quit().
When nx_dfdwn() is issued for a data field, the following shutdown routines are executed in
the data field.

Table 2-17 Data Field Shutdown Routines

 DF for local node
communication

Local DF Remote DF

Stopping message transmission to the DF Y Y Y
Stopping message reception from the DF Y Y Y
Stopping alive signal transmission to the DF – Y (*) –

Y: Executed –: Not executed
(*) Stops alive signal transmission after an alive signal in the scheduled shutdown mode is sent a couple of

times.

There are no restrictions on the order of data fields when you stop them.
If you stop a local data field, the remote data fields that are connected through the local data
field are also stopped. Then a user does not have to issue nx_dfdwn() to these remote data
fields.
Note that, when you restart the local data field, these remote data fields are not
automatically restarted. If you want to restart these remote data fields, you must issue
nx_dfup() to the remote data fields.
When nx_dfdwn() is issued, all messages waiting to be processed are discarded. The
sending and receiving messages for any other data field that has not received a shutdown
request are processed normally without being affected. As an exception, a sending message
already passed to RCTLNET at the timing of calling nx_dfdwn() will be transmitted to the
network without being discarded.
If the data field specified in nx_dfdwn() is a local data field, messages reporting scheduled
shutdown are sent (which takes about 10 seconds). As a result, when you issue nx_dfdwn()
successively to stop multiple data fields, it takes about 10 seconds before starting the
shutdown process for the second and subsequent data fields.
You may want to use nx_quit() when you stop multiple data fields at once. Also when
nx_quit() is used, messages reporting scheduled shutdown are sent to the local data fields
that have been running. Note that NXACP is also stopped when nx_quit() is used, and you
have to reissue nx_init() when you want to use NXACP again.

6. OPERATION MANAGEMENT FUNCTION

2-58

[Caution]
 Handling a failure in stopping a data field

The nx_quit() and nx_dfup() macros do not return with an error when an error other than
a parameter check error is detected.
These macros just stop data fields and then return control to a user. All errors in nx_quit()
and nx_dfdwn(), other than parameter errors and errors associated with stop requests to
data fields that are not running, must be caused by failures in Built-in Ethernet. A failure
generated in Built-in Ethernet is reported to EAS by RCTLNET, allowing you to locate
the failure. In addition, the details of the failure can be analyzed based on the error log
information.
 Effect on remote data fields when stopping a local data field

If you stop a local data field, the message transmission/reception process for remote data
fields that are connected through the local data field is also stopped.

Figure 2-52 Effect on Remote Data Fields (1)

Figure 2-53 Effect on Remote Data Fields (2)

If the local DF is stopped, transmission to the remote DF is also stopped.

Remote DF

DF2

Router

S10VE

Local node

Remote DF

DF1

Running

Running

Remote DF

DF2

Router

S10VE

Local node

Remote DF

DF1

Running

Stopped

S10VE S10VE

If the local DF is stopped, reception from the remote DF is also stopped.

Remote DF

DF2

Router

S10VE

Local node

Remote DF

DF1

Running

Running

Remote DF

DF2

Router

S10VE

Local node

Remote DF

DF1

Running

Stopped

S10VE S10VE

6. OPERATION MANAGEMENT FUNCTION

2-59

6.1.3 Setting and updating a mode

You can set the node mode of a data field and the message mode of messages to be received
on a per-data-field basis. Specify which modes to be used for a data field in a parameter
when nx_dfup() is issued. The modes specified in the parameter are valid as long as the data
field is running, but you cannot change the modes while the data field is running.
To change the modes, you must stop the data field by using nx_dfdwn(), and then restart the
data field by using nx_dfdup() with new modes specified.
When you issue nx_dfdwn(), you must specify both a node mode and the message mode of
messages to be received. You must stop the data field even when you change only one of the
modes.
The purpose of using two macros, nx_dfdwn() and nx_dfup(), to change the modes is to
allow a variety of user task settings associated with the mode change to be configured
easily. Actions associated with the mode change, such as initialization of tables and user
tasks, can be executed between calling nx_dfdwn() and calling nx_dfup(). During this
period, message reception at the data field from the network is stopped, and you can prepare
for mode change without concern of buffer overflow. In addition, all sending and receiving
messages before mode change waiting to be serviced are discarded, and messages that arrive
before nx_dfup() is issued are also discarded. For this reason, you can resume message
transmission/reception with the data field in the new modes without concern of status before
nx_dfup() is issued.

Figure 2-54 Mode Change Procedure

[Caution]
 The setting for the node mode is invalid for the local node data field.
 The setting for the message mode of messages to be received is valid only for local data

fields.

User task

nx_dfup (test)

nx_dfdwn()

Runs in the test mode

Sending and receiving messages are discarded.

No messages are received
from the network.

Message reception from the network is started.

Runs in the online mode

Transmission/reception
routine

Preparation routine for
mode change

Transmission/receipt
on routine

nx_dfup (online)

6. OPERATION MANAGEMENT FUNCTION

2-60

Table 2-18 Valid Range of Mode Settings

Data field type
Setting for node

mode
Setting for message mode of

receiving messages
Data field for local node
communication

N N

Local data field Y Y
Remote data field Y N

Y: Valid, N: Invalid

6.1.4 Updating construction information

NXACP must be stopped before you update its construction information.
To reload the construction information from the POC, use the tblldnxsv command to load to
the S10VE site.
While loading, NXACP is automatically stopped. When the loading process is completed,
restart NXACP by using nx_init().
The tblldnxsv command forcibly stops NXACP, and consequently, alive signals for
scheduled shutdown are not sent. If you need to send alive signals for scheduled shutdown
to other nodes, a user must issue nx_quit() before starting reloading.

7. NETWORK-SHARED MEMORY FUNCTION

2-61

CHAPTER 7 NETWORK-SHARED MEMORY FUNCTION

The network-shared memory function (hereinafter denoted as “transfer memory function”)
periodically copies the data written to transfer memory to the read areas in the other nodes. The
same address can be written by only one node but read by multiple nodes. The node that writes to
the address is fixed statically by the system.
There are two types of transfers: hardware transfer and software transfer. Both types use the same
user interface, and a user can use the transfer memory function without taking care of
communication methods.
Note that S10VE does not support hardware transfer.

7.1 Terminology

The following definition of terms is used for the transfer memory function.
(1) Transfer memory

Transfer memory consists of transfer areas. A transfer area consists of 64-byte blocks.
The size of a transfer area depends on the transfer type.

(2) Software transfer

The global area is used to implement transfer memory, and multicast communication
provided by NXACP is in charge of actual transfer. The size of a transfer area is variable,
and can be specified up to 16384 blocks.
Note that the maximum number of blocks is user-specified when transfer memory is
initialized.
The transfer cycle is in milliseconds.
There are two types of software transfers: periodic transmission type (data is transmitted at
each transfer cycle), and split transmission type (data is split and transmitted within the
transfer cycle at fixed intervals).
For periodic transmission, you can enable mutual exclusion for a transmitting message.
However, for split transmission, data is split when transmitted, and you cannot enable
mutual exclusion.

Figure 2-55 Software Transfer Memory

Block number 0 1 2 16383 ・・・・・・

Transfer memory
(Global area)

Transfer memory size is variable.

7. NETWORK-SHARED MEMORY FUNCTION

2-62

(3) Transfer memory identifier (Transfer Memory ID)

You can define multiple transfer memory areas for each data field. Each transfer memory
area is identified by a transfer memory identifier (TMID).
For each data field, four TMIDs can be defined for software transfers.
When accessing transfer memory, a user must specify a TMID.

Figure 2-56 Transfer Memory Identifiers (TMID)

(4) Write area/Read area

A transfer memory area is divided into write areas and read areas.
Data written to a write area by the local node is transmitted to the data field. A write area
is defined when transfer memory is initialized. Up to 9 cases per TMID can be defined as a
write area.
Data received from other nodes can be read from the read area. You do not have to define
a read area explicitly. Transfer memory area not used for write areas is used for read areas.
Note that “case” here means consecutive blocks.

Figure 2-57 Write/Read Area

0 15871

TMID：1

0 15871

TMID：2

0 15871

TMID：3

0 15871

TMID：4

A TMID is assigned to
each for management
purposes.

Data field

: Transfer memory area

Up to 9 cases per transfer memory area
(TMID) can be defined as a write area.

Node 2 Node 1

Write area for Node 2
(Read area for Node 1)

Write area for Node 1
(Read area for Node 2)

One case

Transfer
memory

Between 1 and 255 blocks can be defined
as one case.

7. NETWORK-SHARED MEMORY FUNCTION

2-63

7.2 Specifications of Transfer Memory

(1) Identifier and unit of management for transfer memory

Transfer memory is a set of transfer memory areas defined for each data field. Each
transfer memory area has a transfer memory identifier (TMID) unique in each data field.
The following shows the attribute information of transfer memory.

Table 2-19 Attributes for Each Transfer Type

Type
Attribute

Software transfer

Transfer memory areas per data field 4
Size per transfer memory area 64 bytes to 1MB
The number of write areas for one node per
transfer memory area

Up to 9

Transfer cycle per write area (*3)
Duplication check for write areas Detected at data reception.

An error is reported to EAS.
Controller of memory transfer NXACP
Protection All readable and writable (*1)
Mutual exclusion 16320 bytes (*2)
Mapping area for transfer memory Global area

CM area (*4)
Encapsulation of duplexed LANs NXACP

(*1) Data written to a read area will be invalidated because data is periodically written to
the area by another node.

(*2) If memory is directly accessed, data consistency for four bytes is guaranteed.
If mutual exclusion for transfer memory is used, data consistency for up to 16320
bytes is guaranteed.
(Fast software transfer does not support mutual exclusion.)

(*3) 100 ms to 86400 s for periodic transmission type software transfer. 10 ms to 86400 s
for split transmission type software transfer.

7. NETWORK-SHARED MEMORY FUNCTION

2-64

(2) Correspondence between TMIDs and MCGs

Software transfer uses multicast communication provided by NXACP. You must define
multicast groups used for software transfer in the construction information of NXACP. To
reduce the transfer load, use a dedicated multicast group for each TMID.

Figure 2-58 Perception of Transfer Memory and Multicast Group

<Example of using software transfer>

■ ■

TMID→ 1
Transfer
memory

(software)

2
Transfer
memory

(software)

Up to 4
Transfer
memory

(software)

…

In the case of Ethernet

MCG1 MCG2 MCG3 MCG4

DF#1

7. NETWORK-SHARED MEMORY FUNCTION

2-65

(3) Mutual exclusion

You can enable mutual exclusion for transfer memory as an option of an initialization
request.
The mutual exclusion here means mutual exclusion for transfer memory between a
read/write request from a user and the transmission/reception routine in NXACP. By using
this mutual exclusion, data consistency up to 16320 bytes is guaranteed.
Note that mutual exclusion is executed on a per-TMID basis.

Figure 2-59 Mutual Exclusion for Software Transfer

[Caution]
Mutual exclusion is optional. If mutual exclusion is not used, data consistency for up to 4
bytes is guaranteed.
Note that, if mutual exclusion is not used, data half updated by a user can be written to the
transfer memory in another node.
For fast software transfer, to guarantee timely periodic update, mutual exclusion is not
supported.

MCG#

<Transfer memory using mutual exclusion>

Write

nx_write_tm

Work area

Transfer cycle

Transfer is prevented
while writing actual
memory. (Data
consistency
guaranteed)

MCG#

<Transfer memory using direct memory access>

Write

Transfer cycle

Transfer can occur
while writing actual
memory. (Data
consistency not
guaranteed)

7. NETWORK-SHARED MEMORY FUNCTION

2-66

(4) Duplication check for write areas

In memory transfer, by defining the write area of each node so that they do not overlap in a
transfer area, a user can control write and read timing. NXACP uses the following method
for duplication check of the write area of each node.
For software transfer, a user must specify whether to perform a duplication check of the
write area as an option of an initialization request.
 Software transfer

Duplication is checked when data is received from another node. When duplication is
detected, the error is reported to EAS. When duplication is detected, received data is
discarded. Even after duplication is detected, a write request from a node that caused
duplication does not return with an error.

Figure 2-60 Duplication Check for Software Transfer

Duplication between write area cases of the local node is checked at the initialization
request, and the result is reported in the return code.
If an error occurs, the initialization request is canceled.

Node 1

Node 2

Transfer memory

Transfer memory

Transfer memory

Write

Write

Read

Read

Duplication detected

Duplication detected

Data is
discarded.

EAS is
linked.

Data is
discarded.

Not an error
even after
duplication is
detected

Not an error even
after duplication is
detected

: Write area for Node 1

: Write area for Node 2

: Duplicate area

Data field

7. NETWORK-SHARED MEMORY FUNCTION

2-67

(5) Features of software transfer

There are two types of software transfers: periodic transmission type (data is transmitted at
each transfer cycle), and split transmission type (data is split and transmitted within the
transfer cycle in order to reduce the network load).
You can select the type in a parameter of the nx_ini_tm macro.
 Periodic transmission type software transfer: Specify TMEM_SOFT for m_type.
 Split transmission type software transfer: Specify TMEM_FAST for m_type.
<Periodic transmission type software transfer>

For messages [1] to [4] (up to 16320 bytes), data consistency is guaranteed by mutual
exclusion.
For the minimum transfer cycle, you can specify a value from 100 milliseconds.

Figure 2-61 Processing of Periodic Transmission Type Software Transfer

<Split transmission type software transfer>
Mutual exclusion is not supported. (Data consistency up to two bytes is guaranteed.)
For the minimum transfer cycle, you can specify a value of 10 milliseconds or longer.

Figure 2-62 Processing of Split Transmission Type Software Transfer

Network

Minimum
transfer cycle

Transfer
cycle

[1] [2] [3] [4] Transfer memory

[1]

[2]

[3]

[4]

Sending data

Network

[1] [2] [3] [4]

Minimum
transfer cycle

[1] [2] [3] [4] Transfer memory

Sending data

Transfer cycle

7. NETWORK-SHARED MEMORY FUNCTION

2-68

When split transmission type software transfer is used, you can receive both the periodic
transmission type and split transmission type.

Table 2-20 List of Transfer Support Models

Hardware
transfer

Periodic transmission
type software transfer

Split transmission type
software transfer

S10VE – Y Y
S10V Y Y Y
S10mini – – –
Models equipped with
NX Dlink (*)

Y Y Y

Y: Supported
–: Not supported (cannot be used)
(*) For information about models that support NX Dlink, refer to the NX Dlink REFERENCE

(manual number RS90-63-X051).
Note that split transmission type software transfer is denoted as “fast software transfer” for
NX Dlink.

(6) Setting the minimum transfer cycle

Because the most efficient setting for the minimum transfer cycle is given when data is
sent (once) in every cycle, the following setting is recommended.

[Periodic transmission type software transfer]
Transfer data is sent immediately, and consequently, uses the following formula.
(Minimum transfer cycle) = (Transfer cycle)
When you use multiple transfers, set the minimum transfer cycle to the least common
multiple of their transfer cycles.

[Split transmission type software transfer]
In fast software transfer, the whole transfer data must be sent within the transfer cycle
while 21 blocks of the transfer data is sent at a time at the interval of the minimum
transfer cycle. Then the minimum transfer cycle is calculated as follows.

(Minimum transfer cycle) = (Transfer cycle) / (Number of transfer blocks / 21)

Rounded up to the nearest integer

Rounded down to the nearest integer

 When you use multiple transfers, set the minimum transfer cycle to the least common
multiple of the values calculated by using the formula above for each transfer.
 Due to limited precision, we recommend specifying a multiple of 10 ms (10 ms, 50 ms,

100 ms, etc.) for the minimum transfer cycle, even when you need the finest precision.

7. NETWORK-SHARED MEMORY FUNCTION

2-69

7.3 Cautions on Construction

Software transfer is at a higher layer than multicast communication. Even when multicast
communication is not used, you must set up the definitions necessary for multicast
communication.
The following data in particular must be handled with caution, as described below.

[Number of cases in a buffer (dfN: SBUFCNT and RBUFCNT)]
When you define these values, the number of cases used for software transfer must be taken
into account.
For multicast communication, a user must specify the number of cases in a buffer used for
storing the messages that cannot be serviced in a timely manner at peak traffic. For software
transfer, you must allocate cases necessary for covering the number of write areas in a send
buffer, and also allocate cases necessary for covering the number of read areas in a receive
buffer.

7. NETWORK-SHARED MEMORY FUNCTION

2-70

7.4 Overview of Macros

(1) List of transfer memory macros

When you issue any macro listed below, you must specify a TMID (transfer memory is
managed on a per-TMID basis).
Table 2-21 shows an overview of transfer memory macros.
For details, see “PART 3 MACRO SPECIFICATIONS”.

Table 2-21 Transfer Macro List

Macro name Summary of the function
Status that allows calling the

macro
Note

nx_init_tm

Initialization of transfer
memory

Undefined status Initializes the transfer
memory.

Stopped status Reconfigures the attributes
and control information of
the transfer memory.

nx_ctl_tm Starting transfer memory Stopped status or Only
reception is ongoing

Starts transmission and
reception.

Starting the reception process
of the transfer memory

Stopped status Starts only reception.

Stopping transfer memory Transfer status Stops transmission and
reception.

nx_get_tm Reading the control
information of transfer
memory

Stopped or Transfer status

nx_write_tm Writing to transfer memory Stopped or Transfer status Returns an error if issued
in the Undefined status.

nx_read_tm Reading from transfer
memory

Stopped or Transfer status Returns an error if issued
in the Undefined status.

(2) Status transition of transfer memory

Status transitions occur only when nx_init_tm and nx_ctl_tm return normally.
No status transitions occur by calling nx_get_tm, nx_read_tm, or nx_write_tm, regardless
of whether the macro returns an error or not.
The following figure shows the status transition of transfer memory.

Figure 2-63 Status Transition of Transfer Memory

Undefined
status

Stopped
status

Transfer
status

nx_init_tm

nx_ctl_tm
(starting transfer)

nx_ctl_tm
(stopping transfer)

You can call nx_get_tm, nx_write_tm,
and nx_read_tm after you call
nx_init_tm.

You can call nx_read_tm and nx_write_tm.

7. NETWORK-SHARED MEMORY FUNCTION

2-71

[Note]
If the site configuration of the S10VE is a multiprocessor type (each processor has its own
site), each site has its own status of transfer memory. Consequently, you must change the
status of transfer memory in both sites.

(3) Condition on a data field status

The status of a data field is either CLOSE or OPEN.
The transfer memory function can be used only when the status of the data field is OPEN,
regardless of whether the type of transfer is software or hardware.

Figure 2-64 Transfer Memory and Data Field Status

Transfer memory function can be used.

nx_init()

nx_dfup()

nx_dfdwn()

nx_quit()

8. SYSTEM CONSTRUCTION FUNCTION

2-72

CHAPTER 8 SYSTEM CONSTRUCTION FUNCTION

This chapter describes the procedure for installation and system construction of NXACP.
NXACP runs on the task in charge of communication control (hereinafter denoted as NXACP task)
and the IRSUBs in charge of processing the user interface (hereinafter denoted as NXACP macros).
The objects of NXACP are provided in a CD-ROM.
To install the main part of NXACP, run an RPDP command on a computer that has the site
information of the target S10VE.
Note that, before you use NXACP, you must set up the operation environment by using
construction commands.
Set up the environment also on the computer that has the site information of the target S10VE and
load the settings (hereinafter denoted as NXACP table) to the GLB area of the S10VE.
The following shows the system construction procedure for NXACP and the name of the command
used for each step. Note that the site information must be constructed before you start installation
and system construction.

Figure 2-65 Deployment of Resources

[Remark] Each construction command suppresses a signal while running. The tblldnxsv command
displays the execution state.

dfnxsv command

Create the construction environment.

Construction environment

confnxsv command

Create NXACP table.

NXACP construction information,
Send/receive buffer,
Trace buffer, etc.

NXACP task NXACP table

tblldnxsv command

Loading Loading

NXACP macros

insnxsv command

Loading

garea
(Global area) OS TASK area GLB area IRSUB area CM area Others

Main part of NXACP

RPDP management area (backup file)

8. SYSTEM CONSTRUCTION FUNCTION

2-73

Figure 2-66 NXACP Construction Procedure

Contact your system
administrator.

Already created

Will be newly created

An error occurred.

Normal termination

An error occurred.
Retry setting up the construction
information.

An error occurred.

Check parameters and
memory free area, and then
retry.

Yes

Normal termination

Normal termination

Normal termination

No

An error occurred.

Initial construction

Set up construction information. The following
construction information is set up.
 Construction files shared between CP and HP
 CP construction files
 HP construction files

Run the confnxsv command

Run the tblldnxsv command.

Run the insnxsv command

Create the construction environment.
Run the dfnxsv command.

Contact your system
administrator.

Construction is complete.

NXACP/S10VE
Update construction

Has a construction error occurred?

Has a loading error occurred?

Has a loading error occurred?

Has only the NXACP/S10VE
construction information been changed?

Has an error occurred while creating
the construction environment?

Will the NXACP/S10VE
construction information be newly
created?

FC

No

Delete NXTOOL
configuration parameters

Is there any NXTOOL configuration

parameter? (Check data transmission

related to the BASE SYSTEM)

Yes

8. SYSTEM CONSTRUCTION FUNCTION

2-74

8.1 Loading the Main Part of NXACP

To load the main part of NXACP (including the NXACP task and NXACP macros) to the
backup file under the site information, run the following command.

insnxsv site_name [Enter]

Specify the site name of the CP for site_name.
By running this command, the main part of NXACP is loaded to the backup file of the S10VE
specified as the site name. To copy (download) the main part of NXACP to the target S10VE,
use the remote loading command provided by RPDP.

<Error output on the monitor and its contents>

Parameter count error: The following message is displayed.
parameter number out of range
usage:insnxsv site

Error generated during execution: If an RPDP-related error is displayed and the execution is
aborted, refer to S10VE Software Manual Operation
RPDP for Windows® (manual number SEE-3-133).

<Output on the monitor during execution and its contents>

If the command is executed without an error, the following messages are output by the
command.

*** NXACP/S10VE INSTALL START(CPU_name) ***

 ｜

*** CP(site_name) INSTALL OK !! ***

 ｜

*** HP(site_name) INSTALL OK !! ***

*** NXACP/S10VE INSTALL END ***

Shows the commands executed on CP.

Shows the commands executed on HP.

8. SYSTEM CONSTRUCTION FUNCTION

2-75

[For reference] The following shows the resource allocation of NXACP.

Table 2-22 Resource Allocation

Program name Task number
IR subroutine

number
UL subroutine

number
Task level

Storage area name
(Capacity)

nx_memac
nx_cycsnd
(reserve)
(reserve)
nx_operation
nx_snd1
nx_snd2
nx_snd3
nx_snd4
nx_snd5
nx_snd6
nx_htim
nx_ltim
nx_upexe
nx_purcv
(reserve)

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

7
7
–
–
4
6
6
6
6
6
6
5

17
6
6
–

task/nxacpt
(288 KB)

nx_init
nx_quit
nx_put
nx_get
nx_dfup
nx_dfdwn
nx_init_tm
nx_ctl_tm
nx_get_tm
nx_write_tm
nx_read_tm
nx_trc
nx_cdoff
nx_cdon
nx_puni
(reserve)

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316 to 332

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

sub/nxacpm
(144 KB)

(reserve)
nx_ins
nx_exs
nx_abs
nx_ctl

–
–
–
–
–

–
–
–
–
–

 2
 5 (INS)
 6 (EXS)
 7 (ABS)
15 (MODES)

–
–
–
–
–

[Note]
Task numbers from 209 to 224 must be reserved for NXACP.
IR subroutine numbers from 301 to 332 are reserved by NXACP.
UL subroutine number ENTRY No.2 is reserved by NXACP.

[Caution]
The task level of any user task that uses NXACP must be lower than the task level of
NXACP task.
The task number of any user task that uses NXACP must be set to a value from 1 to 208.

8. SYSTEM CONSTRUCTION FUNCTION

2-76

[Warning]
An erroneous operation might occur if parameter information configured with NXTOOLS
SYSTEM/S10VE remains.
If the data transmission function of BASE SYSTEM/S10VE was used before the loading
operation to configure parameter information that was configured with NXTOOLS
SYSTEM/S10VE, and that information (namely “NX (type 4)”, “NX (type 5)”, or “NX
(type 6)”) remains, such information must be deleted.
For details on how to start BASE SYSTEM/S10VE and use the data transmission function,
see S10VE User’s Manual General Description (manual number SEE-1-001).

8. SYSTEM CONSTRUCTION FUNCTION

2-77

8.2 System Construction and Loading

To use NXACP, you must set up the operation environment for each site.

8.2.1 Initialization

Initialize the definition information of each site by using the command below. Note that the
command should be executed only once at the initial construction, after a site is created by
the basic system.
Specify the site name of the CP for site_name.

dfnxsv site_name [Enter]

<Error output on the monitor and its contents>

Parameter count error: The following message is displayed.
parameter number out of range
usage:dfnxsv site

<Construction environment>

A site is created for HP and CP separately under the CPU name due to the processor
structure of the S10VE, in the same way as the site environment of RPDP. To meet the
specifications of RPDP, a unique name (which must differ from that of the R700, R900) is
given to a site. If the same name is used, an error is generated during system generation. In
addition, the site (CP) name is used as the CPU name.
To allow coexistence with the construction environment of a R700, R900, the structure of
the construction environment of the R700, R900 is as follows.

Figure 2-67 Construction Environment

renix nxacp_S10VE CPU_name site (CP) nxacp.work OBJ

 rcvtcd.f MAP

 sndtcd.f

 nxacp.conf.f

 site (HP) nxacp.work OBJ

 rcvtcd.f MAP

 sndtcd.f

 df.f nxacp.conf.f

 mcg.f

8. SYSTEM CONSTRUCTION FUNCTION

2-78

8.2.2 Setting up construction information

When you set up definition information files for each site, change “original file name” of
each definition file stored by the dfnxsv command in the directory for the site to “creating
file name”, and then set up construction information in each “creating file” by using, for
example, an editor command (notepad.exe).

Table 2-23 Configuration File List

Category
Original file

name
Creating file

name
Items managed by the database

NXACP
common
definition

nxacp.conf.f nxacp.conf
Manages the basic settings of NXACP.

DF
definition

df.f dfN
Manages the settings of each data field. Define information
such as the LAN address of a node. Specify a data field
number from 0 and 255 for N.

MGN
definition

mcg.f mcgN
Manages the online/test UDP destination port numbers of
each multicast group number. Specify a data field number
from 1 to 255 for N.

TCD
definition

rcvtcd.f
sndtvd.f

rcvtcdN
sndtcdN (*)

Manages the settings of each transaction code.
Define the user task number to receive TCD messages for
rcvtcdN. Specify a data field number from 0 to 255 for N.
Note that when transmission and reception are performed on
the HP side, the definition of the HP side must be applied to
the CP side, regardless of whether the definition is used on
the CP side.

(*) The task numbers of the user tasks that send messages of each TCD are defined in sndtcdN.
Note that this file is optional. Create this file only when you want to use “TCD transmission right check”
described later.

Each definition information file is explained below. Before these explanations, how to
describe the definitions in a definition file is explained.
Each definition file must be created according to the following rules.

<Creation rules>
 Handling of a definition in multiple lines

Each definition of information must be included in one line and must not span multiple
lines. (You cannot concatenate lines by using “\”.)

 Characters available for definition
Only one-byte ASCII alphanumeric characters can be used in definitions (numbers must
be in decimal notation). Spaces, tabs, and blank lines are skipped.
If the first letter of a line is “#” (pound sign), the line is interpreted as a comment.
Signs and two-byte characters cannot be used in definitions.
 Order of definitions

The order of definitions can be random and does not have to be ascending or descending.

8. SYSTEM CONSTRUCTION FUNCTION

2-79

(1) Definition information in the common definition file (nxacp.conf)

The following information is defined in the common definition file.
If a specific definition is not required, specify the value shown in the “If not used”
column for the definition, delete the identifier, or insert “#” (pound sign) before the
identifier. If the value shown in the “If not used” column for a definition is “–”, you
cannot delete the definition.

Identifier Description Configurable range If not used
MAXDFCNT Total number of registered data fields 0 to 16 (*1) –
TRCCS Trace case count (Number of cases) 0, 128 to 65535 (multiple of 128) 0
TMSCYC Software transfer operation cycle (Specify

a multiple of 10 milliseconds. Specify 10
if software transfer is not used.)

10 to 85400000 (multiple of 10) 1000

DFNO Data field number 0 to 255 (*2) –

(*1) Set “0” (no data field to be used) for the “MAXDFCNT” (total number of registration data fields)
definition information of nxacp.conf on the HP side. Note that MAXDFCNT cannot be set to “0” on the
CP side.

(*2) You must create “dfN” for each data field number defined here.
In the following “definition example”, you must create “df0” for “DFNO 0” and “df1” for “DFNO 1”.

<Definition example>

MAXDFCNT 2

TRCCS 512

TMSCYC 100

DFNO 0

DFNO 1

8. SYSTEM CONSTRUCTION FUNCTION

2-80

(2) Definition information in a data field definition file (dfN)
The following information is defined in a data field definition file.
The I, L, and R columns on the right side indicate the type of a data field (I: local node,
L: local, R: remote) and whether the definition is necessary for each type (√: Definition
necessary, ×: Definition not necessary, –: Follows the definition of the local DF).
If a specific definition is not required, specify the value shown in the “If not used”
column for the definition, delete the identifier, or insert “#” (pound sign) before the
identifier. If the value shown in the “If not used” column for a definition is “–”, you
cannot delete the definition.

Identifier Description
Configurable

range
If not
used

L R I

DFTYPE Data field type
(=0: local, 0: remote
(Source data field number))

0, 1 to 255 – √ √ ×

NODENAME Local node name 9 or less ASCII
characters

– √ × ×

NODENO Local node number 1 to 4095 – √ × ×
SSPORT Send local port number 1 to 65535 – √ – ×
ALPORT Alive signal destination port number 1 to 65535 – √ × ×
ALSCYC Alive signal transmission interval (in seconds) 1 to 3600 – √ × ×
ALTOUT Alive signal timeout time (in seconds) 1 to 3600 – √ × ×
ALRCVFG Alive signal reception on/off flag

(0: Not received, 1: Received)
0 and 1 0 √ × ×

UNO1 UNO of LAN1 1 to 23 – √ × ×
UNO2 UNO of LAN2 2 to 23 0 √ × ×
MINSNDMCG Minimum send multicast group number 1 to 255 0 √ √ ×
MAXSNDMCG Maximum send multicast group number 1 to 255 0 √ √ ×
SNDMCGCNT Total number of send multicast groups 1 to 128 0 √ √ ×
MINRCVMCG Minimum receive multicast group number 1 to 255 0 √ × ×
MAXRCVMCG Maximum send multicast group number 1 to 255 0 √ × ×
RCVMCGCNT Total number of receive multicast groups 1 to 32 0 √ × ×
MINUSETCD Minimum transmission/reception TCD number 1 to 59999 – √ √ √
MAXUSETCD Maximum transmission/reception TCD

number
1 to 59999 – √ √ √

USETCDCNT Total number of transmission/reception TCDs 1 to 3328 – √ √ √
SBUFSZ Size of one case of send buffer 512 to 1408 0 √ – ×
SBUFCNT Number of cases in a send buffer 1 to 1024 0 √ √ ×
RBUFSZ Size of one case of receive buffer 512 to 1408 0 √ – √
RBUFCNT Number of cases in a receive buffer 1 to 1024 0 √ √ √
BUFHWRATE HIGH WATER alarm buffer usage ratio 2 to 100 – √ √ √
BUFLWRATE LOW WATER alarm buffer usage ratio 1 to 99 – √ √ √
MINNODENO Minimum node number 1 to 4095 0 √ √ ×
MAXNODENO Maximum node number 1 to 4095 0 √ √ ×
R_INA1 Network address of LAN1 XX.XX.XX.XX – × √ ×
R_NMASK1 Netmask of LAN1 XX.XX.XX.XX – × √ ×
R_INA2 Network address of LAN2 XX.XX.XX.XX 0 × √ ×
R_NMASK2 Netmask of LAN2 XX.XX.XX.XX 0 × √ ×
CYCFG Network-shared memory use flag

(0: Not used, 1: Used)
0 and 1 0 √ × ×

SYSPORT System multicast communication port number 1 to 65535 0 √ √ ×
UNIMCGNO Send unicast group number MINSNDMSG

to MAXSNDMSG
0 √ √ ×

8. SYSTEM CONSTRUCTION FUNCTION

2-81

[Caution]

The following shows cautionary notes for each identifier.
SBUFSZ,
RBUFSZ: Specify the user data size in one buffer case in bytes. The specified number

must be a multiple of 4.
To obtain the actual size of one buffer case, you must add 64 bytes (NX
header) and 4 bytes (buffer management header) to the specified value.

MINUSETCD,
MAXUSETCD,
USETCDCNT: Define these values for transmission and reception TCDs. However, if

transmission TCD check is not used, define them for reception TCDs
only.

R_INA: Data defined only for a remote data field. Use dot-decimal notation.
R_NMASK: Data defined only for a remote data field. Use dot-decimal notation.
CYCFG: Use macros to define detailed settings of network-shared memory.
SBUFCNT,
RBUFCNT: You cannot specify 0 for RBUFCNT in the local node data field.

If you specify 0 for SBUFCNT and RBUFCNT in a remote data field, an
error is not generated, but actual transmission and reception are stopped.
If you specify 0 for SBUFCNT and RBUFCNT in a local data field,
sending only alive signals is permitted.

<Advice on efficient use of memory>
For each node, we recommend using consecutive numbers for reception TCDs and MGNs.
For each data field, we recommend using consecutive numbers for node numbers.

8. SYSTEM CONSTRUCTION FUNCTION

2-82

[Caution] Continued

ALSCYC,
ALSTOUT: When you define these two parameters, make sure that ALSCYC <

ALTOUT.

DFTYPE 0

NODENAME OOMIKA

NODENO 3

SSPORT 1025

ALPORT 600

ALSCYC 10

ALTOUT 30

ALRCVFG 0

UNO1 3

UNO2 0

MINSNDMCG 1

MAXSNDMCG 4

SNDMCGCNT 4

MINRCVMCG 5

MAXRCVMCG 8

RCVMCGCNT 4

MINUSETCD 1

MAXUSETCD 64

USETCDCNT 32

SBUFSZ 1408

SBUFCNT 128

RBUFSZ 1408

RBUFCNT 128

BUFHWRATE 80

BUFLWRATE 30

MINNODENO 1

MAXNODENO 64

CYCFG 0

SYSPORT 0

<Definition example for a local data
field>

DFTYPE 0

MINUSETCD 1

MAXUSETCD 64

USETCDCNT 32

RBUFSZ 1408

RBUFCNT 128

BUFHWRATE 80

BUFLWRATE 30

<Definition example for the data field for
local node communication>

DFTYPE 1

MINSNDMCG 1

MAXSNDMCG 4

SNDMCGCNT 4

SBUFCNT 128

RBUFCNT 128

BUFHWRATE 80

BUFLWRATE 30

MINNODENO 1

MAXNODENO 64

R_INA1 192.168.0.1

R_NMASK1 255.255.255.0

R_INA2 0

R_NMASK2 0

<Definition example for a remote data
field>

8. SYSTEM CONSTRUCTION FUNCTION

2-83

(3) Definition information for a multicast group definition file (mcgN)
The following information is defined in this file.
The I, L, and R columns on the right side indicate the type of a data field (I: local node,
L: local, R: remote) and whether the definition is necessary for each type (√: Definition
necessary, ×: Definition not necessary, –: Follows the definition of the local DF).
If a specific definition is not required, specify the value shown in the “If not used”
column for the definition, delete the identifier, or insert “#” (pound sign) before the
identifier. If the value shown in the “If not used” column for a definition is “–”, you
cannot delete the definition.

Identifier Description
Configurable

range
If not
used

L R I

SMGN Send multicast group number 1～255 (*1) – √ √ ×
RMGN Receive multicast group number 1～255 (*1) – √ × ×
OPORT Online mode port number (*2) 1～65535 0 √ √ ×
TPORT Test mode port number (*2) 1～65535 0 √ √ ×

(*1) The maximum number of send multicast groups that can be registered is
SNDMCGCNT defined in dfN. The maximum number of receive multicast groups
that can be registered is RCVMCGCNT defined in dfN.

(*2) Defines the send destination port number for transmission and the port number
bound by bind() for reception.
You must define online/test mode port numbers independently for transmission and
for reception.

<Definition example>

#MGNTYPE MGN OPORT TPORT

SMGN 1 55001 57001

SMGN 2 55002 57002

SMGN 3 55003 57003

SMGN 4 55004 57004

#MGNTYPE MGN OPORT TPORT

RMGN 5 55005 57005

RMGN 6 55006 57006

RMGN 7 55007 57007

RMGN 8 55008 57008

If you want to use only the online
mode or the test mode, specify 0
for the port number of the unused
mode. (If you specify 0 for the port
number of one mode and issue
nx_dfup() in that node mode,
nx_dfup() terminates with a socket
macro error.)

[Caution]

 Note that, even if you specify (for a receive multicast group) a multicast group
number to which the local node sends messages, messages sent from the local node
still cannot be received.
 The port numbers defined as SSPORT, ALPORT, and SYSPORT in dfN must not be

used in the definitions in mcgN.
 To enable communication with NX Dlink (communication package for a WS, PC, and

control server) by using a test mode port, specify “0” for LNSYSTYPE in the dfieldN
definition information for NX Dlink.
 To enable communication with NX Dlink, specify “1” for RCVLEVEL in the dfieldN

definition information for NX Dlink.

8. SYSTEM CONSTRUCTION FUNCTION

2-84

(4) Definition information for a reception transaction code definition file (rcvtcdN)

The following information is defined in this file.
The I, L, and R columns on the right side indicate the type of a data field (I: local node,
L: local, R: remote) and whether the definition is necessary for each type (√: Definition
necessary, ×: Definition not necessary, –: Follows the definition of the local DF).
If a specific definition is not required, specify the value shown in the “If not used”
column for the definition, delete the identifier, or insert “#” (pound sign) before the
identifier. If the value shown in the “If not used” column for a definition is “–”, you
cannot delete the definition.

Identifier Description
Configurable

range
If not
used

L R I

TCDNO Reception transaction code number 1 to 59999 (*1) – √ × √
BUFCNT Maximum number of cases in a

receive buffer
4 to 1024 (*2) – √ × √

TN Receive task number 1 to 208 (*3) – √ × √

(*1) The maximum number of TCDNO definitions that can be registered is USETCDCNT
defined in dfN.
For TCDNO, you can specify a value between MINUSETCD and MAXUSETCD
defined in dfN.

(*2) The maximum number of cases in a receive buffer (BUFCNT) must not exceed
RBUFCNT defined in dfN. If you specify 0 for BUFCNT, RBUFCNT defined in dfN is
actually used as BUFCNT. If remote DFs are connected, the sum of RBUFCNT defined
in dfN for each remote DF is added to the actual maximum number of cases in a receive
buffer.

(*3) The maximum number of tasks that can be registered for one TCDNO is 8.

<Definition example>
RCV TCDNO BUFCNT TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8
TCD 1 16 1 11 21 31 41 71
TCD 2 16 2 112 142
TCD 3 16 16 32 48 64 80 96 112 128
TCD 4 16 64 128

8. SYSTEM CONSTRUCTION FUNCTION

2-85

(5) Definition information for a transmission transaction code definition file (sndtcdN)

The following information is defined in this file. If TCD transmission right check is not
required, you do not have to create this file.
The I, L, and R columns on the right side indicate the type of a data field (I: local node,
L: local, R: remote) and whether the definition is necessary for each type (√: Definition
necessary, ×: Definition not necessary, –: Follows the definition of the local DF).
If a specific definition is not required, specify the value shown in the “If not used”
column for the definition, delete the identifier, or insert “#” (pound sign) before the
identifier. If the value shown in the “If not used” column for a definition is “–”, you
cannot delete the definition.

Identifier Description Configurable
range

If not
used L R I

TCDNO Transmission transaction code
number

1 to 59999 (*1) – √ √ √

TN Send task number 1 to 208 (*2) – √ √ √

(*1) The maximum number of TCDNO definitions that can be registered is USETCDCNT
defined in dfN.
For TCDNO, you can specify a value between MINUSETCD and MAXUSETCD
defined in dfN.

(*2) The maximum number of tasks that can be registered for one TCDNO is 8.

<Definition example>
#SND TCDNO TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8
TCD 1 1 11 21 31 41 71
TCD 2 2 112 142
TCD 3 16 32 48 64 80 96 112 128
TCD 4 64 128

[NOTE]
If you register a task, you must define the mapping between the task and transmission
TCDs for all data fields the task sends messages to. You cannot turn on or off
transmission check on a per-data-field basis.

8. SYSTEM CONSTRUCTION FUNCTION

2-86

8.2.3 Compiling construction information

Use the following command to compile the definition information for each site.
Execute the following command also when you update the construction information.

confnxsv site_name [Enter]

<Error output on the monitor and its contents>
Parameter count error: The following message is displayed.

parameter number out of range
usage:confnxsv site

Specify the site name of the CP for site_name.
If an error message such as a compiler error message is output while the confnxsv is
executed, check and correct the construction information. If any abnormality occurs when
construction information on the HP side is compiled, set “0” to MAXDFCNT, which is
definition information in nxacp.conf on the HP side.

<Output on the monitor during execution and its contents>

If the command is executed without an error, the following messages are output by the
command.

*** NXACP/S10VE GENERATION START(CPU_name) ***

 ｜

*** CP(site_name) CONFIGURATION OK !! ***

 ｜

*** HP(site_name)GENERATION OK !! ***

*** NXACP/S10VE GENERATION END ***

[Note]

In the S10VE, if the same configuration information is used on another node, you can
copy the site information to the node. To copy the site information, simply copy all
configuration files to the node, change the node name and node number (in dfN), and then
execute the command above. (Perform this after you delete all object files under the OBJ
directory in the construction environment.)

Checks the construction information of CP.

Checks the construction information of HP.

8. SYSTEM CONSTRUCTION FUNCTION

2-87

8.2.4 Loading configuration information

Use the tblldnxsv command to load the information output from the confnxsv command to
the specified site as control tables.

tblldnxsv site_name ON/OFF [Enter]

By running this command, the configuration information is loaded to the actual environment
in the machine.
If you specify the ON option, the construction information of NXACP is loaded to the actual
environment in the S10VE specified as the site name. Note that NXACP is forcibly stopped
temporarily while the construction information is loaded.
If you specify the OFF option, the construction information of NXACP is loaded to a
memory image file in the S10VE specified as the site name. When loading the memory
image file to the actual environment in the S10VE, use the remote loading command (svrpl)
provided by RPDP to load the whole construction information at the same time.

<Error output on the monitor and its contents>

Parameter count error: The following message is displayed.
parameter number out of range
usage:tblldnxsv site ON/OFF

Error generated during execution: If an RPDP-related error is displayed and the execution
is aborted, refer to S10VE Software Manual Operation
RPDP for Windows® (manual number SEE-3-133).

<Output on the monitor during execution and its contents>

If the command is executed without an error, the following messages are output by the
command.

*** NXACP/S10VE TABLE LOAD START(CPU_name)***
 ｜

*** CP(site_name)TABLE LOAD OK !! ***
 ｜

*** HP(site_name) TABLE LOAD OK !! ***
*** NXACP/S10VE TABLE LOAD END ***

[Note]

When you run the tblldnxsv command after all construction files are copied, make sure
that you delete all obj files under the OBJ directory before you run the command. (The
tblldnxsv command compares obj files, and consequently, if construction files are newly
copied, the tblldnxhr command thinks that the construction information is being loaded to
the site backup file. As a result, tables are not loaded correctly.)

Checks the table load for CP.

Checks the table load for HP.

8. SYSTEM CONSTRUCTION FUNCTION

2-88

8.3 Estimating Required Memory Capacity

In NXACP, you can configure maximum limits, table counts, and other settings as system
configuration parameters to adapt to various system configurations. When you specify these
parameters, use the following method to calculate the memory capacity necessary for
constructing NXACP. The identifiers shown below are those for construction information.
When memory is actually allocated, in a page unit (4096 bytes) is allocated to fit the total
capacity for each processor.

Table 2-24 Capacity Calculation Sheet

Area name
Size of one case in bytes

(corresponding construction
file name)

Case count
(corresponding construction file name)

Total (*2)
(in bytes)

Common fixed block 53,248

L
oc

al
 n

od
e Receive buffer RBUFSZ(df0)+228 RBUFCNT(df0)

TCD
management
block

4

MAXUSETCD(df0) - MINUSETCD(df0) + 1

64

USETCDCNT(df0)

L
oc

al
 D

F

Send buffer SBUFSZ(dfN)+100 (*3) SBUFCNT(dfN)

Receive buffer RBUFSZ(dfN)+228 (*4) RBUFCNT(dfN)

TCD
management
block

4 MAXUSETCD(dfN) - MINUSETCD(dfN) + 1

64 USETCDCNT(dfN)

Send MCG
management
block

16 MAXSNDMCG(dfN) - MINSNDMCG(dfN) + 1

Receive MCG
management
block

1 MAXRCVMCG(dfN) - MINRCVMCG(dfN) + 1

32 RCVMCGCNT(dfN)

Node
management
block

32 MAXNODENO(dfN) - MINNODENO(dfN) + 1

32 RCVMCGCNT(dfN) × (number of defined
nodes) (*1)

R
em

ot
e

D
F

Send buffer SBUFSZ (*5) +100 (*3) SBUFCNT(dfN)

Receive buffer RBUFSZ (*5) +228 (*4) RBUFCNT(dfN)

TCD
management
block

4 MAXUSETCD(dfN) - MINUSETCD(dfN) + 1

64 USETCDCNT(dfN)

Send MCG
management
block

16 MAXSNDMCG(dfN) - MINSNDMCG(dfN) + 1

Node
management
block

32 MAXNODENO(dfN) - MINNODENO(dfN) + 1

32 RCVMCGCNT (*3) × (number of defined
nodes) (*1)

Trace block 32 TRCCS

Total

(*1) (number of defined nodes) means MAXNODENO(dfN) - MINNODENO(dfN) + 1.
(*2) The total is calculated as (Size of one case in bytes) ×(Case count).
(*3) 100 here refers to the size of send buffer management information.
(*4) 228 here refers to the size of receive buffer management information.
(*5) Source DF specified for DFTYPE in dfN.

8. SYSTEM CONSTRUCTION FUNCTION

2-89

If memory transfer is used for a local data field, the table capacity is calculated by adding 768
bytes to the numeric value calculated by the method shown above. If an alive signal is
received, the table capacity is calculated by adding 1536 bytes to the numeric value calculated
by the method shown above.

This Page Intentionally Left Blank.

PART 3 MACRO SPECIFICATIONS

1. INTRODUCTION

3-2

CHAPTER 1 INTRODUCTION

1.1 Macro Types and Macro List
NXACP provides macros in the form of IRSUBs. The stack size necessary for issuing a macro
must be allocated by a user task. The return code is directly returned as a value by a macro.
You do not have to use geterrno() to read the value.
Table 3-1 shows a list of NXACP macros.

Table 3-1 Macro List

<Multicast communication macros>

Macro name Summary of function
Stack size
(in bytes)

Issuability
CP HP

nx_put Send a multicast message 2048 Y N
nx_get Send a multicast message 4096 Y N

<Operation management macros>

Macro name Summary of function
Stack size
(in bytes)

Issuability
CP HP

nx_init Start NXACP 4096 Y N
nx_dfup Start a data field 4096 Y N
nx_dfdwn Stop a data field 4096 Y N
nx_quit Stop NXACP 4096 Y N

<Shared memory macros>

Macro name Summary of function
Stack size
(in bytes)

Issuability
CP HP

nx_init_tm Initialize transfer memory 512 Y N

nx_ctl_tm
Start/stop transfer for the transfer
memory

512 Y N

nx_get_tm
Get the control information of
the transfer memory

512 Y N

nx_write_tm
Write data to the transfer
memory

512 Y N

nx_read_tm
Read data from the transfer
memory

512 Y N

Y: Can be issued.
N: Cannot be issued.

[Caution]
 You must always specify “0” for the items currently not used in the macro interface

because some new functions may be assigned to these items in the future.
 Only user tasks can issue NXACP macros. A user task here means a task created with

“RSUTYP=u” specified.

2. MULTICAST COMMUNICATION MACROS

3-3

CHAPTER 2 MULTICAST COMMUNICATION MACROS

2.1 nx_put
[Name]
nx_put - Send a message

[Syntax]
#include <nxacp.h>
long nx_put (msg, msglen, ginfo);

char *msg;
long *msglen;
nx_ginfo *ginfo;

[Parameters]
msg[in] Specifies the start address of the user data to be sent.
msglen[in] Specifies the size of the user data to be sent (in bytes).
nx_ginfo[in] Specifies the following transmission information.
typedef struct {
 unsigned char dfn; /* Transmission destination data field number */
 char fu1; /* For future use (Fixed to 0) */
 unsigned short mgn; /* Transmission destination multicast group number */
 unsigned short tcd; /* Transmission transaction code */
 short fu2; /* For future use (Fixed to 0) */
 unsigned long sa; /* This area is used for nx_get() and not used for nx_put().

(Fixed to 0) */
 long rcvlen; /* This area is used for nx_get() and not used for nx_put().

(Fixed to 0) */
}nx_ginfo;

[Description of the function]
The nx_put() macro only supports multicast one-way communication. By issuing nx_put()
once, one message is broadcast into one data field.
Specify the start address of the transmission message area for “msg” and the length of
transmission data in bytes for “msglen”. Up to 16 KB of data can be transmitted at one time.
If you want to send a message to the local node, specify “0” for dfn as a destination data
field. As a result, NXACP does not send the message to the network, and internally sends the
message back to the local node.
If you want to send a message to other nodes, specify a value other than “0” for dfn. As a
result, NXACP does not send the message back to the local node.
For this reason, you cannot send a message to both the local node and other nodes by issuing
nx_put() once. If you want to send the same message to the local node and also other nodes,
you must issue nx_put() multiple times with different destination data field numbers.
The nx_put() macro returns when the macro stores the transmission data in the queue in
NXACP.
Only a non-blocking call is supported by nx_put(). If allocating space for the transmission
data in the queue fails due to the queue being full or other reason, the macro returns with an
error without retrying allocating space in the queue.
NXACP determines and controls the priority levels and data modes of transmission
messages.

2. MULTICAST COMMUNICATION MACROS

3-4

[Return value]
When nx_put finishes normally, 0 is returned.
If nx_put terminates with an error, the following value is returned.

0x001: NXACP has not been initialized.
0x003: Construction information has not been loaded.
0x102: The data field specified by dfn has not been defined.
0x103: The data field specified by dfn has not been initialized.
0x108: The data field of another PU specified for dfn has not been initialized (including the

period when the state is transitioning).
0x111: The value of mgn is out of the configurable range (1 to 255).
0x112: The multicast group specified by mgn has not been defined.
0x121: The value of tcd is out of the configurable range (1 to 59999) or has not been defined.
0x131: The value of msglen is out of the configurable range (0 to 16384).
0x201: Allocating space for the request in the send buffer failed.
0x211: All network modules have failed or are in the CARDOFF state.
0x231: An error has been detected in the inter-PU communication.
0x301: The task number of the task that issued the request is out of range (1 to 208).
0x303: The value of tcd has not been defined. (This code is used only when the TCD

transmission permission check is enabled.)

[Note]
The information about the data fields and multicast groups to be specified as a transmission
destination must be set up in the data field construction information and multicast group
construction information respectively.
Only information of the errors that occur before connecting to the send queue in NXACP can
be returned as a return code of nx_put().
If an error occurs in the built-in Ethernet, the error is reported to EAS. Additionally, even
though nx_put() is normally terminated, if a network error occurs before transmission
processing, or if processing stops at nx_quit() or nx_dfdwn(), no message might be sent. If
transmission to the network becomes impossible, transmission messages connected to the
send queue are discarded by NXACP.
NXACP guarantees that the transmission requests from tasks at the same level are processed
and sent to the network in the order of requests. If you want to be absolutely sure that
messages are sent in the order of requests, confirm nx_put() has returned before issuing the
next data transmission request nx_put().

2. MULTICAST COMMUNICATION MACROS

3-5

2.2 nx_get
[Name]
nx_get - Receive a message

[Syntax]
#include <nxacp.h>
int nx_get (buf, buflen, offset, nx_ginfo, time);

char *buf;
long *buflen,*offset;
nx_ginfo *ginfo;
long *time;

[Parameters]
buf[out] Specifies the start address of the area used for storing the reception data. Received

data is stored in this area.
buflen[in] Specifies the size of the area used for storing the reception data.

This value is used as a requested reception size if the size of the arrived message is
larger than this value.

offset[in] Specifies the relative address (the start address of the whole message is 0) of the
part of the message to be received (if only a part of the message is received). If the
whole message is received, specify “0”.

nx_ginfo[out] Specifies the following transmission information.
typedef struct {
 unsigned char dfn; /* Reception destination data field number */
 char fu1; /* For future use (Fixed to 0) */
 unsigned short mgn; /* Reception destination multicast group number */
 unsigned short tcd; /* Reception transaction code */
 short fu2; /* For future use (Fixed to 0) */
 unsigned long sa; /* Sender address (*) */
 long rcvlen; /* Received data size */
 /* xFFFFFFFF if a timeout occurs. */
}nx_ginfo;
time[in] Specifies the reception timeout monitoring time (in seconds).

(*) The meaning of the sender address is the same as SA in “APPENDIX F MESSAGE

HEADER FORMAT”.

2. MULTICAST COMMUNICATION MACROS

3-6

[Description of the function]
The nx_get() macro receives one message that has the TCD specified at system construction.
Specify the start address of the reception message area for “buf” and the size of the area for
“msglen”.
Specify the relative address (the start address of the whole message is 0) of the part of the
message to be received (if only a part of the message is received).
When data is received, the received data is stored in buf, and the size of the received data is
stored in rcvlen.
Only the part of the received data specified by msg_offset is stored. If the size of the received
message is larger than buflen, the first buflen bytes of the message starting from the relative
address specified by offset are stored in buf.
Up to 16 KB of data can be received by one call of nx_get().
The detailed information of the received data including the sender data field number, sender
node number, destination multicast group, and transaction code is stored in nx_ginfo.
For time, specify the duration of time that nx_get() waits for data to arrive. You can specify a
value between -1 and 3600 (in seconds).
If you specify “0” for time, nx_get() waits indefinitely for a message to arrive.
If you do not want to wait for a message when a message has not arrived yet, specify “-1” for
time. When you specify “-1” for time, nx_get() processes the received message if a message
has already arrived. If not, nx_get() returns with return code 0, and “-1” is set in rcvlen.
Also when a timeout occurs, nx_get() returns control to the user task with return code 0
because nx_get() exits normally as a routine in NXACP, and “-1” is set in rcvlen.
The messages to be received are specified at system construction. The nx_get() macro cannot
receive a specific message select.
Received messages are connected to user task queues in the order of reception from the
network. Then the messages are serviced first-in first-out (FIFO order by each user task.

[Return value]
When nx_get finishes normally, 0 is returned, and the size of the received data (0 or larger) is
set in rcvlen.
If a timeout occurs while waiting for a message to arrive, “-1” is set in rcvlen.
If nx_get terminates with an error, the following value is returned.

0x001: NXACP has not been initialized (nx_init() has not been issued) or has been stopped

(nx_quit() has been issued).
This code is also generated when the control information is swapped.

0x003: Construction information has not been loaded.
0x131: A negative value has been set for buflen.
0x141: The value of offset is out of the configurable range (0 to 16384).
0x151: The value of time is out of the configurable range (-1 or between 0 and 3600).

0x202: The receiving buffer was purged when nx_dfdwn() was called.

0x301: The task number of the task that issued the request is out of range (1 to 208).
0x302: Reception TCDs have not been defined for the caller user task.

2. MULTICAST COMMUNICATION MACROS

3-7

[Note]
The TCDs of the messages to be received must be defined in advance at system construction.
Only the information of the errors that occur before a message is received from the receive
queue in NXACP can be returned as a return code of nx_get(). If an error occurs in the built-
in Ethernet, the error is reported to EAS.
If you stop a data field using nx_dfdwn(), or if you stop NXACP using nx_quit(), the
messages waiting to be processed are all purged.
In addition, when nx_quit() is issued, nx_get() is aborted and returns control to a user.

3. OPERATION MANAGEMENT MACROS

3-8

CHAPTER 3 OPERATION MANAGEMENT MACROS

3.1 nx_init
[Name]
nx_init - Start NXACP

[Syntax]
#include <nxacp.h>
long nx_init (info)

long info[3];

[Parameters]
info[out] Specifies the start address of the detailed information storage area used when

initialization fails.

[Description of the function]
The nx_init() macro starts the process of NXACP and initializes shared tables.
A user must run this macro first when starting the system.

[Return value]
When nx_init() finishes normally, 0 is returned.
If nx_init() terminates with an error, the following value is returned. For information about
the relationship with the error code stored in the detailed information storage area, see
“APPENDIX A RETURN CODE DETAILS”.

0x002: NXACP has already been initialized.
0x003: Construction information has not been loaded.
0x004: The NXACP system tasks have not been loaded (including a task startup failure).
0x1e1: The network module type or IP address is invalid.
0x1e3: An error has been detected in the network module type in the duplexed LAN

configuration.
0x1f1: An error has been detected in the socket macro.

0x2e1: The NXACP state is currently transitioning.

[Note]
 You can issue nx_get() immediately after you issue nx_init().
 In NXACP, an installation check for the network module is performed in nx_init().

Therefore, when the uninstalled UNO is defined, processing stops as an error.
 Even when a data field is constructed as duplexed LANs, nx_init() aborts the initialization

process when an error is detected in either one of the duplexed LANs.

3. OPERATION MANAGEMENT MACROS

3-9

3.2 nx_dfup
[Name]
nx_dfup - Start a data field

[Syntax]
#include <nxacp.h>
long nx_dfup (dfn, nmode, mmode, info)

long *dfn;
long *nmode;
long *mmode;
long info[3];

[Parameters]
dfn[in] Specifies the data field number of the data field to be initialized.
nmode[in] Specifies a node mode.
mmode[in] Specifies a message mode.
info[out] Specifies the start address of the detailed information storage area used when

initialization fails.

[Description of the function]
The nx_dfup() macro puts the specified data field into the OPEN state. To receive/send a
message from/to a data field, you must issue nx_dfup() to put the data field into the OPEN
state. Transmission of alive signals also starts when nx_dfup() is issued.
The following explains the values you can specify for nmode and mmode and their meanings.
 nmode

0: Online mode
1: Test mode
 mmode (valid only when nmode is Test mode (1).)

0: Online messages only
1: Test messages only

You can start only one data field by issuing nx_dfup() once. You must issue nx_dfup() the
same number of times as the data fields you want to use.
If nx_dfup() terminates with an error, the specified data field remains in the CLOSE state.
When nx_dfup() terminates with an error, nx_dfup() releases all the resources, such as ports
that have been allocated, until the error is detected.
If the error is caused by an error in the construction information, check and correct the
construction information. Especially, make sure you use port numbers different from other
subsystems.
When duplexed LANs are used for a data field, nx_dfup() terminates with an error if both
LANs cannot be initialized normally. The data field cannot be put into the OPEN state if only
one of the duplexed LANs can be initialized normally. Remove the error immediately, and
then retry the operation.

3. OPERATION MANAGEMENT MACROS

3-10

[Return value]
When nx_dfup() finishes normally, 0 is returned.
If nx_dfup() terminates with an error, the following value is returned. For information about
the relationship with the error code stored in the detailed information storage area, see
“APPENDIX A RETURN CODE DETAILS”.

0x001: NXACP is not initialized.
0x003: Construction information is not loaded.
0x004: The NXACP system tasks are not loaded (including a task startup failure).

0x101: The value of dfn is out of the configurable range.
0x102: The data field specified by dfn is not defined.
0x104: The data field specified by dfn is already initialized.
0x106: The source data field is not defined.
0x107: The source data field is not initialized.

0x161: An nmode setting error.
0x162: An mmode setting error.

(Specify “0” for mmode when nmode is 0 (online mode). If you specify a non-zero
value, the value is invalid.)

0x1e6: All modules of the UNOs for the data field specified in the construction information
failed.

0x1f1: An error was detected in the socket macro.

0x2e1: The NXACP state is currently transitioning.
0x2f1: The state of the data field dfn is currently transitioning.
0x2f2: The state of the source data field is currently transitioning.

[Note]
Immediately after nx_dfup() is issued, receiving messages from the network starts.
The later nx_get() starts being issued after nx_dfup() is issued, the higher the possibility of
buffer overflow. (While a message receiver user task is in the IDLE or DORMANT state,
received messages for the task are discarded by NXACP.)
You must register a subroutine to EAS before issuing nx_dfup(). If an error is detected while
nx_dfup() is executed, nx_dfup() terminates and returns an error. At the same time, the
network-related settings revert back to the original settings used before nx_dfup() is issued,
and the control is returned to the user. If an error occurs in the built-in Ethernet, the error is
reported to EAS. We recommend making it possible to analyze the location of the failure
based on not only the error return code from nx_dfup(), but also its error log information.
If nx_dfup() is issued again to the same data field without issuing nx_dfdwn() to the data
field in between, an error is returned (error code: 0x104). The mode information specified in
the arguments of the second nx_dfup() are ignored, and the mode information in the first
nx_dfup() continues to be used.
Before you start local node communication, you must OPEN data field #0 dedicated to local
node communication.

3. OPERATION MANAGEMENT MACROS

3-11

[Note] Continued
 Even when a data field is constructed as duplexed LANs, nx_dfup() aborts the

initialization process when an error is detected in either one of the duplexed LANs.
 If you issue this macro for a data field when it is specified in the multicast group

definition file (mgnN) that ports are not used (=0) for the data field, this macro
terminates and returns error code 0x1f1.

3. OPERATION MANAGEMENT MACROS

3-12

3.3 nx_dfdwn
[Name]
nx_dfdwn - Close a data field

[Syntax]
#include <nxacp.h>
long nx_dfdwn (dfn)

long *dfn;

[Parameters]
dfn[in] Specifies the data field number of the data field to be stopped.

[Description of the function]
The nx_dfdwn() macro changes the state of the specified data field from OPEN to CLOSED.
Note that, when a local data field is specified, the remote data fields that are connected
through the local data field are also put into the CLOSED state.
When nx_dfdwn() is issued to a data field, the data field stops accepting message
transmission requests from user tasks, stops the reception process for the messages targeted
to itself, and purges the messages waiting to be processed (waiting to be sent, waiting to be
received, or being reconstructed). At the same time, if a task has issued nx_get() to the data
field, the nx_get() terminates and returns error code 0x202 to the task. For this reason, the
task can reissue nx_get() to get a message from other data fields.
The nx_dfdwn() macro sends alive signals for scheduled shutdown to notify the status change
to other nodes.
You can stop only one data field by issuing nx_dfdwn() once. You must issue nx_dfdwn() the
same number of times as the data fields in the OPEN state.

[Return value]
When nx_dfdwn() finishes normally, 0 is returned.
If nx_dfdwn() terminates with an error, the following value is returned.

0x001: NXACP has not been initialized or has been stopped.
0x003: Construction information has not been loaded.

0x101: The value of dfn is out of the configurable range (0 to 255).
0x102: The data field specified by dfn has not been defined.
0x103: The data field specified by dfn has not been initialized.

0x2e1: The NXACP state is currently transitioning.
0x2f1: The state of the data field dfn is currently transitioning.
0x2f2: The state of the source data field is currently transitioning.
0x2f3: The state of a remote data field is currently transitioning.

[Note]
Even when an error is detected in the closing process of ports, etc., while nx_dfdwn() is
executed, nx_dfdwn() does not terminate with an error.
The nx_dfdwn() macro sends an alive signal in the SHUTDOWN mode three times at
constant intervals, and as a result, takes 5 to 10 seconds to finish.

3. OPERATION MANAGEMENT MACROS

3-13

3.4 nx_quit
[Name]
nx_quit - Stop NXACP

[Syntax]
#include <nxacp.h>
long nx_quit()

[Parameters]
None

[Description of the function]
The nx_quit() macro stops NXACP.
If you issue nx_quit() without issuing nx_dfdwn() beforehand, all data fields are stopped.
When you issue nx_quit() without issuing nx_dfdwn(), nx_quit() stops all data fields from
accepting message transmission requests from user tasks, stops the reception process for the
messages targeted to all data fields, and sends alive signals in the SHUTDOWN mode to
notify the status change to other nodes.

[Return value]
When nx_quit() finishes normally, 0 is returned.
If nx_quit() terminates with an error, the following value is returned.

0x001: NXACP is not initialized.
0x003: Construction information is not loaded.

0x2e1: The NXACP state is currently transitioning.
0x2f1: At least one data field is currently transitioning. “Currently transitioning” means that

either one of the following events are being processed.
nx_dfup() and nx_dfdwn() are being processed.

[Note]
Even when an error is detected in the closing process of ports, etc., while nx_quit() is
executed, nx_quit() does not terminate with an error.
Like nx_dfdwn(), nx_quit() sends an alive signal in the SHUTDOWN mode three times at a
constant intervals, and as a result, takes 5 to 10 seconds to finish.

4. SHARED MEMORY MACROS

3-14

CHAPTER 4 SHARED MEMORY MACROS

4.1 nx_init_tm

[Name]
nx_init_tm - Initialize transfer memory

[Syntax]
#include <nxacp.h>
long nx_init_tm(df, tmid, tmmap)

long *df;
long *tmid;
struct tmmap *tmmap;

The following shows the details of the tmmap structure.
struct tmmap {
 long m_type;
 long m_mcg;
 long m_cflags;
 long m_memid;
 long m_mincyctm;
 long m_caseno;
 long m_maxblk;
 struct {
 long m_cyctm;
 long m_blkno;
 long m_blkcnt;
 }m_send[m_caseno];
} tmmap;

4. SHARED MEMORY MACROS

3-15

[Parameters]
df: Specifies a data field number between 1 and the maximum number of data fields.

You cannot select a data field for local node communication (DF=0) or a remote data
field.

tmid: Specifies a transfer memory ID between 1 and 4.
m_type: Specifies a memory transfer type.

TMEM_SOFT(0): Periodic transmission type software transfer
TMEM_FAST(2): Split-transmission type software transfer

m_mcg: Specifies a multicast group number between 1 and the maximum number of
multicast groups.

m_cflags: Specifies transfer memory control flags. Specify this item when you use the
following options. If you do not use the following options, specify “0” for this
item.
 CMF_ACL(1): Enables mutual exclusion.

(You cannot enable this flag for high-speed software transfer.)
 CMF_COLERR(2): Enables duplication check for write areas.

If you want to enable both, specify these two flags with
“or” (CMF_ACL | CMF_COLERR).

m_memid: Specifies the address of CM or GLB assigned to the transfer memory when
software transfer is used.

m_mincyctm: Specifies the minimum cycle of cyclic communication (minimum of the
m_cyctm values described below). Specify the same value for a TMID on all
computers that use the TMID.
For software transfer, this value is not used, and you must specify “0” for this
item.

m_caseno: Specifies the number of valid transmission areas (that is, the number of elements
in m_send[N] described below).
If transmission is disabled for transfer memory from this CPU, specify “0” for this
item. Then, you do not have to set up m_send[].

m_maxblk: Specifies the maximum block number used by transfer memory.
m_send[m_caseno]: Specifies the transmission area information of transfer memory.
 struct {

long m_cyctm; Specifies the transfer cycle for each transfer area.
For software transfer, specify a value in milliseconds.
(Example: 1 second = 1000)

long m_blkno; Specifies the start block number of the transfer area relative to the
beginning of the transfer memory.
For software transfer:0 to 16383

long m_blkcnt; Specifies the number of blocks in the transfer area.
For hardware transfer: 1 to 15872
For software transfer: 1 to 255

}m_send[m_caseno];

4. SHARED MEMORY MACROS

3-16

[Description of the function]
This macro specifies the attributes of the transfer memory and allocates physical memory to
the transfer memory.
Issue this macro when the system starts or when new transfer memory is created.

[NOTE]
If you specify improper values for the number of transfer cases, transfer size, transfer cycle,
or the number of connected nodes when you use memory transfer, the CPU load may
increase. You must choose appropriate values for these items when you design the system.

[Return value]
When nx_init_tm() finishes normally, 0 is returned.
If nx_init_tm() terminates with an error, the following value is returned.

0x001: NXACP has been stopped.
0x003: Control tables have not been loaded.

0x101: The data field number is out of range.
0x102: The data field has not been defined.
0x103: The data field has not been initialized.
0x105: The data field is a remote data field.
0x111: The multicast group number is out of range.
0x112: The multicast group has not been defined.

0x501: The TMID is out of range.
0x502: The order of issuing macros is not correct.
0x503: The type of the transfer memory is not correct.
0x504: An error has been found in the specified transfer memory control flags.
0x505: The transfer memory cycle is not correct.
0x506: The number of transmission areas is out of range.
0x507: The block number is out of range.
0x508: The number of blocks is out of range.
0x509: The specified address is not on a two-byte boundary.
0x50A: Transmission areas in the local node are overlapped.
0x511: A transmission area is defined outside the transfer memory (mismatch between

m_blkno and m_blkcnt).
0x513: Transfer memory is outside the global area.

4. SHARED MEMORY MACROS

3-17

[Note]
The following table shows the differences among software transfer parameters.

Table 3-2 Parameter List

 Transfer type
Periodic transmission
type software transfer

Split transmission type
software transfer

 Parameter Configurable range
df 1 to 255
tmid 1 to 4
m_type TMEM_SOFT TMEM_FAST
m_mcg 1 to 255
m_cflags 1 to 3 0 and 2
m_memid GLB address
m_mincycle –
m_caseno 0 to 9
m_maxblk 1 to 16384
m_cyctm milliseconds (*)
m_blkno 0 to 16383
m_blkcnt 1 to 255

(*) Specify a value between 100 ms and 86400000 ms for periodic-
transmission type software transfer.
Specify a value between 10 ms and 86400000 ms for split-
transmission type software transfer.

The parameter indicated as “-” is invalid.
Specify 0 for the parameter.

4. SHARED MEMORY MACROS

3-18

4.2 nx_ctl_tm
[Name]
nx_ctl_tm - Control transfer memory

[Syntax]
#include <nxacp.h>
long nx_ctl_tm(df, tmid, cmd, hrtn)

long *df, *tmid,*cmd,*hrtn;

[Parameters]
df: Data field number
tmid: Transfer memory identifier
cmd: Memory transfer type

TM_START(2): Starts transmission and reception for the specified TMID.
TM_READ(1): Starts only reception for the specified TMID.
TM_STOP(0): Stops the transfer for the specified TMID.

hrtn: Area used for storing an error cause code generated during hardware transfer (No value
can be stored because hardware transfer is not supported.)

[Description of the function]
This macro has the following transfer memory control functions.
Before you start or stop transfer, you must initialize the transfer memory using the
nx_init_tm macro.
 Transfer start

Starts both transmission and reception for transfer memory.
 Reception start

Starts only reception for transfer memory.
 Transfer stop

Stops transfer.

4. SHARED MEMORY MACROS

3-19

[Return value]
When nx_ctl_tm() finishes normally, 0 is returned.
If nx_ctl_tm() terminates with an error, the following value is returned.

0x001: NXACP was stopped.
0x003: Control tables are not loaded.

0x101: The data field number is out of range.
0x102: The data field is not defined.
0x105: The data field is a remote data field.0x501: The TMID is out of range.

0x502: The order of issuing macros is not correct.
0x504: An error was found in the specified transfer memory control flags.

4. SHARED MEMORY MACROS

3-20

4.3 nx_get_tm
[Name]
nx_get_tm - Get the transfer memory information

[Syntax]
#include <nxacp.h>
long nx_get_tm(df, tmid, tmmap)

long *df, *tmid;
struct tmmap *tmmap;

[Parameters]
df: Data field number of the data field you want to get the information for (between 1 and

maximum DF).
tmid: Transfer memory identifier of the transfer memory area you want to get the information

for (between 1 and maximum TMID).
tmmap: Start address of the area used for storing the retrieved information

[Description of the function]
This macro retrieves the attributes of the transfer memory to the specified area.
For information about the tmmap structure, see “4.1 nx_init_tm”.

[Return value]
When nx_get_tm() finishes normally, the retrieved values are stored in tmmap, and 0 is
returned.
If nx_get_tm() terminates with an error, the following value is returned.

0x001: NXACP has stopped.
0x003: Control tables are not loaded.

0x101: The data field number is out of range.
0x102: The data field is not defined.
0x105: The data field is remote.

0x501: The TMID is out of range.
0x502: Transfer memory ID has not been initialized.

4. SHARED MEMORY MACROS

3-21

4.4 nx_write_tm
[Name]
nx_write_tm - Write to transfer memory

[Syntax]
#include <nxacp.h>
long nx_write_tm(df, tmid, offset, da, dc, hrtn)

long *df;
long *tmid;
long *offset;
long *da;
long *dc;
long *hrtn;

[Parameters]
df: Data field number of the data field for the transfer memory you want to write to.
tmid: Transfer memory identifier (TMID) of the transfer memory area you want to write to.
offset: Write position in the transfer memory area measured in bytes from the beginning (The

position must be at a two-byte boundary.)
da: User data area address (The address must be at a 2 byte boundary.)
dc: User data area size
hrtn: Area used for storing an error cause code generated during hardware transfer (No value

can be stored because hardware transfer is not supported.)

[Description of the function]
This macro writes the data specified by da and dc to the transfer area specified by df and
tmid.
If software transfer is used with mutual exclusion enabled, data consistency for up to 16320
bytes is guaranteed.
If software transfer is used with mutual exclusion disabled, or if high-speed software transfer
is used, data consistency for four bytes is guaranteed only if offset, da, and dc are all
multiples of four.

4. SHARED MEMORY MACROS

3-22

[Return value]
When nx_write_tm() finishes normally, 0 is returned.
If nx_write_tm() terminates with an error, the following value is returned.

0x001: NXACP has been stopped.
0x003: Control tables are not loaded.

0x101: The data field number is out of range.
0x102: The data field is not defined.
0x105: The data field is remote.
0x141: There is an error in the specified offset size.

0x501: The TMID is out of range.
0x502: The order of issuing macros is not correct.
0x50B: There is an error in the specified da.
0x50C: There is an error in the specified dc.
0x531: Failed to allocate transfer memory.

4. SHARED MEMORY MACROS

3-23

4.5 nx_read_tm
[Name]
nx_read_tm - Read from transfer memory

[Syntax]
#include <nxacp.h>
long nx_read_tm(df, tmid, offset, da, dc, hrtn)

long *df;
long *tmid;
long *offset;
long *da;
long *dc;
long *hrtn;

[Parameters]
df: Data field number of the data field for the transfer memory you want to read from.
tmid: Transfer memory identifier (TMID) of the transfer memory area you want to read from.
offset: Read position in the transfer memory area measured in bytes from the beginning (The

position must be at a two-byte boundary.)
da: User data area address used for reading (The address must be at a 2-byte boundary.)
dc: User data area size used for reading.
hrtn: Area used for storing an error cause code generated during hardware transfer (No value

can be stored because hardware transfer is not supported.)

[Description of the function]
This macro reads the data specified by da and dc from the transfer area specified by df and
tmid.
If software transfer is used with mutual exclusion enabled, data consistency for up to 16320
bytes is guaranteed. If software transfer is used with mutual exclusion disabled, or if high-
speed software transfer is used, data consistency for four bytes is guaranteed only if offset,
da, and dc are all multiples of four.

4. SHARED MEMORY MACROS

3-24

[Return value]
When nx_read_tm() finishes normally, 0 is returned.
If nx_read_tm() terminates with an error, the following value is returned.

0x001: NXACP has stopped.
0x003: Control tables are not loaded.

0x101: The data field number is out of range.
0x102: The data field is not defined.
0x105: The data field is remote.
0x141: There is an error in the specified offset size.

0x501: The TMID is out of range.
0x502: The order of issuing macros is not correct.
0x50B: There is an error in the specified da.
0x50C: There is an error in the specified dc.
0x512: The specified dc means usage outside transfer memory.
0x531: Failed to allocate transfer memory.

APPENDIXES

APPENDIX A RETURN CODE DETAILS

A-2

APPENDIX A RETURN CODE DETAILS

(1) Return codes of multicast communication macros
(1/2)

Code Description User action

0x0001 NXACP has not been initialized or has been
stopped.

Initialize NXACP.

0x0002 NXACP has already been initialized. NXACP has already been initialized. (Initialization is not
required.)

0x0003 Control tables have not been loaded. Construct and load construction information.

0x0004 The NXACP tasks have not been loaded or the
task startup failed.

Reload the main part of NXACP. (*1)

0x0101 The specified data field number is out of range. Check the data field number, and then retry.

0x0102 The specified data field is not defined. Check the data field number, and then retry.

0x0103 The specified data field has not been
initialized.

Check the data field number, and then retry.

0x0104 The specified data field has already been
initialized.

Check the data field number, and then retry.

0x0105 There is an error in the specified data field. Check the data field number, and then retry.

0x0106 The source data field has not been defined. Check the source data field number, and then retry.

0x0107 The source data field has not been initialized. Check the source data field number, and then retry.

0x0108 The DF at the destination PU of inter-PU
communication has not been initialized.

Initialize the DF at the destination PU, and then retry.

0x0111 The specified multicast group number is out of
range.

Check the multicast group number, and then retry.

0x0112 The specified multicast group has not been
defined.

Check the multicast group number, and then retry.

0x0121 The specified transaction code is out of range. Check the transaction code, and then retry.

0x0131 The specified message/buffer size is out of
range.

Check the message/buffer size, and then retry.

0x0141 The specified offset size is out of range. Check the specified offset size, and then retry.

0x0151 The specified timeout monitoring time is out of
range.

Check the timeout, and then retry.

0x0161 Node mode setting error Check the node mode, and then retry.

0x0162 Message mode setting error Check the message mode, and then retry.

0x01E1 Device type or IP address error Check the unit number and IP address, and then retry.

0x01E3 Network combination error in duplexed LANs. Check the device for each UNO, and then retry.

0x01E6 All modules have failed. Replace the modules, and then retry.

0x01F1 Socket macro error For details, see the General Description manual. (*2)

APPENDIX A RETURN CODE DETAILS

A-3

(2/2)
Code Description User action

0x0201 No space available in the send buffer. Please retry.

0x0202 The data field has been down during the
reception process.

Please retry.

0x0211 Transmission not possible. Replace the module.

0x0231 An error has been detected in inter-PU
communication.

Please retry.

0x02E1 The NXACP state is currently transitioning. Please retry.

0x02F1 The state of the specified data field is currently
transitioning.

Please retry.

0x02F2 The state of the source data field is currently
transitioning.

Please retry.

0x02F3 The state of a remote data field is currently
transitioning.

Please retry.

0x0301 The task number of the task that issued the
macro is out of range.

The task number of the task that can issue the macro is
between 1 and 208.

0x0302 Reception TCDs have not been defined. Define reception TCDs for the task.

0x0303 Transmission TCDs have not been defined. Check and correct the transmission permission check
TCD definition, and then retry.

(*1) 0x0004 includes a task startup failure. The task startup involves QUEUEs and TIMERs.
For TIMER, two tasks are registered to the timer in NXACP. Consequently, if the number of tasks users have
registered to the timer reaches the system limit before NXACP starts, the task startup is aborted due to this error.

(*2) The return code from RCTLNET is saved in the detailed code storage area. Check this return code in S10VE
User’s Manual General Description (manual number SEE-1-001).

APPENDIX A RETURN CODE DETAILS

A-4

<Correspondence between return codes and macros>

Code nx_init nx_dfup nx_dfdwn nx_quit nx_put nx_get INFO1 INFO2 INFO3
0x0001 – Y Y Y Y Y – – –
0x0002 Y – – – – – – – –
0x0003 Y Y Y Y Y Y – – –
0x0004 Y Y – – – – TN – –
0x0101 – Y Y – – – – – –
0x0102 – Y Y – Y – – – –
0x0103 – – Y – Y – – – –
0x0104 – Y – – – – – – –
0x0105 – – – – – – – – –
0x0106 – Y – – – – – – –
0x0107 – Y – – – – – – –
0x0108 – – – – Y – – – –
0x0111 – – – – Y – – – –
0x0112 – – – – Y – – – –
0x0121 – – – – Y – – – –
0x0131 – – – – Y Y – – –
0x0141 – – – – – Y – – –
0x0151 – – – – – Y – – –
0x0161 – Y – – – – – – –
0x0162 – Y – – – – – – –
0x01E1 Y – – – – – UNO – –
0x01E3 Y – – – – – DFNO – –
0x01E6 - Y – – – – UNO1 UNO2 –
0x01F1 Y Y – – – – UNO MCODE ERRNO
0x0201 – – – – Y – – – –
0x0202 – – – – – Y – – –
0x0211 – – – – Y – – – –
0x0231 – – – – Y – – – –
0x02E1 Y Y Y Y – – – – –
0x02F1 – Y Y Y – – – – –
0x02F2 – Y Y – – – – – –
0x02F3 – – Y – – – – – –
0x0301 – – – – Y Y – – –
0x0302 – – – – – Y – – –
0x0303 – – – – Y – – – –

Y: This error code can be returned. –: This error code is never returned.
INFO1 to 3 are parameters of nx_init() and nx_dfup(), and contain detailed information for when the macro returns with
an error.
TN: Task number
UNO: Unit number (When the code is 0x1E1, the UNOs of two LANs are stored in the upper 2 bytes and the lower 2

bytes.)
MCODE: RCTLNET macro code

SOCKET: 1
BIND: 2
GETSOCKOPT: 3
SETSOCKOPT: 4

ERRNO: RCTLNET macro return code (*)
SLOTNO: Slot number
DFNO: Data field number
(*) For details about the return code of the macro, refer to S10VE User’s Manual General Description (manual number

SEE-1-001).

APPENDIX A RETURN CODE DETAILS

A-5

[Error code system]
The error code system for multicast communication macros is as follows. Note that X denotes
any numerical character.
0x00XX: Errors generated when installation has not been finished or installation has failed
0x01XX: Errors generated by a parameter check

Hardware errors are also included for initialization requests (nx_init() and
nx_dfup()).

0x02XX: Timing errors These errors may be resolved by simply retrying.
However, be cautious about the timing of retry.
If you immediately retry and the same timing error is generated, an infinite loop
might result.

0x03XX: Errors in the user’s system design

APPENDIX A RETURN CODE DETAILS

A-6

(2) Return codes of shared memory macros

Code Description User action
0x0501 TMID out of range Check and correct the TMID, and then retry.
0x0502 Macro calling procedure error Check and correct the calling procedure for each

macro, and then retry.
0x0503 Transfer type specification error Check and correct the transfer type, and then retry.
0x0504 Transfer control flag specification error Check and correct the transfer control flags, and then

retry.
0x0505 Transfer cycle specification error Check and correct the transfer cycle, and then retry.
0x0506 Transmission area count out of range Check and correct the number of transmission areas,

and then retry.
0x0507 Block number out of range Check and correct the block number, and then retry.
0x0508 Block count out of range Check and correct the block number, and then retry.
0x0509 Specified address specification error

(odd address)
Check the specified address, and then retry.

0x050A Overlapped transmission areas in the
local node

Check and correct the transmission areas, and then
retry.

0x050B DA specification error Check and correct the DA, and then retry.
0x050C DC specification error Check and correct the DC, and then retry.

0x0531 Failed to allocate transfer memory

(rserv failed)
Make sure that the number of tasks that access the
transfer area is 15 or less.

0x0511 A transmission area is defined outside
the transfer memory.

Check and correct blkno and blkcnt, and then retry.

0x0512 The specified dc means using outside
the transfer memory.

Check and correct the DC, and then retry.

0x0513 Transfer memory is outside the global
area.

Check the specified address, and then retry.

[Error code system]
The error code system for shared memory macros is as follows. Note that X denotes any
numerical character.
0x050X: Errors generated by a parameter check
0x053X: System operational errors

APPENDIX A RETURN CODE DETAILS

A-7

<Correspondence between return codes and macros>

Code nx_init_tm nx_ctl_tm nx_get_tm nx_write_tm nx_read_tm
0x0001 Y Y Y Y Y
0x0003 Y Y Y Y Y

0x0101 Y Y Y Y Y
0x0102 Y Y Y Y Y
0x0103 Y – – – –
0x0105 Y Y Y Y Y

0x0111 Y – – – –
0x0112 Y – – – –

0x0141 – – – Y Y

0x0501 Y Y Y Y Y
0x0502 Y Y Y Y Y
0x0503 Y – – – –
0x0504 Y Y – – –
0x0505 Y – – – –
0x0506 Y – – – –
0x0507 Y – – – –
0x0508 Y – – – –
0x0509 Y – – – –
0x050A Y – – – –
0x050B – – – Y Y
0x050C – – – Y Y

0x0511 Y – – – –
0x0512 – – – – Y
0x0513 Y – – – –

0x0531 – – – Y Y

Y: This error code can be returned. –: This error code is never returned.

APPENDIX A RETURN CODE DETAILS

A-8

(3) List or error codes of the construction command (confnxsv)
• The message format of the output from the confnxsv command is as follows.

Error/Warning: Failure message Failure No.

• The details are shown in the following table.

Failure
No.

Failure message Description of the failure

1300 AAA is out of range
(file:BBB, line:CCC)

AAA is out of range.
(BBB: File name, CCC: Line number)

1302 AAA is multiple defined
(file:BBB)

Multiple instances of AAA are defined.
(BBB: File name)

1303 AAA is undefined (file:BBB) AAA is not defined. (BBB: File name)
1330 Illegal format of name

(file:BBB, line:CCC) “AAA”
The name “AAA” does not follow the correct
format.
(BBB: File name, CCC: Line number)

1331 Illegal format of numeric value
(file:BBB, line:CCC)

The numerical value does not follow the correct
format.
(BBB: File name, CCC: Line number)

1332 Not enough entries
(file:BBB, line:CCC)

Sufficient entries have not been provided for the
line.
(BBB: File name, CCC: Line number)

1333 Max over entries (file:BBB) “AAA” “AAA” exceeds the maximum value.
(BBB: File name)

1356 Resource data unmatch (file:BBB) “AAA” Discrepancies are found in “AAA”.
(BBB: File name)

1651 Specified AAA is already defined
(file:BBB, line:CCC)

AAA is already defined.
(BBB: File name, CCC: Line number)

2653 Specified file is for AAA
(file:BBB)

The specified file is used for AAA.
(BBB: File name)

9001 Specified size is not on AAA byte
boundary
(file:BBB, line:CCC)

The specified value is not a multiple of AAA.
(BBB: File name, CCC: Line number)

9002 Can’t open file “BBB” The BBB file could not be opened.

If an error occurs with construction information on the CP side, check the details of the failure,
and then retry the operation.
If an error occurs with construction information on the HP side, set “0” to MAXDFCNT (the
definition information in nxacp.conf on the HP side), and then retry the operation.

If you execute the tblldnxsv command without
resolving the error, tblldnxsv also terminates
with an error.

APPENDIX B LOG FORMAT

A-9

APPENDIX B LOG FORMAT

The following tables show the error information format to be reported to EAS.

(1) Error notification list

Event summary Code Contents of error notification User handling
Buffer status report 0x0401 The send/receive buffer usage

reached the threshold value or
recovered.

Increase the number of buffer
cases.

Protocol error 0x0201 An error was detected in the NX
header of the received message
and the corresponding message
was discarded.

Check the sender node and
construction information.

Socket error 0x0501 An error was reported from the
socket macro.

Report to the system manager.

Transfer area duplication
error

0x0601 Duplication in the transmission
area for transfer was detected
(only for software transfer).

Review the send address for
transfer.

[Note]
The following table shows the check items for reporting a protocol error (0x0201):

Check item Discard condition Notification Remarks

Receive size 1473 bytes or more
(maximum)

Yes (*1)

Received message Pattern (NUXM) error Yes
Transmission destination
address

Inconsistent DF Yes Check DA
Inconsistent MGN Yes Check DA

Sender address Undefined sender node None (*2)
Receive MCG Undefined MGN None
TCD Undefined TCD None
MODE Inconsistent port mode Yes

(*1) When the received NX header is 63 bytes or less, notification is not performed
(only discarded in NXACP).

(*2) Undefined nodes (out of range) are not reported. It is determined that messages
from the corresponding nodes do not need to be received.

APPENDIX B LOG FORMAT

A-10

(2) EAS input data format (ADB)
For details, refer to S10VE Software Manual CPMS General Description and Macro
Specifications (manual number SEE-3-201).

Name Description
logno Error log number
timestamp Time
type Severity indication (depending on the error type)
class Error detection component class (0x2011 for NXACP)
retcode Disabled (fixed to 0 for NXACP)
errtype Error type (fixed to 10 for NXACP)
flag Error message flag (fixed to 0 for NXACP)
site[16]

Site name

erb[117] (*) Error block (error report data).
Although the area size is fixed to 468 bytes, the size
of valid data differs depending on the error type.

dhpbuf[128] DHP data (512 bytes)

(*) erb is configured in the order of formtype, size, errorcode, detailed
data 1, and data 2... from the beginning, with each item being four
bytes.

0

4
8

12
16
20

22

24

40

512

1024

APPENDIX B LOG FORMAT

A-11

(3) List of error detailed data formats

Name
Buffer status

report
Protocol error Socket error

Transfer area
duplication error

formtype in erb 0x0103 0x0102 0x0104 0x0105
size in erb 64 76 16 24
errorcode in erb 0x0401 0x0201 0x0501 0x0601
Detailed data
(each information
item is four
bytes)

DFN DFN DFN DFN
SPEAK PORTNO DADDR TMID
RPEAK NXHD (*) DPORT CASENO

SOVFCCNT BLKNO
SHWCCNT BLKCNT
SLWCCNT

ROVFCCNT
RHWCCNT
RLWCCNT
SOVFTCNT
SHWTCNT
SLWTCNT

ROVFTCNT
RHWTCNT
RLWTCNT

type NOTE WARNING NONFATAL NONFATAL

(*) NXHD is in a 64-byte configuration and indicates the NX header. For details about the
configuration, refer to “APPENDIX F MESSAGE HEADER FORMAT”.
DFN: Data Field Number
SPEAK: Send Buffer Peak Count
RPEAK: Receive Buffer Peak Count
SOVFCCNT: Send Buffer Overflow Current Count
SHWCCNT: Send Buffer High-Water Current Count
SLWCCNT: Send Buffer Low-Water Current Count
ROVFCCNT: Receive Buffer Overflow Current Count
RHWCCNT: Receive Buffer High-Water Current Count
RLWCCNT: Receive Buffer Low-Water Current Count
SOVFTCNT: Send Buffer Overflow Total Count
SHWTCNT: Send Buffer High-Water Total Count
SLWTCNT: Send Buffer Low-Water Total Count
ROVFTCNT: Receive Buffer Overflow Total Count
RHWTCNT: Receive Buffer High-Water Total Count
RLWTCNT: Receive Buffer Low-Water Total Count
PORTNO: Port Number
DADDR: Destination Address
DPORT: Destination Port
TMID: Transfer Memory Identifier
CASENO: Case Number
BLKNO: Block Number
BLKCNT: Block Count
MERRNO: Macro Error Code

APPENDIX B LOG FORMAT

A-12

(4) Display format
 Buffer status report

RC: Return Code
EC: Error Code
DFN: Data Field Number
SPEAK: Send Buffer Peak Count
RPEAK: Receive Buffer Peak Count
SOVFCCNT: Send Buffer Overflow Current Count
SHWCCNT: Send Buffer High-Water Current Count
SLWCCNT: Send Buffer Low-Water Current Count
ROVFCCNT: Receive Buffer Overflow Current Count
RHWCCNT: Receive Buffer High-Water Current Count
RLWCCNT: Receive Buffer Low-Water Current Count
SOVFTCNT: Send Buffer Overflow Total Count
SHWTCNT: Send Buffer High-Water Total Count
SLWTCNT: Send Buffer Low-Water Total Count
ROVFTCNT: Receive Buffer Overflow Total Count
RHWTCNT: Receive Buffer High-Water Total Count
RLWTCNT: Receive Buffer Low-Water Total Count

%NX-I-SOFT-0103 SITE=xxxxxxxxxxxxxx RC=00000000 yyyy/mm/dd hh:mm:ss LOG=xxx
 EC=000000401 Buffer status
 DFN =XXXXXXXX SPEAK =XXXXXXXX RPEAK =XXXXXXXX
 SOVFCCNT =XXXXXXXX SHWCCNT =XXXXXXXX SLWCCNT =XXXXXXXX
 ROVFCCNT =XXXXXXXX RHWCCNT =XXXXXXXX RLWCCNT =XXXXXXXX
 SOVFTCNT =XXXXXXXX SHWTCNT =XXXXXXXX SLWTCNT =XXXXXXXX
 ROVFTCNT =XXXXXXXX RHWTCNT =XXXXXXXX RLWTCNT =XXXXXXXX
～

APPENDIX B LOG FORMAT

A-13

 Protocol error

EC: Error Code
DFN: Data Field Number
PORTNO: Port Number

The following information items indicate the NX header.
For details about the configuration, refer to “APPENDIX F MESSAGE HEADER
FORMAT”.
H_TYPE: HEAD Pattern
ML: Message Length
SA: Source Address
DA: Destination Address
V_SEQ: Version Sequence number
SEQ: Send Sequence number
M_CTL: Message Control
INQ_ID1: Inquiry Identifier1
INQ_ID2: Inquiry Identifier2
INQ_ID3: Inquiry Identifier3
TCD: Transaction Code
G_TID1: Global Transaction Identifier1
G_TID2: Global Transaction Identifier2
MSGMD: Message Mode
BLOCK: Message Block
FU1: Future Use

%NX-W-SOFT-0102 SITE=xxxxxxxxxxxxxx RC=00000000 yyyy/mm/dd hh:mm:ss LOG=xxx
EC=000000201 Message frame error
DFN =XXXXXXXX PORTNO=XXXXXXXX
H_TYPE =XXXXXXXX ML =XXXXXXXX SA =XXXXXXXX DA =XXXXXXXX
V_SEQ =XXXXXXXX SEQ =XXXXXXXX M_CTL =XXXXXXXX
INQ_ID1 =XXXXXXXX INQ_ID2 =XXXXXXXX INQ_ID3 =XXXXXXXX
TCD =XXXXXXXX G_TID1 =XXXXXXXX G_TID2 =XXXXXXXX
MSGMD =XXXXXXXX BLOCK =XXXXXXXX FU1 =XXXXXXXX
～

APPENDIX B LOG FORMAT

A-14

 Socket error

RC: Return Code
EC: Error Code
DFN: Data Field Number
DADDR: Destination IP Address
DPORT: Destination Port Number

 Transfer area duplication error

RC: Return Code
EC: Error Code
DFN: Data Field Number
TMID: Transfer Memory Identifier
CASENO: Send Case Number
BLKNO: Send Block Number
BLKCNT: Send Block Count

%NX-E-SOFT-0104 SITE=xxxxxxxxxxxxxx RC=00000000 yyyy/mm/dd hh:mm:ss LOG=xxx
 EC=000000501 Socket error
 DFN =XXXXXXXX DADDR=XXXXXXXX DPORT=XXXXXXXX
～

%NX-E-SOFT-0105 SITE=xxxxxxxxxxxxxx RC=00000000 yyyy/mm/dd hh:mm:ss LOG=xxx
 EC=000000601 Transfer memory address error
 DFN =XXXXXXXX TMID =XXXXXXXX CASENO =XXXXXXXX
 BLKNO =XXXXXXXX BLKCNT =XXXXXXXX
～

APPENDIX C NODE STATUS CHANGE NOTIFICATION FORMAT

A-15

APPENDIX C NODE STATUS CHANGE NOTIFICATION FORMAT

A status change notified from other nodes links to the notification IRSUB reserved by NXACP.
The IRSUB number of the notification IRSUB is 332. By registering a subroutine to IRSUB 332, a
user can detect the status change of nodes in realtime. You must register the subroutine before you
start NXACP.

(1) Notification format

Name Description

CODE Event number

DFN Data field number

LNN Logical node number

LANNO LAN number

TYPE Change cause type

(2) Detailed information
Alive notification: An alive signal is received for the first time, or an alive signal is received

again after the node is detected as dead.
Dead notification: No alive signals are received in the predefined time after an alive signal is

received.
Scheduled dead notification: An alive signal for scheduled SHUTDOWN or maintenance has

been received.

Alive notification Dead notification Scheduled dead notification

0x0301 0x0302 0x0302

DFN DFN DFN

LNN LNN LNN

LANNO (*) LANNO (*) LANNO (*)

Fixed to 0 Fixed to 2 Fixed to 1

(*) The value is fixed to 1 for single LAN configuration. The value is
also fixed to 1 for the local node.
For duplexed LAN configuration, specify 1 for the UNO1 LAN,
and specify 2 for the UNO2 LAN.
For the local node, the value is fixed to 1, and reports a notification
only once.

[Precaution]
This IRSUB runs as a subroutine of an NXACP system task.
For this reason, from this IRSUB, you must not call a macro that waits inside. The stack size
this IRSUB can use is up to 512 bytes.

0

4

8

12

16

20

0

4

8

12

16

20

APPENDIX D DHP RECORD LIST

A-16

APPENDIX D DHP RECORD LIST

Recording point Code Data count Data 1 Data 2 Data 3 Data 4
nx_init() start 0x00400001 0 – – – –
nx_init() completion 0x00400021 1 RTNCD – – –
nx_dfup() start 0x00400002 3 DFN NMODE MMODE –
nx_dfup() completion 0x00400022 2 DFN RTNCD – –
nx_dfdwn() start 0x00400003 1 DFN – – –
nx_dfdwn() completion 0x00400023 1 RTNCD – – –
nx_quit() start 0x00400004 0 – – – –
nx_quit() completion 0x00400024 1 RTNCD – – –
nx_put() start 0x00400005 4 DFN MGN TCD LEN
nx_put() completion 0x00400025 1 RTNCD – – –
nx_get() start 0x00400006 3 TMOUT BFSZ OFSET –
nx_get() completion (*) 0x00400006 4 RTNCD SA DA TCD/LEN
Completion of data
reconstruction after reception

0x00100009 2 POSTA Fixed to 0 – –

Incomplete data
reconstruction after reception

0x00100009 2 Fixed to 0 Fixed to 0 – –

Reception of transfer data 0x00100009 2 Fixed to 0 Fixed to 1 – –
Reception of an alive signal 0x00100009 2 Fixed to 0 Fixed to 2 – –
Discarding a message due to
header error

0x00100009 2 Fixed to 0 Fixed to 3 – –

The meaning of each data item is as follows:
RTNCD: Processing result
DFN: Data field number
NMODE: Node mode
MMODE: Message mode
MGN: Multicast group number
TCD: Transaction code
LEN: Message size
TMOUT: Timeout monitoring time
BFSZ: Buffer size
OFSET: Offset
SA: Sender address
DA: Transmission destination address
POSTA: POST address
(*) For nx_get completion, data 1 to 4 are set to 0 if a message is not available or if nx_get returns an error.

APPENDIX E CONTROL TRACE

A-17

APPENDIX E CONTROL TRACE

NXACP provides a RAS feature for logging the internal operation of NXACP.
This log is called a “control trace”. You can use this trace data to analyze an NXACP-related
failure.
A user can decide whether to use a control trace. You can turn on a control trace during a test.
(Disable it during online operation to allow for high-speed execution.) We recommend that you
allocate about 512 cases (16 KB) of memory for a control trace.
To display the trace, use the dump command (sd) offered by RPDP.

(1) Trace area format

The format of the trace area is as follows. The cases whose number is specified in the
construction information are used cyclically.

(2) Trace area format

Trace table
Control information

Case 1
Case 2
Case 3

～
Case N

31 0
Log number

Task number Trace code
Trace data 1
Trace data 2
Trace data 3
Trace data 4
Trace data 5
Trace data 6

32 bytes per case The cases whose number is
specified in the construction
information are used cyclically.

15 8 7 0

T
yp

e

Module number Event code

Type: This bit is set during error tracing.
Module number: Indicated as follows.

 1: nx_rcv 16: nx_put 32: nx_init
 2: nx_upexe 17: nx_get 33: nx_quit
 3: nx_htim 18: nx_abs 34: nx_dfup
 4: nx_ltim 35: nx_dfdwn
 5: nx_dsnd 36: nx_ins
 6: nx_memac 37: nx_cdon
 7: nx_cycsnd 38: nx_cdoff
 8: nx_purcv 39: nx_ctl
10: nx_init_tm
11: nx_ctl_tm
12: nx_get_tm
13: nx_write_tm
14: nx_read_tm

APPENDIX F MESSAGE HEADER FORMAT

A-18

APPENDIX F MESSAGE HEADER FORMAT

Symbol
name

Size
(in bytes)

Description

H_TYPE 4 Header type (Set to “NUXM” in ASCII.)
ML 4 Length of the message including the NX header
SA 4 Message sender address See (*1).
DA 4 Message destination address. See (*2).

V_SEQ 4 Version of sequence number (Set to the time when the sequence number is
initialized.)

SEQ 4 Message transmission sequence number (0x00000001 to 0x7FFFFFFF)
M_CTL 4 Message transmission control information. See (*3).

TCD 2 Transaction code
MODE 2 Message mode (0: Online mode, 1: Test mode)
PVER 1 NX protocol version (Fixed to 1)
PRI 1 The priority level of messages (Fixed to 0)
CBN 1 Current block number
TBN 1 Total block count

BSIZE 2 User data size in a split packet (Byte count in a fragment block)

31 16 15 0

H_TYPE
ML

SA (*1)
DA (*2)
V_SEQ

SEQ
M_CTL (*3)

 Fixed to 0

TCD Fixed to 0

Fixed to 0

MODE PVER PRI

CBN TBN BSIZE
Fixed to 0

User data

+0
+4
+8

+12
+16
+20
+24
+28

+40
+44

+52
+56
+60
+64

(*1) SA
31 24 23 16 15 0

DMN DFN LNN

DMN: Domain number
(Currently fixed to 0)

DFN: Data field number
LNN: Sender node number

(*2) DA

31 24 23 16 15 0

DMN DFN MGN

DMN: Domain number
(Currently fixed to 0)

DFN: Data field number
MGN: Multicast group number

(*3) M_CTL: Fixed to 0x80000000

(Multicast communication)

APPENDIX G ALIVE SIGNAL HEADER FORMAT

A-19

APPENDIX G ALIVE SIGNAL HEADER FORMAT

31 16 15 0

H_TYPE

ML (Fixed to 128)

 SA (*1)

 DA (*2)

V_SEQ

SEQ

 M_CTL (*3)

 Fixed to 0

TCD (Fixed to 60003) Fixed to 0

Fixed to 0

MODE PVER (Fixed to 1) PRI (Fixed to 1)

CBN (Fixed to 1) TBN (Fixed to 1) BSIZE (Fixed to 128)

 Fixed to 0

AL_ND_NAME

AL_OS_NAME

 AL_TM_OUT

AL_PROTOCOL AL_MODE AL_MSGSERNO

Fixed to 0

 AL_CHG_TIME

AL_IPADDR[2]

Fixed to 0

AL_VER (1)

+0

+4

+8

+12

+16

+20

+24

+28

+40

+44

+52

+56

+60

+64

+76

+84

+88

+92

+96

+100

+104

+108

+112

+116

+128

(*1) SA
31 24 23 16 15 0

DMN DFN LNN

DMN: Domain number
(Currently fixed to 0)

DFN: Data field number
LNN: Sender node number

(*2) DA

31 24 23 16 15 0

DMN DFN MGN

DMN: Domain number
(Currently fixed to 0)

DFN: Data field number
MGN: Multicast group number

(*3) M_CTL: Fixed to 0x80000000 (Multicast

communication)

APPENDIX G ALIVE SIGNAL HEADER FORMAT

A-20

Symbol name
Size

(in bytes)
Description

H_TYPE 4 Header type (set to “NUXM” in ASCII)
ML 4 Length of the message including the NX header (Fixed to 128)
SA 4 Message sender address. See (*1).
DA 4 Message destination address. See (*2).
V_SEQ 4 Version of sequence number (set to the time when the sequence number

is initialized)
SEQ 4 Message transmission sequence number (0x00000001 to 0x7FFFFFFF)
M_CTL 4 Message transmission control information (Fixed to 0x80000000)
TCD 2 Transaction code (Fixed to 60003)
MODE 2 Message mode (0: Online mode, 1: Test mode)
PVER 1 NX protocol version (Fixed to 1)
PRI 1 The priority level of messages (Fixed to 1)
CBN 1 Current block number (Fixed to 1)
TBN 1 Total block count (Fixed to 1)
BSIZE 2 User data size in a split packet (Fixed to 128)
AL_ND_NAME 10 Node name (ASCII string that ends with NULL. Up to 9 characters.)
AL_OS_NAME 10 Vendor device name (HI_S10VE)
AL_TM_OUT 4 Alive signal timeout monitoring time (in seconds)
AL_MSGSERNO 2 Alive report message sequence number
AL_MODE 1 Alive report mode. See (*4).
AL_PROTOCOL 1 Protocol type (Fixed to 4)
AL_CHG_TIME 4 Timestamp of node status change. See (*5).
AL_IPADDR 8 IP address (AL_IPADDR[0] for LAN1 and AL_IPADDR[1] for LAN2)
AL_VER 1 Alive signal message version number (Fixed to 1)

(*4) AL_MODE = 1: Normal mode (Alive status)
= 2: Scheduled shutdown mode

(*5) AL_CHG_TIME: Greenwich time of startup. Denoted in the Year, Month, Day, Hour, Minute, and
Second format. When stopped, 0 is set.

	Cover
	Copyright
	SAFETY PRECAUTIONS
	Revision record
	PREFACE
	CONTENTS
	FIGURES
	TABLES
	PART 1 OVERVIEW
	CHAPTER 1 OVERVIEW
	1.1 Introduction to NXACP
	1.2 Hardware Configuration
	1.3 Software Configuration

	CHAPTER 2 DEFINITIONS OF TERMINOLOGY
	2.1 Definitions of Basic Terminology

	CHAPTER 3 FUNCTIONAL OVERVIEW
	3.1 Multicast Communication Function
	3.2 Data Field Management Function
	3.3 Duplexed LAN Control Function
	3.4 Test Function
	3.5 System Management Function
	3.6 Operation Management Function
	3.7 Network-Shared Memory Function
	3.8 System Construction Function

	PART 2 FUNCTION GUIDE
	CHAPTER 1 MULTICAST COMMUNICATION FUNCTION
	1.1 Characteristics of Communication
	1.1.1 Basic unit of message communication
	1.1.2 Splitting and reassembling a message
	1.1.3 Structure of a user program
	1.1.4 Message Processing Order

	1.2 Message Transmission Function
	1.2.1 Network Transmission
	1.2.2 Local node transmission

	1.3 Message Reception Function
	1.3.1 Message reception
	1.3.2 Receive timeout monitoring
	1.3.3 Defining multicast groups

	1.4 Remote Data Field Control Function
	1.4.1 System connection topology
	1.4.2 Message transmission and reception

	1.5 Buffer Management

	CHAPTER 2 DATA FIELD MANAGEMENT FUNCTION
	2.1 Alive Signal Transmission Function
	2.2 Alive Status Monitor and Status Change Notification Function

	CHAPTER 3 DUPLEXED LAN CONTROL FUNCTION
	3.1 Message Transmission and Reception on Duplexed LANs
	3.2 Alive Signal Transmission and Reception on Duplexed LANs

	CHAPTER 4 TEST FUNCTION
	4.1 Message I/O Control
	4.2 Test Configuration
	4.3 Remote Data Field and Mode

	CHAPTER 5 SYSTEM MANAGEMENT FUNCTION
	5.1 Failure Notification Function
	5.2 User Task Management Function

	CHAPTER 6 OPERATION MANAGEMENT FUNCTION
	6.1 Operation Management of NXACP and Data Fields
	6.1.1 Starting data fields
	6.1.2 Stopping data fields
	6.1.3 Setting and updating a mode
	6.1.4 Updating construction information

	CHAPTER 7 NETWORK-SHARED MEMORY FUNCTION
	7.1 Terminology
	7.2 Specifications of Transfer Memory
	7.3 Cautions on Construction
	7.4 Overview of Macros

	CHAPTER 8 SYSTEM CONSTRUCTION FUNCTION
	8.1 Loading the Main Part of NXACP
	8.2 System Construction and Loading
	8.2.1 Initialization
	8.2.2 Setting up construction information
	8.2.3 Compiling construction information
	8.2.4 Loading configuration information

	8.3 Estimating Required Memory Capacity

	PART 3 MACRO SPECIFICATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Macro Types and Macro List

	CHAPTER 2 MULTICAST COMMUNICATION MACROS
	2.1 nx_put
	2.2 nx_get

	CHAPTER 3 OPERATION MANAGEMENT MACROS
	3.1 nx_init
	3.2 nx_dfup
	3.3 nx_dfdwn
	3.4 nx_quit

	CHAPTER 4 SHARED MEMORY MACROS
	4.1 nx_init_tm
	4.2 nx_ctl_tm
	4.3 nx_get_tm
	4.4 nx_write_tm
	4.5 nx_read_tm

	APPENDIX A RETURN CODE DETAILS
	APPENDIX B LOG FORMAT
	APPENDIX C NODE STATUS CHANGE NOTIFICATION FORMAT
	APPENDIX D DHP RECORD LIST
	APPENDIX E CONTROL TRACE
	APPENDIX F MESSAGE HEADER FORMAT
	APPENDIX G ALIVE SIGNAL HEADER FORMAT

