

First Edition, November 1998, SME-1-103(A) (out of print)
Second Edition, May 2000, SME-1-103(B) (out of print)
Third Edition, November 2001, SME-1-103(C) (out of print)
Fourth Edition, October 2008, SME-1-103(D) (out of print)
Fifth Edition, February 2009, SME-1-103(E)

All Rights Reserved, Copyright © 1998, 2009, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission
in writing from the publisher.

Printed in Japan.

BI-KB-SK<IC-IC> (FL-MW20, AI8.0, PS)

SAFETY PRECAUTIONS

Be sure to read this manual and all other attached documents carefully before installing,
operating inspecting or conducting maintenance on this unit. Always use this unit properly.
Be sure to carefully read the information about the device, the safety information and precautions
before using this unit. Be sure that the person(s) responsible for maintenance receives and
understands this manual completely.

This manual divides the safety precautions into DANGERs and CAUTIONs.

 : Failure to observe these warnings may result in death or serious injury.

 : Failure to observe these cautions may result in injury or property

damage.

 Failure to observe any may lead to serious consequences.

 All of these DANGERs and CAUTIONs provide very important precautions and should

always be observed.
 Additional safety symbols representing a prohibition or a requirement are as follows:

: Prohibition. For example, “Do not disassemble” is represented by:

: Requirement. For example, if a ground is required, the following will be shown:

DANGER

CAUTION

CAUTION

 DANGER

z Devise an emergency stop circuit, interlock circuit, and other similar circuits
outside the programmable controller. Disregarding this rule may result in
damage to the equipment or cause an accident if the programmable controller
fails.

z Keep it in mind that this hardware unit operates on a high voltage. If the user
touches a high-voltage terminal inadvertently during connection or
disconnection of this hardware unit or its cable, he or she may suffer from an
electric shock. Also, this hardware unit may be damaged due to a short
circuit or noise. Be sure to switch off the hardware unit before connecting or
disconnecting it or its cable.

 CAUTION

z This hardware unit may fail if the ambient temperature is too high. The
hardware unit may also malfunction due to interference by electromagnetic
waves from adjacent hardware. To dissipate heat and reduce
electromagnetic interference, provide the specified mount of space between
the cubicle and this hardware unit and between the hardware unit and other
ones.

z After installing this hardware unit, measure temperatures near the in-cubicle
controller and the mount base during operation, and check whether the
measurements are within the limits. If the specified amount of space cannot
be provided or the measured temperature is too high, use a cooling fan.

z At an extremely high temperature, this hardware unit may fail. Secure the
mount base to a vertical surface. If the mount base is secured horizontally,
heat does not dissipate efficiently, resulting in an extremely high temperature.
This may further cause the hardware unit to fail or its parts to deteriorate.

z This hardware unit may be damaged due to static electricity. Ground yourself
before setting switches or connecting or disconnecting cables or connectors
with the hardware unit.

z This hardware unit may be damaged during its installation or removal unless
the following rules are observed:
• Check that the connector pins are not damaged (bent or broken), are

aligned straight and are free from dust.
• Move the hardware unit along an imaginary vertical surface to the face of

the mount base. If the product is inserted or removed slantwise from the
connector on the mount base, connector pins may be bent.

 REQUIREMENT

An electric shock may lead to a death or burn. Noise may cause the system to
malfunction. Ground the line ground (LG), frame ground (FG), and shield (SHD)
terminals, as described below.
• Electrically insulate the mount base from the cubicle. To assure this, do not

remove the insulating sheet from the mount base.
• Ground the LG and FG terminals separately to prevent mutual interference.

The LG terminal is grounded to prevent intrusion of power line noise, while
FG and SHD terminals are grounded to suppress intrusion of line noise into
external interfaces for remote I/O modules, interface modules, and other
modules.

• Connect the FG terminal on each module to the FG terminal on the mount
base. Note, however, that the FG terminal for each remote I/O line or
JPCN-1 line must be connected separately to a single place on the
terminating side.

 REQUIREMENT

Excessive accumulation of heat in the cubicle may cause a fire or hardware
failure. When the temperature in the cubicle reaches 48℃ or higher, the
maximum output current of the power supply module is limited. At 55℃, for
instance, it is limited to 5.85 A. Where this is very likely, install a cooling fan in
the cubicle or reduce the number of modules installed therein.

 PROHIBITION

If a part in a module is damaged, do not replace the part, but replace the faulty
module in its entirety, except when the part is the battery for the CPU.

WARRANTY AND SERVICING

Unless a special warranty contract has been arranged, the following warranty is applicable to this
product.

1. Warranty period and scope

Warranty period
The warranty period for this product is for one year after the product has been delivered to the
specified delivery site.

Scope
If a malfunction should occur during the above warranty period while using this product under
normal product specification conditions as described in this manual, please deliver the
malfunctioning part of the product to the dealer or Hitachi Engineering & Services Co., Ltd.
The malfunctioning part will be replaced or repaired free of charge. If the malfunctioning is
shipped, however, the shipment charge and packaging expenses must be paid for by the
customer.

This warranty is not applicable if any of the following are true.

z The malfunction was caused by handling or use of the product in a manner not specified in

the product specifications.
z The malfunction was caused by a unit other than that which was delivered.
z The malfunction was caused by modifications or repairs made by a vendor other than the

vendor that delivered the unit.
z The malfunction was caused by a relay or other consumable which has passed the end of its

service life.
z The malfunction was caused by a disaster, natural or otherwise, for which the vendor is not

responsible.

The warranty mentioned here means the warranty for the individual product that is delivered.
Therefore, we cannot be held responsible for any losses or lost profits that result from the
operation of this product or from malfunctions of this product. This warranty is valid only in
Japan and is not transferable.

2. Range of services
The price of the delivered product does not include on-site servicing fees by engineers.
Extra fees will be charged for the following:

z Instruction for installation and adjustments, and witnessing trial operations.
z Inspections, maintenance and adjustments.
z Technical instruction, technical training and training schools.
z Examinations and repairs after the warranty period is concluded.
z Even if the warranty is valid, examination of malfunctions that are caused by reasons

outside the above warranty scope.

This manual provides information for the following hardware product:

<Hardware product>

ET.NET (LQE020)

<Changes added to this manual>
Description of added changes Page

The following information is newly added: setting the module no. setting switch (or,
simply, MODU No. switch) in 4- or 5-position may result in a route information
setting error.

3-2, 7-15

In addition to the above changes, all the unclear descriptions and typographical errors found are also
corrected without prior notice.

Revision record

Revision No. Revision Record (revision details and reason for revision) Month, Year Remarks

A First Edition November 1998
D Supplementary, “Replacing or adding on the module” is

newly added.
October 2008

E The following information is newly added: setting the
module no. setting switch (or, simply, MODU No.
switch) in 4- or 5-position may result in a route
information setting error.

February 2009

 i

PREFACE

We greatly appreciate your making use of the CPU option ET.NET module.
This hardware manual on the option ET.NET describes how to handle the ET.NET module. Read
this manual carefully to use the module properly.

Two specifications are available for S10mini series products: standard specifications and
environmental resistance specifications.
The products with the environmental resistance specifications have thicker plating and more
strengthened coating than those with standard specifications.
The model name of the products with the environmental resistance specifications have “-Z” after those
with standard specifications.
Example: Standard specifications: LQE020
 Environmental resistance specifications: LQE020-Z
The manuals for standard specifications and environmental resistance specifications are commonly
used. The module types indicated in the manuals are those with standard specifications.
When you use a product with environmental resistance specifications, follow these manuals for proper
use.

When S10mini and Windows® programming tools are connected through an ET.NET module, up to
four programming tools (ladder drawing or HI-FLOW system) can be connected to S10mini at a time
under the following conditions.
Note that, under the conditions other than these, only one programming tool can be connected.
• The revision No. of the ET.NET module is E or later. (Check that the seal attached on the upper end

of the case is E or later or the CPU indicator display is ETM 3.1 or later.)
• The version or revision No. of a ladder drawing system or HI-FLOW system is 07-00 or later.

(However, in case of HI-FLOW, a HI-FLOW system is only one unit and others are HI-FLOW for
monitors.)

• The ET.NET module (LQE020) of revision “F” (having the “H” or later label on the lower left of the
casing or whose CPU indicator indicates “ETM 3.2” or “ETS 3.2”) updates the content (program
data) of flash memory at intervals of about 1 month to increase the reliability of the program data as
the mask of the flash memory is changed. For this updating, the socket handler is made to wait for
about 3 seconds.
If the reception wait time of tcp receive() or udp receive() is set smaller than 3 seconds, a timeout
error may occur. In this case, retry.

 ii

<Note for storage capacity calculations>
z Memory capacities and requirements, file sizes and storage requirements, etc. must be calculated

according to the formula 2n. The following examples show the results of such calculations by 2n
(to the right of the equals signs).
1 KB (kilobyte) = 1,024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes

z As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1,000 bytes
1 MB (megabyte) = 1,0002 bytes
1 GB (gigabyte) = 1,0003 bytes

* Microsoft® Windows® is registered trademarks of Microsoft Corporation in the United States

and/or other countries.

iii

CONTENTS

1 BEFORE USE... 1-1
1.1 CPU Mount Base .. 1-2
1.2 Mounting Optional Modules... 1-2
1.3 Ground Wiring .. 1-4

2 SPECIFICATIONS ... 2-1
2.1 Usage... 2-2
2.2 Specifications .. 2-2

2.2.1 System specifications .. 2-2
2.2.2 Line specifications... 2-2

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING 3-1
3.1 Names and Functions of Each Part ... 3-2
3.2 Cabling.. 3-4

4 USER GUIDE ... 4-1
4.1 System Configuration of 10BASE-5... 4-2
4.2 10BASE-T System Configuration... 4-8
4.3 Example of System Configuration with S10mini ... 4-10
4.4 System Definition Information ... 4-11

4.4.1 Physical address... 4-11
4.4.2 IP address... 4-11
4.4.3 Subnetwork mask .. 4-13
4.4.4 Route information.. 4-13

4.5 Software Configuration of ET.NET.. 4-16
4.6 ET.NET System Programs.. 4-17

4.6.1 Socket handler ... 4-17
4.6.2 Socket driver.. 4-17
4.6.3 TCP program ... 4-17
4.6.4 UDP program... 4-18
4.6.5 IP program ... 4-18
4.6.6 Driver... 4-18

4.7 User-created Program.. 4-19
4.7.1 User program... 4-19

4.8 Socket Handler.. 4-20

iv

4.8.1 Socket handler function list.. 4-21
4.9 Examples of Socket Handler Issuance Procedure.. 4-55

4.9.1 Example of using TCP/IP program.. 4-55
4.9.2 Example of using UDP/IP program ... 4-56

5 PROGRAM EXAMPLES ... 5-1
5.1 Example of Programs for Communication between CPUs by Socket Handler............. 5-2

5.1.1 System configuration ... 5-2
5.1.2 Program structure ... 5-3
5.1.3 Flowchart of program at CPU01 .. 5-5
5.1.4 Example of C language program at CPU01... 5-7
5.1.5 Flowchart of program at CPU02 .. 5-9
5.1.6 Example of C language program at CPU02... 5-10

5.2 Example of Programs for Continuous Communication between CPUs by
 Socket Handler .. 5-12

5.2.1 System configuration ... 5-12
5.2.2 Program structure ... 5-13
5.2.3 Flowchart of program at CPU01 .. 5-15
5.2.4 Example of C language program at CPU01... 5-17
5.2.5 Flowchart of program at CPU02 .. 5-19
5.2.6 Example of C language program at CPU02... 5-21

6 OPERATION... 6-1
6.1 Start-up Procedure ... 6-2

7 MAINTENANCE .. 7-1
7.1 Maintenance Inspection ... 7-2
7.2 Troubleshooting... 7-3

7.2.1 Procedure ... 7-3
7.2.2 Before suspecting a failure... 7-4

7.3 Errors and Actions To Be Taken ... 7-6
7.3.1 CPU LED display messages... 7-6
7.3.2 Hardware errors.. 7-7
7.3.3 Error codes from the socket handler .. 7-11
7.3.4 Route information setting error table ... 7-14

v

8 APPENDIX... 8-1
8.1 Network Components ... 8-2

8.1.1 Problem of connection between LQE020 and Ethernet .. 8-2
8.1.2 Component list .. 8-2

8.2 Cabling of Coaxial Cable.. 8-5
8.2.1 Laying cable segment .. 8-5

8.3 Installation of Transceiver (Connector Type) ... 8-6
8.4 Installation of Transceiver (TapType)... 8-10
8.5 Attaching Coaxial Connector.. 8-10
8.6 Attaching Tap Connector .. 8-13
8.7 Attaching Transceiver Cable... 8-15
8.8 Attaching Terminators .. 8-15
8.9 Attaching Repeater.. 8-16
8.10 Grounding the System... 8-17
8.11 Attaching Ground Terminal .. 8-17
8.12 Setting Single-port Transceiver .. 8-18
8.13 Setting and Display of Multi-port Transceiver ... 8-19
8.14 CPU Memory Map.. 8-21
8.15 Memory Map of ET.NET Module .. 8-22
8.16 Trouble Investigation Sheet .. 8-23

SUPPLEMENTARY ... Z-1
Supplementary: Replacing or adding on the module ... Z-2

vi

FIGURES

Figure 4-1 Minimum Configuration (No Repeater Used and Segment Length of
 Up to 500 m) .. 4-3
Figure 4-2 Medium-scale Configuration (Repeaters Used and Distance between
 Transceivers of Up to 1,500 m) ... 4-3
Figure 4-3 Large-scale Configuration (Repeaters and Link Segments Used and
 Distance between Transceivers of Up to 2,500 m) .. 4-4
Figure 8-1 Installation on Wall (1) .. 8-7
Figure 8-2 Installation on Wall (2) .. 8-8
Figure 8-3 Installation on Wall (3) .. 8-8
Figure 8-4 Installation on Wall (4) .. 8-8
Figure 8-5 Installation in Box (1) .. 8-9
Figure 8-6 Installation in Box (2) .. 8-9
Figure 8-7 Tap Connector Assembly Drawing.. 8-13
Figure 8-8 Connection of Connector and Transceiver .. 8-14

TABLE

Table 8-1 Switch Setting.. 8-20

1 BEFORE USE

1 BEFORE USE

1-2

1.1 CPU Mount Base

8-slot mount base

1.2 Mounting Optional Modules

73 6541 2 0

CPU mount base

Option slots

CPU option module
CPU

module
CPU power

supply module

 CAUTION

z Insert ET.NET modules sequentially into the slots, starting from the leftmost
slot, without creating any empty slots in between. Do not insert I/O modules
between ET.NET modules.

z When only one ET.NET module is inserted, set it as the main module.

There are three types of CPU mount bases:
• 2-slot mount base (model: HSC-1020)
• 4-slot mount base (model: HSC-1040)
• 8-slot mount base (model: HSC-1080)
On the 8-slot mount base, for example, up to eight
modules, except the power supply module and
CPU module, can be mounted.

CPU mount base: HSC-1080
PS slot: A slot into which the CPU power

supply (LQV000, LQV020 or
LQV100) module is inserted.

CPU slot: A slot into which the CPU
module (LQP000, LQP010,
LQP011 or LQP120) is
inserted.

Slots 0 to 7: Slots into which optional
modules or I/O modules.

1 BEFORE USE

1-3

When mounting an option module, observe following rules.
z Mount the module straight to the front of the mount base. If it is mounted at a slant as shown in

the bad examples, the connectors may be damaged and the option module may malfunction.

[Bad examples] [Good example]

 CAUTION

When the CPU mount base is located over the head because of the cabinet
structure used, take care not to mount the optional modules aslant by using a
stepladder or the like.

1 BEFORE USE

1-4

1.3 Ground Wiring

Ground the unit according to the following figure:
• Grounding for 10BASE-5

• Grounding for 10BASE-T (Do not connect the FG of the ET.NET module.)

* Class D grounding is defined in the Technical Standard for Electrical Facilities of Japan. This
standard states that the grounding resistance must be 100 ohms or less for equipment operating on
300 VAC or less, and 500 ohms or less for devices that shut down automatically within 0.5 seconds
when shorting occurs in low tension lines.

2 mm2 or more

GND 12V

10BASE
-T

10BASE
-5

FG

Class D grounding

Ground port

Within 2 m

GND
12V
10BASE

-T

10BASE
-5

FG

Class D grounding

Ground port

Within 2 m
2 mm2 or more

12 VDC

1 BEFORE USE

1-5

 REQUIREMENT

z Ground the FG (frame ground) terminal as follows: Connect the FG terminal
on each module provided with external terminals to the grounding terminal on
the mount base. Make sure that the line used for grounding is at most 2 m
long. Perform Class D grounding for the grounding terminal on the mount
base.

z Use ground lines whose size is 2mm2 or more.
z Do not touch the 10BASE-5 connector during power-on. Otherwise, the

system may malfunction due to static electricity, etc.

2 SPECIFICATIONS

2 SPECIFICATIONS

2-2

2.1 Usage

The ET.NET module (model: LQE020) is connected to a local area network conforming to the
IEEE802.3 specifications, and performs data communication by the TCP/IP or UDP/IP protocol.

2.2 Specifications

2.2.1 System specifications

Item Specification
Model LQE020
Maximum number of installable ET.NET
modules

2 per CPU. (Insert ET.NET modules
sequentially into the slots, starting from the
leftmost slot.)

Module width One slot wide
Mass 240 g

NOTE

When using 10BASE-5 connections, a 12-VDC external power supply is
required.

2.2.2 Line specifications

Item Specification

Transmission method Serial (bit serial) transmission
Electrical interface Conforming to IEEE 802.3 (conforming to CSMA/CD)

standard
Coding system Manchester
Protocol TCP/IP or UDP/IP
Maximum number of connectable
units

10BASE-5: 100 per segment
10BASE-T: n per hub. (The value of n depends on the

hub.)
Maximum number of stations 1024 per network
Connection cable 10BASE-5 coaxial cable: Up to 500 m per segment

10BASE-5 transceiver cable: Up to 50 m
10BASE-T twisted-pair cable: Up to 100 m per segment

Data transmission rate 10 Mbps

3 NAMES AND FUNCTIONS
OF EACH PART AND
CABLING

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

3-2

3.1 Names and Functions of Each Part

LQE020 ET.NET

ERR
RX
TX

GND

FG

12V

10BASE
-T

10BASE
-5

MODU.
NO

(*) Setting the MODU No. switch in one of these two positions may result in a
route information setting error. For more information, see “7.3.4 Route
information setting error table.”

 CAUTION

When setting the module No. switch, turn off the power switch. Otherwise, the
system may malfunction.

No. Name Function
① TX LED Lights during data transfer.
② RX LED Lights when data flows on the transmission line (when

a carrier is detected).
③ ERR LED Lights when a hardware error is detected.
④ Module

number switch
Specifies the main module or submodule and also sets
a communication port type. The setting of this
switch becomes effective when resetting of the
computer system is completed.

Module No.
Main Sub

Description

0 1 Communication using 10BASE-
5 connections

2 3 Communication using 10BASE-
T connections

4 5 Communication with tools
(Windows PC) via
10BASE-T connections (*)

6 7 Error
8 9 Error
A B Error
C D Error
E F Error

If the module number is set to 4 or 5, the IP address
must be as shown below. Up to four windows can be
opened on the tool (Windows PC) at the same time.

IP address: 192.192.192.001
⑤ 10BASE-5

connector
Connects with a PC or another controller.

⑥ 10BASE-T
connector

Connects to a personal computer or another
controller.

⑦ Power input
terminal

Connects with the power supply (12 VDC) for a
transceiver which is connected with 10BASE-5.

⑧ Frame ground Connected to the shield line of the transceiver cable.

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

3-3

NOTE

The following 12 VDC external power supply is recommended. Use the
recommended power supply.
Power supply model name: HK-25A-12 (manufacturer: Densei-Lambda K.K.)

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

3-4

3.2 Cabling

(1) Wiring for 10BASE-5

Connector at the �
module side

Lock post

Retainer

After inserting the connector,
push down the retainer to the
arrow direction.

Push up the retainer to the
arrow direction and insert
the connector.

Insert the cable into the 10BASE-5
connector.

10BASE-5 cable

12 VDC Connect with the �
mount base FG terminal.

LQE020

ET.NET

GND

FG

12V

10BASE
-T

10BASE
-5

ERR
RX
TX MODU.

NO

Connector at �
the cable side

 CAUTION

z This hardware unit may malfunction if it is connected poorly or has a broken
line. After connecting the 10BASE-5 connector, check whether the locking
post is locked by the retainer.

z Do not touch the 10BASE-5 connector during power-on. Otherwise, the
system may malfunction due to static electricity, etc.

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

3-5

(2) Wiring for 10BASE-T

10BASE-T cable

Insert the cable into the 10BASE-T
connector.

LQE020 ET.NET

GND

FG

12V

10BASE
-T

10BASE
-5

ERR

RX
TX

MODU.

NO

NOTE

z When using 10BASE-T, do not wire the FG terminal.
z There are two types of 10BASE-T twist-pair cable available: straight cable and

cross cable. The user should choose one of these two types according to the
requirements of the hardware unit to which this product is to be connected.

Hardware unit Cable type
Hub Straight
PC Cross

4 USER GUIDE

4 USER GUIDE

4-2

4.1 System Configuration of 10BASE-5

As shown in Figure 4-1, a basic configuration consists of a single coaxial cable of up to 500 m and
stations connected to this cable. Each station is connected to the coaxial cable via a transceiver
cable and a transceiver. (The station means Ethernet equipment including LQE020.)
This basic configuration is also called a segment; up to 100 stations can be connected in one
segment.
When the distance between stations exceeds 500 m, the number of segments can be increased by
branching by using repeaters. (See Figure 4-2.) This figure shows an example of a system in
which the maximum distance between stations does not exceed 1,500 m. Construct the system so
that the number of repeaters between any two stations is two or less.
Figure 4-3 is an example in which the maximum distance between stations is 2,500 m. A repeater
to which a link cable (up to 500 m) is attached is counted as one repeater, which is called a link
segment.
The parameters related to system configuration are listed below.

Item Specification
Maximum segment length 500 m
Maximum number of transceivers in segment 100
Maximum distance between stations 2,500 m or less (excluding transceiver cable)
Maximum number of stations in system 1,024
Maximum length of transceiver cable 50 m
Maximum number of repeaters in route
between stations

2

NOTE

z Connect a repeater to a coaxial cable via a transceiver cable and a
transceiver.

z A repeater can be attached to a transceiver at any position in the coaxial
segment.

z Do not attach a station to a link cable.
z The distance between attached transceivers shall be a multiple of 2.5 (m).
z If a tool PC is connected in this way to call up MCS screens on that PC, only

up to four such screens can be viewed on the PC.

4 USER GUIDE

4-3

S S S

S

Up to 500 m

Up to 50 m

: Coaxial cable
: Transceiver cable
: Transceiver

S : Station

: Terminator

Figure 4-1 Minimum Configuration (No Repeater Used and Segment Length of

Up to 500 m)

S S

Segment B

SR S S

Segment D

R

S S

S R

Segment A

Segment C

: RepeaterR

The length of each segment is
up to 500 m.

Figure 4-2 Medium-scale Configuration (Repeaters Used and Distance between
Transceivers of Up to 1,500 m)

NOTE

z The number of repeaters between any two stations shall be two(2) or less.
z The number of segments to which two or more repeaters can be connected

shall be one(1).

4 USER GUIDE

4-4

R

Link segment 1

SR R

S

R

Segment A

Segment C

500 m

Link segment 3

R

500 m

S

S

S
eg

m
en

t B

Li
nk

 s
eg

m
en

t 2

500 m
S

R

S
eg

m
en

t D

S

Figure 4-3 Large-scale Configuration (Repeaters and Link Segments Used and
Distance between Transceivers of Up to 2,500 m)

NOTE

z The maximum length of a link segment is 500 m.
z Do not attach a station to a link segment.
z The number of repeaters between any two stations shall be two(2) or less.
z The number of segments to which two or more repeaters can be connected

shall be one(1).
z A link segment including the repeaters at both ends is regarded as one

repeater.

4 USER GUIDE

4-5

NOTE

Restrictions on multi-port transceiver installation positions
z When multi-port transceivers are installed on the most distant coaxial cable

segment in a system in which the maximum length of coaxial cables is 2,500
m (five segments), data delay time increases due to the installation. To avoid
this, restrictions are placed on the multi-port transceiver installation positions.
The maximum distance between stations via multi-port transceivers decreases
by 100 m (in terms of coaxial cable length) if it passes one single multi-port
transceiver. For this reason, there is the following restriction on the coaxial
cable length (L [m]) of the route from a station to another station:

L [m] ≤ 2,500 [m] - 100 × N [m]
N: Total number of passing multi-port transceivers

z In a system consisting of coaxial cables of 2,500 m in total, set a multi- port
transceiver 100 m or more inside from the most distant coaxial cable
terminator (such terminator position decreasing the distance between
stations).

S MPT

S

500 m
100 m

Coaxial segment
500 m

Link segment
500 m

Coaxial segment
500 m

Link segment

SMPT

S

500 m
100 m

Coaxial segment

R R R R

S

MPT

: Station

: Multi-port transceiver

: RepeaterR
(cont.)

4 USER GUIDE

4-6

NOTE

When connecting a repeater between segments by using multi-port transceivers,
it is also necessary to set the multi-port transceivers at the positions decreasing
the distance between the most distant stations by 100 m each time in passes one
of the multi-port transceiver.

S MPT

S

500 m
100 m

Coaxial segment
500 m

Coaxial segment
500 m

Link segment
500 m

Link segment

SMPT

S

500 m
100 m

Coaxial segment

R

R R R

S

MPT

R

: Station

: Multi-port transceiver
: Repeater

MPT

S

100 m

MPT

S

S S

100 m

4 USER GUIDE

4-7

NOTE

z When multi-port transceivers (H-7612-64/68) are used in network mode, multi-
step connection is impossible due to the restrictions on transmission
characteristics.

Coaxial cable

Single-port transceiver

H-7612-64
H-7612-68

H-7612-64
H-7612-68

Multi-step connection is impossible. Multi-step connection is impossible.
(One-step connection is possible.)

S : Station

S

SS

H-7612-64
H-7612-68

H-7612-64
H-7612-68

S

SS

Network mode Local mode

z In network mode, use the following specified device types as the single-port

transceivers connected at higher level than multi-port transceivers, so that the
condition to operate on the 12 VDC power supplied from the multi-port
transceivers is assured:
• HLT-200TB (manufactured by Hitachi Cable, Ltd.)
• HLT-200 (manufactured by Hitachi Cable, Ltd.)
• HBN-200TZ (manufactured by Hitachi Cable, Ltd.)
• HLT-200TD (manufactured by Hitachi Cable, Ltd.)

4 USER GUIDE

4-8

4.2 10BASE-T System Configuration

Connecting the HUB (multi-port repeater) to a transceiver through a transceiver cable (AUI cable)
enables connecting multiple stations to the HUB. For connecting stations to the HUB, use twisted-
pair cables (10BASE-T).

: Twisted-pair cable (up to 100 m)

: Terminator

: Transceiver cable

: Coaxial cable

S1

MPT

S2

S6

S4S3 S5

HUB

: Station

: Transceiver

Si

When the distance between stations is relatively short (within 200 meters), each station can be
connected directly to the HUB through twisted-pair cables without using any coaxial cable or
transceiver, as shown in the figure below.

S4S3 S5 S6

HUB

4 USER GUIDE

4-9

NOTE

Constraints on multi-HUB connection
z When using multiple HUBs, configure the system so that the number of HUBs

are up to four and the number of link segments up to five for any routing
between stations.

S

HUB

S

HUB HUB

S S

HUBLink segment

z When connecting HUBs with a coaxial cable, also configure the system so that

the number of HUBs are up to four and the number of ring segments up to five
(three for coaxial segments) for any routing between stations.

HUB N

SS S

HUB

SHUB

HUB

SS

Link segment

Coaxial segment

4 USER GUIDE

4-10

4.3 Example of System Configuration with S10mini

Terminator

Coaxial cable

Transceiver

Repeater

Interval between transceivers

(whole multiple of 2.5 m)

Segment length (up to 500 m)

Hub

Transceiver cable �
(up to 50 m)

Twisted-pair cable �
(up to 100 m)

4 USER GUIDE

4-11

4.4 System Definition Information

Set the following ② and ③ information for ET.NET (LQE020). To connect a station to another
network through a router, define item④, too. Do not use a same address as that of another station.
Item③needs to have a consistent value throughout one single subnetwork.
① Physical address An original number is set for each ET.NET ROM.
② IP address
③ Subnetwork mask
④ Route information Define this item when connecting a station to another network through a

router. The item can be set by the ET.NET system tool or by a user
program.

4.4.1 Physical address

A 48-bit physical address is assigned to each ET.NET.
This is a unique address which is set on the ROM; the user cannot change it. An example of a
physical address (in hexadecimal) is shown below.
Example:

00008700B001

4.4.2 IP address

The IP address used for TCP/IP and UDP/IP is a 32-bit logical address. An IP address consists of a
network number and a host number. There are three types of address assignment depending on the
number of hosts.
(i) Class A. (The high-order one bit of the network number is set to 0.)

Network number
(8 bits) Host number (24 bits)

(ii) Class B. (The high-order two bits of the network number are set to 10 in binary.)

Network number

(16 bits) Host number (16 bits)

(iii) Class C. (The high-order three bits of the network number are set to 110 in binary.)

Network number

(24 bits) Host number (8 bits)

Define these items for each ET.NET by using the ET.NET system tool

4 USER GUIDE

4-12

An IP address is represented in decimal; the eight-bit values are delimited from each other by a
period (“.”). For example, an IP address of class C is represented as shown below.

For class C

　　　 192 　　．　　　 001 　　．　　　 000 　　 ． 　　001

　　　　　　　 Network address Host number

11000000 00000001 00000000 00000001

A network is determined by a network number. Define a unique host number for each host in the
network. If the number of hosts in a network is 200 or less, select class C. For instance, assume
that the number 192.001.000 is selected as the network number.

A

1

Host number

B

2

Host number

C

3

Host number

D

4

Host number

Network �
number
(192.001.000)

E

5

Host number

As the stations A, B, C, D, and E belong to the same network, assign the numbers 1 to 5 as the
unique host numbers. In this case, the IP addresses of the stations A to E are as follows:

Station A: 192.001.000.001
Station B: 192.001.000.002
Station C: 192.001.000.003
Station D: 192.001.000.004
Station E: 192.001.000.005

There are two special IP addresses: one indicates the entire network by setting all bits of host
number to 0, and the other is the broadcast address in which all bits of host number are set to 1.
The broadcast address is used when data is sent to all stations belonging to the network. (In this
case, send data by UDP/IP communication.)

4 USER GUIDE

4-13

4.4.3 Subnetwork mask

When splitting an IP address into subnetworks, define the boundary between subnetwork number
and local host number by a subnetwork mask. If a subnetwork mask is used with other than the
default value, the address is a the broadcast address as shown in the example below.

Example: For class B:

IP address Subnetwork mask Broadcast address
128.123.000.001 255.255.000.000 128.123.255.255
128.123.001.001 255.255.255.000 128.123.001.255

4.4.4 Route information

Route information must be defined if you want to connect a station to another network through a
router. As the route information, the IP addresses of both the communication destination and
router are registered in a pair.

(1) IP address of communication destination

For each communication destination, an IP address is registered. When multiple
communication destinations exist in the same network, a network address may be set as a
generic address. (The host number of the IP address that has been set to “0” is used as the
network address.)

(2) IP address of router

The IP address of the router in the same network as the ET.NET module is registered. When
multiple routers is involved in the communication route to the destination, register only the
router in the same network as the ET.NET module.

The following two methods are available for setting route information.

z Setting in the socket handler route_add() in a C program

• Refer to the item pertaining the socket hander route_add().

z Setting by using the Windows® version of ET.NET system tool (V6 or later)
• Refer to the OPTION ET.NET For Windows software manual (manual number

SAE-3-148).

4 USER GUIDE

4-14

NOTE

z Routing information setting function by a Windows® ET.NET system can be
used only when the LQE020 module revision No. is C (the CPU indicator
display is ETM 2.0 or ETS 2.0) or later and the ET.NET system tool version is
V06 or later.

z Up to 15 items of route information including both route_add() and tool
settings can be registered.

z If the same setting is made by route_add() and the tool, the setting made by
the latter has priority and that made by route_add() is invalidated. In this
case, an error return code will be given back.

z The route information setting is supported only by the Windows® version tool
(it is not supported by the PSEα version tool).

z The addresses that can be registered are IP and network addresses. No
subnetwork address can be registered.
This is because the ET.NET module recognizes route information as an IP
address or network address but not as a subnetwork address. Even if a
subnetwork address is registered, it is not recognized as an IP address, so no
communication can be performed.

4 USER GUIDE

4-15

NOTE

The following are examples of route information registered for the network
configuration shown in the figure below.

- Examples of registering route information -

z Route information registered for communication with host H1

• IP address of router Rn: IPn
• IP address of host H1: IP1

z Route information registered for communication with host H3
• IP address of router Rn: IPn
• IP address of host H3: IP3 or network address NET0

Subnetwork address: NET1

R1 R2

H1 H2

Network address: NET0

Rn
Router

ET.NET

H3IP address: IP1 IP address: IP2 IP address: IP3

Subnetwork address: NET2

IP address: IPn
NETn

4 USER GUIDE

4-16

4.5 Software Configuration of ET.NET

CPU

User program

ET.NET
main module

TCP �
program

IP program

UDP
program

ET.NET
submodule

IP program

UDP
program

Socket driver

Socket handler

Socket driver

Socket handler

Driver
(10BASE-5)

Driver
(10BASE-5)

Cable
Transceiver Transceiver

Cable
Transceiver Transceiver

(10BASE-T)

HUB HUB

(10BASE-T)

TCP �
program

4 USER GUIDE

4-17

4.6 ET.NET System Programs

This section explains the system programs shown in Section 4.5, “Software Configuration of
ET.NET”.
The system programs are classified into the six types listed below. Each program runs on a CPU or
ET.NET module.
z Socket handler
z Socket driver
z TCP program
z UDP program
z IP program
z Driver

4.6.1 Socket handler

The socket handler, invoked as a function in C, controls the ET.NET module for user program. By
using the socket handler, the user can create programs without considering the hardware
specifications and communication protocol.

4.6.2 Socket driver

The socket driver passes commands from the socket handler to the TCP or UDP program via the
memory interface for subsequent processing.

4.6.3 TCP program

The TCP program as a higher-level protocol conducts high-reliability data transmission/reception
management.

The functions of the TCP program are listed below.
z Reliability check

• Confirmation of reception response signal (ACK)
• Sequence check by sequence numbers
• Data checksum check

z Data retransmission (when an error is detected by reliability check)
z Flow control for receivable data amount
z Simultaneous communication with multiple processes (multiplexing)
z Logical connection by connection establishment
z Data security and priority management

4 USER GUIDE

4-18

4.6.4 UDP program

The UDP program as a higher-level protocol manages high-speed transmission/reception of a large
amount of data.
The UDP program has the following functions:
z Connectionless communication
z Simultaneous communication
z Packet-based data transmission

4.6.5 IP program

The IP program as a low-level protocol conducts logical connection of communication paths.
The IP program has the following functions:
z Disassembling or reassembling data according to the maximum packet length
z Exchanging IP address and physical address

4.6.6 Driver

The driver controls the communication circuit, and sends data to and receives data from lines
(transceivers).
The driver has the following functions:
z CRC (Cyclic Redundancy Check) for transmission/reception of data
z Data collision detection during transmission/reception and retransmission

4 USER GUIDE

4-19

4.7 User-created Program

This section describes programs that needs to be created by the user.

4.7.1 User program

The user program starts the socket handler, and sends or receives data.
Create the user program as a C mode program, and load it into the S10mini series.
A C mode program is written in programming languages such as C, assembler language, etc., and
can be executed in the form of tasks or P coil. Use the CPMS (Compact Process Monitor System)
as the OS. Extended memory is required for a C mode program.

The socket handler is explained in Section 4.8, “Socket Handler.”
For programming using the socket handler, see CHAPTER 5, “PROGRAM EXAMPLES.”

4 USER GUIDE

4-20

4.8 Socket Handler

The socket handler, invoked as a function in C, controls the ET.NET module for user program, and
carries out data transmission and reception. The socket handler consists of 20 functions.
Call the socket handler by specifying its entry addresses. A user program cannot be created
(linked) in a form including the socket handler.

User application
program tcp_popen()

getconfig()

Socket handler (main)Calling by address
specification

Linking only by
user program

Socket handler (sub)
tcp_open()

tcp_popen()

getconfig()

tcp_open()

4 USER GUIDE

4-21

4.8.1 Socket handler function list

The table below lists the functions of the socket handler.

Subroutine call address
Name

Main Sub
Function

Corresponding
program

tcp_open() /874100 /8F4100 Actively opens TCP. TCP/IP
tcp_popen() /874106 /8F4106 Passively opens TCP. TCP/IP
tcp_accept() /87410C /8F410C Accepts a TCP connection request. TCP/IP
tcp_close() /874112 /8F4112 Terminates a TCP connection. TCP/IP
tcp_abort() /87411E /8F411E Kills a TCP connection. TCP/IP
tcp_getaddr() /874124 /8F4124 Reads TCP socket information. TCP/IP
tcp_stat() /87412A /8F412A Reads TCP connection status. TCP/IP
tcp_send() /874130 /8F4130 Sends TCP data. TCP/IP
tcp_receive() /874136 /8F4136 Receives TCP data. TCP/IP
udp_open() /874160 /8F4160 Opens UDP. UDP/IP
udp_close() /874166 /8F4166 Closes UDP. UDP/IP
udp_send() /87416C /8F416C Sends UDP data. UDP/IP
udp_receive() /874172 /8F4172 Receives UDP data. UDP/IP
route_list() /874178 /8F4178 Reads routing information. TCP/IP and

UDP/IP
route_del() /87417E /8F417E Deletes routing information. TCP/IP and

UDP/IP
route_add() /874184 /8F4184 Registers routing information. TCP/IP and

UDP/IP
arp_list() /87418A /8F418A Reads ARP information. TCP/IP and

UDP/IP
arp_del() /874190 /8F4190 Deletes ARP information. TCP/IP and

UDP/IP
arp_add() /874196 /8F4196 Registers ARP information. TCP/IP and

UDP/IP
getconfig() /87419C /8F419C Reads configuration information. TCP/IP and

UDP/IP

4 USER GUIDE

4-22

NOTE

z The maximum number of sockets that can be used simultaneously by one
single module is 12 for TCP and 8 for UDP.

z The port numbers 0 to 9999 are reserved by the system; the user can use port
numbers 10000 to 65535.

z The length of data to be transmitted or received in each invocation of a
function is 1 to 4096 bytes for TCP and 1 to 1472 bytes for UDP.

z The IP addresses and subnet masks are set in the operating system table in
the CPU. When the CPU is replaced or the operating system is reloaded,
these items need be set again.

- Kill of task -
If a task using the socket handler is killed, the socket remains in registered state
(except when the task has executed tcp_close() or udp_close() for the socket
used by that task). That is, the socket status at the time of task kill remains
undeleted although the task terminated. The socket in such a state is called a
floating socket.
As a floating socket cannot be used by other tasks, take any one of the following
actions for the floating socket or module:
1. Execute tcp_close() or udp_close() for the floating socket by another task or

built-in subroutine.
2. Reset the CPU.
3. Cut off the power supply, then recover it.

4 USER GUIDE

4-23

tcp_open()

Function This function registers a socket of the TCP/IP program, reserves a port, and issues a
connection request for a remote station. The registered socket ID or an error code
is returned as the return value. This function transmits SYN and waits for
connection establishment (SYN reception from remote station). If there is no
response from the remote station within 75 seconds, this function ends up with a port
release error (error code: 0xF0FF). In this case, reissue tcp_open().

Linking procedure

C language
Main Sub

struct open_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char notuse;
 char ttl;
};

 short (*tcp_open)();
 short rtn;
 struct open_p *padr;

 tcp_open =(short (*) ())0x874100;

 rtn = (*tcp_open)(padr);

struct open_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char notuse;
 char ttl;
};

 short (*tcp_open)();
 short rtn;
 struct open_p *padr;

 tcp_open =(short (*) ())0x8F4100;

 rtn = (*tcp_open)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> notuse: Fixed at 0 (unused)
padr -> ttl: Time to live
If ttl is set to 0, the default value (30) is assumed.

～
～

～
～

～
～

～
～

4 USER GUIDE

4-24

Output parameters:
Return value: The registered socket ID or an error code is returned.

(0 to 0x000F) Registered socket ID
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-25

tcp_popen()

Function This function registers a socket for the TCP/IP program, and puts the socket into
passive state. The registered socket ID or an error code is returned as the return
value. This function is equivalent to socket+bind+listen in UNIX. If dst_ip and
dst_port are set to 0, a connection request from any remote station can be accepted.
If src_port is set to 0, optional port from 1024 to 2047 is reserved.

Linking procedure

C language
Main Sub

struct popen_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char listennum;
 char ttl;
};

 short (*tcp_popen)();
 short rtn;
 struct popen_p *padr;

 tcp_popen = (short (*)())0x874106;

 rtn = (*tcp_popen)(padr);

struct popen_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char listennum;
 char ttl;
};

 short (*tcp_popen)();
 short rtn;
 struct popen_p *padr;

 tcp_popen = (short (*)())0x8F4106;

 rtn = (*tcp_popen)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> listennum: Maximum number of connections not accepted (fixed at 0: reserved

for future extension)
padr -> ttl: Time to live

～
～

～
～

～
～

～
～

4 USER GUIDE

4-26

If no remote station is specified, set dst_ip and dst_port to 0.
If ttl is set to 0, the default value (30) is assumed.

Output parameters:
Return value: The registered socket ID or an error code is returned.

(0 to 0x000F) Registered socket ID
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-27

tcp_accept()

Function This function waits for a connection request (SYN reception) for the socket ID that
was placed in passive state by the tcp_popen() function in the TCP/IP program, and
accepts connection establishment. The socket ID registered after connection
establishment or an error code is returned as the return value. The socket ID in an
input parameter and that registered after connection establishment have the same
value. This function continues waiting until the remote station is connected.

Linking procedure

C language
Main Sub

struct accept_p {
 short s_id;
};

 short (*tcp_accept)();
 short rtn;
 struct accept_p *padr;

 tcp_accept =(short (*) ())0x87410C;

 rtn = (*tcp_accept)(padr);

struct accept_p {
 short s_id;
};

 short (*tcp_accept)();
 short rtn;
 struct accept_p *padr;

 tcp_accept =(short (*) ())0x8F410C;

 rtn = (*tcp_accept)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
Output parameters:
Return value: The registered socket ID or an error code is returned.

(0 to 0x000F) Registered socket ID
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～

～

～
～

～

～

4 USER GUIDE

4-28

tcp_close()

Function This function terminates the connection corresponding to a socket ID, and deletes
the socket. The processing result is returned as the return value. This function
transmits FIN characters and waits for connection termination (FIN reception from
remote station). If there is no response from the remote station within 30 seconds,
this function ends up with a socket driver timeout error (error code: 0xF012). In
this case, issue tcp_abort().

Linking procedure

C language
Main Sub

struct close_p {
 short s_id;
};

 short (*tcp_close)();
 short rtn;
 struct close_p *padr;

 tcp_close = (short (*) ())0x874112;

 rtn = (*tcp_close)(padr);

struct close_p {
 short s_id;
};

 short (*tcp_close)();
 short rtn;
 struct close_p *padr;

 tcp_close = (short (*) ())0x8F4112;

 rtn = (*tcp_close)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～

～

～
～

～

～

4 USER GUIDE

4-29

tcp_abort()

Function This function kills (by sending RST characters) the connection corresponding to a
socket ID, and deletes the socket. The processing result is returned as the return
value.

Linking procedure

C language
Main Sub

struct sid_p {
 short s_id;
};

 short (*tcp_abort)();
 short rtn;
 struct sid_p *padr;

 tcp_abort = (short (*) ())0x87411E;

 rtn = (*tcp_abort)(padr);

struct sid_p {
 short s_id;
};

 short (*tcp_abort)();
 short rtn;
 struct sid_p *padr;

 tcp_abort = (short (*) ())0x8F411E;

 rtn = (*tcp_abort)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-30

tcp_getaddr()

Function This function obtains the IP address of the remote station to be connected
corresponding to a socket ID and the port numbers of the local and remote stations.
The processing result is returned as the return value. When the result is normal
termination, the obtained information at outinf is validated.

Linking procedure

C language
Main Sub

struct sid_p {
 short s_id;
};
struct getaddr_p {
 long ipaddr;
 short src_port;
 short dst_port;
};

 short (*tcp_getaddr)();
 short rtn;
 struct sid_p *padr;
 struct getaddr_p *outinf;

 tcp_getaddr = (short(*)())0x874124;

 rtn = (*tcp_getaddr)(padr, outinf);

struct sid_p {
 short s_id;
};
struct getaddr_p {
 long ipaddr;
 short src_port;
 short dst_port;
};

 short (*tcp_getaddr)();
 short rtn;
 struct sid_p *padr;
 struct getaddr_p *outinf;

 tcp_getaddr = (short(*)())0x8F4124;

 rtn = (*tcp_getaddr)(padr, outinf);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
Output parameters:
outinf: Starting address of output parameters

outinf -> ipaddr: IP address of remote station
outinf -> src_port: Port number of local station
outinf -> dst_port: Port number of remote station

～
～

～
～

～
～

～
～

4 USER GUIDE

4-31

Return value: The processing result is returned.
(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-32

tcp_stat()

Function This function obtains the status of the connection corresponding to a socket ID.
The processing result is returned as the return value. When the result is normal
termination, the obtained information at outinf is validated.

Linking procedure

C language
Main Sub

struct sid_p {
 short s_id;
};
struct stat_p {
 unsigned short stat;
 unsigned short urg;
 unsigned short sendwin;
 unsigned short recvwin;
};

 short (*tcp_stat)();
 short rtn;
 struct sid_p *padr;
 struct stat_p *outinf;

 tcp_stat =(short(*)())0x87412A;

 rtn = (*tcp_stat)(padr, outinf);

struct sid_p {
 short s_id;
};
struct stat_p {
 unsigned short stat;
 unsigned short urg;
 unsigned short sendwin;
 unsigned short recvwin;
};

 short (*tcp_stat)();
 short rtn;
 struct sid_p *padr;
 struct stat_p *outinf;

 tcp_stat =(short(*)())0x8F412A;

 rtn = (*tcp_stat)(padr, outinf);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID

～
～

～
～

～
～

～
～

4 USER GUIDE

4-33

Output parameters:
outinf: Starting address of output parameters

outinf -> stat: Connection status
0: CLOSED
1: LISTEN
2: SYN_SENT
3: SYN_RECEIVED
4: ESTABLISHED
5: CLOSE_WAIT
6: FIN_WAIT_1
7: CLOSING
8: LAST_ACK
9: FIN_WAIT_2
10: TIME_WAIT

outinf -> urg: Whether there is urgent data
0: There is no urgent data.
Other than 0: Number of urgent data items

outinf -> sendwin: Remaining quantity of send data of send window
outinf -> recvwin: Amount of receive data that has arrived

Return value: The processing result is returned.
(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-34

tcp_send()

Function This function sends data to the connection corresponding to a socket ID. The
starting address and the length of the sent data are indicated by parameters buf and
len, respectively. The processing result is returned as the return value. If the
value 0xF012 is returned as the processing result, confirm that transmission is being
retried, by checking the connection status and the residual quantity of the send
window obtained by the tcp_stat() function. The tcp_send() function makes a
return when the data is stored in the send window. Confirm the data transmission
status by the remaining quantity of send data of the send window obtained by
tcp_stat().

Linking procedure

C language
Main Sub

struct send_p {
 short s_id;
 short len;
 char *buf;
};

 short (*tcp_send)();
 short rtn;
 struct send_p *padr;

 tcp_send = (short(*) ())0x874130;

 rtn = (*tcp_send)(padr);

struct send_p {
 short s_id;
 short len;
 char *buf;
};

 short (*tcp_send)();
 short rtn;
 struct send_p *padr;

 tcp_send = (short(*) ())0x8F4130;

 rtn = (*tcp_send)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
padr -> len: Length of sent data (1 to 4096 bytes)
padr -> buf: Starting address of sent data

～

～
～

～

～

～
～

～

4 USER GUIDE

4-35

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-36

tcp_receive()

Function This function receives data from the connection corresponding to a socket ID. The
received data is stored in the receive buffer whose the starting address is indicated by
parameter buf. The data length is specified by parameter len. The processing
result is returned as the return value. In this function, receive wait time can be
specified for parameter tim. However, this function makes a return when the data
is received, even if the wait time has not elapsed.

Linking procedure

C language
Main Sub

struct receive_p {
 short s_id;
 short len;
 char *buf;
 long tim;
};

 short (*tcp_receive)();
 short rtn;
 struct receive_p *padr;

 tcp_receive =(short(*) ())0x874136;

 rtn = (*tcp_receive)(padr);

struct receive_p {
 short s_id;
 short len;
 char *buf;
 long tim;
};

 short (*tcp_receive)();
 short rtn;
 struct receive_p *padr;

 tcp_receive =(short(*) ())0x8F4136;

 rtn = (*tcp_receive)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
padr -> len: Receive buffer length (1 to 4096 bytes)
padr -> buf: Starting address of receive buffer
padr -> tim: Receive wait time (0 to 86400000 ms [24 hours])

～
～

～
～

～
～

～
～

4 USER GUIDE

4-37

Output parameters:
Return value: The processing result is returned.

(0) Normal termination (no receive data)
(0x0001 to 0x1000) Normal termination (number of received bytes)
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-38

udp_open()

Function This function registers a socket for the UDP/IP program, and reserves a port. The
registered socket ID or an error code is returned as the return value.
If a 0 is specified for parameter dst_ip, packets can be received from an arbitrary
host.
If a 0 is specified in the parameter dst_port, data can be received from an arbitrary
port.
If a 0 is specified in the parameter src_port, unused ports from 1024 to 2048 are
reserved.

Linking procedure

C language
Main Sub

struct uopen_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char pktmode;
 char ttl;
};

 short (*udp_open)();
 short rtn;
 struct uopen_p *padr;

 udp_open =(short(*) ())0x874160;

 rtn = (*udp_open)(padr);

struct uopen_p {
 long dst_ip;
 short dst_port;
 short src_port;
 char pktmode;
 char ttl;
};

 short (*udp_open)();
 short rtn;
 struct uopen_p *padr;

 udp_open =(short(*) ())0x8F4160;

 rtn = (*udp_open)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> pktmode: Packet mode (fixed to 0)

～
～

～
～

～

～
～

～

4 USER GUIDE

4-39

padr -> ttl: Time to live
If ttl is set to 0, the default value (30) is assumed.

Output parameters:
Return value: The registered socket ID or an error code is returned.

(0x0020 to 0x0027) Registered socket ID
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4 USER GUIDE

4-40

udp_close()

Function This function deletes the socket identified by a given socket ID. The processing
result is returned as the return value.

Linking procedure

C language
Main Sub

struct uclose_p {
 short s_id;
};

 short (*udp_close)();
 short rtn;
 struct uclose_p *padr;

 udp_close =(short(*) ())0x874166;

 rtn = (*udp_close)(padr);

struct uclose_p {
 short s_id;
};

 short (*udp_close)();
 short rtn;
 struct uclose_p *padr;

 udp_close =(short(*) ())0x8F4166;

 rtn = (*udp_close)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-41

udp_send()

Function This function sends data to the socket identified by a given socket ID. The starting
address and the length of the sent data are indicated by the parameters buf and len,
respectively. The processing result is returned as the return value. As for
specifications of dst_ip and dst_port, those specified in udp_open() have priority.

Linking procedure

C language
Main Sub

struct usend_p {
 short s_id;
 short notuse;
 long dst_ip;
 short dst_port;
 short len;
 char *buf;
};

 short (*udp_send)();
 short rtn;
 struct usend_p *padr;

 udp_send =(short(*) ())0x87416C;

 rtn = (*udp_send)(padr);

struct usend_p {
 short s_id;
 short notuse;
 long dst_ip;
 short dst_port;
 short len;
 char *buf;
};

 short (*udp_send)();
 short rtn;
 struct usend_p *padr;

 udp_send =(short(*) ())0x8F416C;

 rtn = (*udp_send)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
padr -> notuse: Fixed at 0 (unused)
padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> len: Length of sent data (1 to 1472 bytes)
padr -> buf: Starting address of send data

～
～

～
～

～
～

～
～

4 USER GUIDE

4-42

If a value other than 0 is specified in udp_open(), dst_ip and dst_port specifications in
udp_open() are used.

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

NOTE

Specifications of dst_ip and dst_port
z If a value other than 0 is specified in udp_open(), the parameters specified in

udp_open() are used.
z If a 0 is specified in udp_open(), the parameters specified in udp_send() are

used.
z If a 0 is specified in both udp_open() and udp_send(), the function returns with

an invalid address error (error code: 0xFFF0). In this case, correct the user
program.

4 USER GUIDE

4-43

udp_receive()

Function This function receives data from the socket identified by a given socket ID. The
received data is stored in the receive buffer whose starting address is indicated by the
parameter buf.
The processing result is returned as the return value. In this function, receive wait
time can be specified in the parameter tim. However, this function makes a return
when the data is received, even if the wait time has not elapsed.

Linking procedure

C language
Main Sub

struct ureceive_p {
 short s_id;
 short notuse;
 char *buf;
 long tim;
};

 short (*udp_receive)();
 short rtn;
 struct ureceive_p *padr;

 udp_receive =(short(*) ())0x874172;

 rtn = (*udp_receive)(padr);

struct ureceive_p {
 short s_id;
 short notuse;
 char *buf;
 long tim;
};

 short (*udp_receive)();
 short rtn;
 struct ureceive_p *padr;

 udp_receive =(short(*) ())0x8F4172;

 rtn = (*udp_receive)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> s_id: Socket ID
padr -> notuse: Fixed at 0 (unused)
padr -> buf: Starting address of receive buffer
padr -> tim: Receive wait time (0 to 86400000 ms [24 hours])

Output parameters:
Return value: The processing result or an error code is returned.

～
～

～
～

～
～

～
～

4 USER GUIDE

4-44

(0) Normal termination (no receive data)
(0x0001 to 0x05C0) Normal termination (number of received bytes)
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

NOTE

Because the udp_receive() function receives data in units of packets, reserve a
buffer area of 1472 bytes.

4 USER GUIDE

4-45

route_list()

Function This function obtains routing information. (The maximum size in of the routing
information table is 16 [routes].) The number of obtained entries is returned as the
return value. If a 0 is specified for parameter len, only the number of obtained
entries is returned. For len, specify a multiple of 16 (bytes).

Linking procedure

C language
Main Sub

struct lstrt_p {
 short len;
 short notues;
 void *buf;
};

 short (*route_list)();
 short rtn;
 struct lstrt_p *padr;

 route_list = (short(*) ())0x874178;

 rtn = (*route_list)(padr);

struct lstrt_p {
 short len;
 short notues;
 void *buf;
};

 short (*route_list)();
 short rtn;
 struct lstrt_p *padr;

 route_list = (short(*) ())0x8F4178;

 rtn = (*route_list)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> len: Data length (number of bytes; multiple of 16)
padr -> notes: Fixed at 0 (unused)
padr -> buf: Starting address of data

Output parameters:
Return value: The number of obtained entries is returned.

(0) No entry
(0x0001 to 0x0010) Number of obtained entries

～
～

～

～

～
～

～

～

4 USER GUIDE

4-46

Structure of obtained data (contents of buf):
typedef struct{

unsingined long dstaddr: P address of remote station
unsigined long getwayadder: IP address of gateway
unsigined short metric: Metric (number of gateways passed)
unsigined short rt_types: Type
unsigineed short refcnt: Reference counter
unsigined short notuse: (Unused)

}routeentry

4 USER GUIDE

4-47

route_del()

Function This function deletes routing information from the routing information table. The
processing result is returned as the return value.

Linking procedure

C language
Main Sub

struct delrt_p {
 long dstaddr;
 long gtwayaddr;
};

 short (*route_del)();
 short rtn;
 struct delrt_p *padr;

 route_del = (short(*) ())0x87417E;

 rtn = (*route_del)(padr);

struct delrt_p {
 long dstaddr;
 long gtwayaddr;
};

 short (*route_del)();
 short rtn;
 struct delrt_p *padr;

 route_del = (short(*) ())0x8F417E;

 rtn = (*route_del)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> dstaddr: IP address of remote station
padr -> gtwayaddr: IP address of gateway

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-48

route_add()

Function This function adds routing information to the routing information table. The
processing result is returned as the return value.

Linking procedure

C language
Main Sub

struct addrt_p {
 long dstaddr;
 long gtwayaddr;
 short metric;
};

 short (*route_add)();
 short rtn;
 struct addrt_p *padr;

 route_add = (short(*) ())0x874184;

 rtn = (*route_add)(padr);

struct addrt_p {
 long dstaddr;
 long gtwayaddr;
 short metric;
};

 short (*route_add)();
 short rtn;
 struct addrt_p *padr;

 route_add = (short(*) ())0x8F4184;

 rtn = (*route_add)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> dstaddr: IP address of remote station
padr -> gtwayaddr: IP address of gateway
padr -> metric: Metric (number of gateways passed)

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-49

arp_list()

Function This function obtains ARP information. (The maximum size in of the ARP
information table is 32 [ARPs].) The number of obtained entries is returned as the
return value. If a 0 is specified for parameter len, only the number of obtained
entries is returned. For len, specify a multiple of 12 (bytes).

Linking procedure

C language
Main Sub

struct lstarp_p {
 short len;
 short notuse;
 void *buf;
};

 short (*arp_list)();
 short rtn;
 struct lstarp_p *padr;

 arp_list =(short (*)())0x87418A;

 rtn = (*arp_list)(padr);

struct lstarp_p {
 short len;
 short notuse;
 void *buf;
};

 short (*arp_list)();
 short rtn;
 struct lstarp_p *padr;

 arp_list =(short (*)())0x8F418A;

 rtn = (*arp_list)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> len: Data length (number of bytes; multiple of 12)
padr -> notuse: Fixed at 0 (unused)
padr -> buf: Starting address of data

Output parameters:
Return value: The number of obtained entries is returned.

(0) No entry
(0x0001 to 0x0020) Number of obtained entries

～
～

～

～

～
～

～

～

4 USER GUIDE

4-50

Structure of obtained data (contents of buf):
typedef struct{

unsigined long ip_addr: IP address of remote station
unsigined char et_addr(6): Physical address of remote station
unsigined char ar_timer: Timer
unsigined char ar_flags: Flag

}arpt-t

4 USER GUIDE

4-51

arp_del()

Function This function deletes ARP information from the ARP information table. The
processing result is returned as the return value.

Linking procedure

C language
Main Sub

struct delarp_p {
 unsigned long ipaddr;
 unsigned char etaddr[6];
};

 short (*arp_del)();
 short rtn;
 struct delarp_p *padr;

 arp_del =(short(*) ()) 0x874190;

 rtn = (*arp_del)(padr);

struct delarp_p {
 unsigned long ipaddr;
 unsigned char etaddr[6];
};

 short (*arp_del)();
 short rtn;
 struct delarp_p *padr;

 arp_del =(short(*) ()) 0x8F4190;

 rtn = (*arp_del)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> ipaddr: IP address of remote station
padr -> etaddr[6]: Physical address of remote station

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-52

arp_add()

Function This function adds ARP information to the ARP information table. The processing
result is returned as the return value.

Linking procedure

C language
Main Sub

struct addarp_p {
 long ipaddr;
 char etaddr[6];
 short flag;
};

 short (*arp_add)();
 short rtn;
 struct addarp_p *padr;

 arp_add =(short(*) ())0x874196;

 rtn = (*arp_add)(padr);

struct addarp_p {
 long ipaddr;
 char etaddr[6];
 short flag;
};

 short (*arp_add)();
 short rtn;
 struct addarp_p *padr;

 arp_add =(short(*) ())0x8F4196;

 rtn = (*arp_add)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> ipaddr: IP address of remote station
padr -> etaddr[6]: Physical address of remote station
padr -> flag: Flag (fixed at 0)

Output parameters:
Return value: The processing result is returned.

(0) Normal termination
(0xF000 to 0xFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

～
～

～
～

～
～

～
～

4 USER GUIDE

4-53

getconfig()

Function This function obtains the configuration blocks. The processing result is returned as
the return value.

Linking procedure

C language
Main Sub

struct config_p {
 void *config_ptr;
};

 short (*getconfig)();
 short rtn;
 struct config_p *padr;

 getconfig = (short(*) ())0x87419C;

 rtn = (*getconfig)(padr);

struct config_p {
 void *config_ptr;
};

 short (*getconfig)();
 short rtn;
 struct config_p *padr;

 getconfig = (short(*) ())0x8F419C;

 rtn = (*getconfig)(padr);

Parameters

Input parameters:
padr: Starting address of input parameters

padr -> config_ptr: Starting address of configuration block
Output parameters:
Return value: The processing result is returned.

(0) Normal termination
Configuration block:
Data structure of configuration block

struct config_ptr{
long ip_addr: IP address (network order) of local station (optional)
long netmask: Subnetwork mask (optional)
long broadcast: Broadcast address (optional)
char tcp_num: Maximum number of TCP sockets (16)
char udp_num: Maximum number of UDP sockets (8)

～
～

～
～

～
～

～
～

4 USER GUIDE

4-54

char rt_num: Size of routing information table (16)
char arp_num: Size of ARP information table (32)
short tcp_win: Size of TCP send/receive window (1024)

};

4 USER GUIDE

4-55

4.9 Examples of Socket Handler Issuance Procedure

4.9.1 Example of using TCP/IP program

(Cliant)

 tcp_open()

tcp_receive()

tcp_send()

tcp_close() or
tcp_abort()
　

Range in which route_
list(), route_del(), route_
add(), arp_list(), arp_
del(), arp_add(), and
getconfig() are usable

(Server)

tcp_popen()

tcp_send()

tcp_receive()

tcp_close() or
tcp_abort()　

tcp_accept()

(Data)

Before connection
establishment

Connection
established

Connection
terminated

Range in which
tcp_stat() and
tcp_getaddr() �
are usable

4 USER GUIDE

4-56

4.9.2 Example of using UDP/IP program

(Cliant)

udp_open()

udp_receive()

udp_send()

udp_close()

Range in which route_
list(), route_del(), route_
add(), arp_list(), arp_
del(), arp_add(), and
getconfig() are usable

(Server)

udp_open()

udp_send()

udp_receive()

(Data)

udp_close()

Before socket
registration

Socket registered

Socket deletion

4 USER GUIDE

4-57

NOTE

Note the following points before using the S10mini Ethernet module LQE020:

1. Error handling for tcp_close

You may issue tcp_close when the return code from a socket handler
function indicates an error. If you have issued it, also check the return code
from tcp_close. If the code indicates an error, issue tcp_close again as
indicated in the table, which lists codes associated with errors detected by
the socket handler, in order to eliminate the cause of the error. Otherwise,
a connection may not be established again or a floating socket may be
generated. An example of programming (flowchart) showing how the socket
handler issues socket library functions is given below.

Issue tcp_open().

Issued correctly?

Issue tcp_send().

delay*

No

No

No

Yes

Yes

Yes or 0xFFF6 error

In case of the error code 0xFFF6
returned reporting an already closed
connection, tcp_close need not be
issued again.

Note: This flowchart also applies to error handling for
 udp_close.

Issued correctly?

Issue tcp_close().

Issued correctly?

delay*

Socket driver timeout?
Timeout (0xF012 error)

Other
error

Succeeded
Issue tcp-abort().

2. Inhibited asynchronous access to the same socket

Multiple socket library functions asynchronously issued to a single socket
may result in incorrect execution results of functions. This problem is likely
to occur when multiple tasks issue socket library functions to the same
socket. Make sure that one task handles one socket.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

4 USER GUIDE

4-58

NOTE

3. Time to detect a transmission timeout
When the LQE020 issues a socket library function, an ACK packet may
cause a timeout due to a communication error or a failure in the remote
device. It takes time to detect a timeout as indicated in the table below.
Therefore, at least the time in the table is required after a timeout of the
socket handler is detected before the socket library function is issued again
or a connection is established again. Assuming that communication errors
are inevitable, confirm at the design stage that the timeout values in the table
do not cause a problem.

Time Value Description

Time to detect a tcp open
timeout (SYN retry interval)

75s When receiving no response from the
remote device, the socket handler retries
SYN at the following intervals: 6s, 12s,
24s, and 33s

Time to detect a tcp send
timeout (SEND retry interval)

30s When receiving no response from the
remote device, the socket handler
retransmits at the following intervals: 1s,
2s, 4s, 8s, and 16s
If 30 seconds pass after the socket
handler has issued tcp send, the socket
handler detects a socket driver timeout
(return code: 0xF012).

Time to detect a tcp close
timeout (FIN retry interval)

30s When receiving FIN from the remote
device and detecting the normal line
disconnection, the socket handler ends
immediately.
When the module (LQE020) sends FIN
to disconnect the line, the socket handler
also ends immediately.
When receiving no response from the
remote device, the socket handler retries
FIN at the following intervals: 1s, 2s, 4s,
8s, and 16s
If 30 seconds pass after the socket
handler has issued tcp close, the socket
handler detects a socket driver timeout
(return code: 0xF012). Issue tcp abort
to disconnect the line.

(cont.)

4 USER GUIDE

4-59

NOTE

Time Value Description

tcp_close,tcp_send,
udp_close

30sTime to
detect a
response
timeout

tcp_abort,route_list,
route_del,route_add,
arp_list,arp_del,
arp_add,getconfig,
udp_send,tcp_getaddr,
tcp_stat

10s

Time from when the socket handler
issues a command to a microprogram
until it is judged that there is no
response.

5 PROGRAM EXAMPLES

5 PROGRAM EXAMPLES

5-2

5.1 Example of Programs for Communication between CPUs by Socket
Handler

5.1.1 System configuration

Coaxial cableTerminator Terminator

Transceiver

Transceiver cableS10mini
(CPU01)

Power supply
CPU

ET.NET (LQE020)

IP address:
192.001.000.001

Transceiver

Transceiver cableS10mini
(CPU02)

Power supply
CPU

ET.NET (LQE020)

IP address:
192.001.000.002

The module number
switch is set to 0.

The module number
switch is set to 0.

System components list

Product name Model Quantity Remarks
Power supply LQV000 2
CPU LQP010 2
ET.NET LQE020 2
Transceiver cable HBN-TC-100 2 Manufactured by Hitachi Cable, Ltd.
Transceiver HLT-200TB 2 Manufactured by Hitachi Cable, Ltd.
Coaxial cable HBN-CX-100 1 Manufactured by Hitachi Cable, Ltd.
Terminator HBN-T-NJ 2 Manufactured by Hitachi Cable, Ltd.

5 PROGRAM EXAMPLES

5-3

5.1.2 Program structure

The program structure is shown below. The ET.NET module of CPU01 and that of CPU02 are
connected by logical line. The ET.NET module of CPU02 sends 1024 bytes of data, and the
ET.NET module of CPU01 receives that much data.
When operating this program, start the user program from CPU01.

User program

Receive
buffer

Socket
(port# 10000)

Socket handler
TCP/IP

CPU01

User program

Send
buffer

Socket
(port# 10000)

Socket handler
TCP/IP

CPU02

Logical line

Communication

5 PROGRAM EXAMPLES

5-4

CPU

Item CPU01 CPU02

Function Reception Transmission
Send buffer Address: 0x1E6000

Number of bytes: 1024
Receive buffer Address: 0x1E6000

Number of bytes: 1024

Port number 10000 10000
tcp_open() 0x874100 0x874100
tcp_popen() 0x874106 0x874106
tcp_accept() 0x87410C 0x87410C
tcp_close() 0x874112 0x874112
tcp_abort() 0x87411E 0x87411E
tcp_getaddr() 0x874124 0x874124
tcp_stat() 0x87412A 0x87412A
tcp_send() 0x874130 0x874130
tcp_receive() 0x874136 0x874136
udp_open() 0x874160 0x874160
udp_close() 0x874166 0x874166
udp_send() 0x87416C 0x87416C
udp_receive() 0x874172 0x874172
route_list() 0x874178 0x874178
route_del() 0x87417E 0x87417E
route_add() 0x874184 0x874184
arp_list() 0x87418A 0x87418A
arp_del() 0x874190 0x874190
arp_add() 0x874196 0x874196

Starting address of
socket handler

getconfig() 0x87419C 0x87419C

5 PROGRAM EXAMPLES

5-5

5.1.3 Flowchart of program at CPU01

Start

Opens TCP passively.
tcp_popen

Return code?
Abnormal

Normal

Accepts TCP connection request.
tcp_accept

Return code? Abnormal

Normal

Receives TCP data.
tcp_receive

Return code?

Terminates TCP connection.
tcp_close

(1)

(2)

(4)

(5)

(6)

(8)

(7)

Terminates TCP connection forcibly.
tcp_abort

(10)

(3)

delay *

(9)

delay *

Normal or 0xFFF6 error

End

Abnormal

0xF012 error

5 PROGRAM EXAMPLES

5-6

(1) Registers a socket with port number 10000, and puts the socket into passive state.
(2) The registered socket ID is returned as the return code. When the return code is normal, it is

regarded that the socket has been registered normally.
(3) Issues the delay macro, then repeats processes (1) and (2).
(4) Accepts the connection request from CPU02.
(5) Judges whether normal or abnormal by the return code.
(6) Reads the data sent from CPU02 into the receive buffer.
(7) Terminates the established connection.
(8) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6

(error), terminates the program as if no error had occurred normally. When the return code is
0xF012(error), then executes process (10).

(9) Issues the delay macro, then repeats processes (7) and (8).
(10) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5 PROGRAM EXAMPLES

5-7

5.1.4 Example of C language program at CPU01

#define TCP_POPEN 0x874106L /* tcp_popen() starting address(main) */
#define TCP_ACCEPT 0x87410CL /* tcp_accept() starting address(main) */
#define TCP_CLOSE 0x874112L /* tcp_close() starting address(main) */
#define TCP_RECEIVE 0x874136L /* tcp_receive() starting address(main) */
#define TCP_ABORT 0x87411EL /* tcp_abort() starting address */
#define IPADDR 0xC0010002L /* IP address of remote station */
#define RBUFADDR 0x1E6000L /* Starting address of receive buffer */
#define PARADDR 0x1E5000L /* Starting address of parameter strage area */

struct popen_p{
 long dst_ip; /* IP address of remote station */
 short dst_port; /* Port number of remote station */
 short src_port; /* Port number of local station */
 char listennum; /* Maximum number of unaccepted connections */
 char ttl; /* Time to live */
};

struct accept_p{
 short s_id; /* Socket ID */
};

struct receive_p{
 short s_id; /* Socket ID */
 short len; /* Buffer length */
 char *buf; /* Starting address of buffer */
 long tim; /* Receive wait time(ms) */
};

struct close_p{
 short s_id; /* Socket ID */
};
struct abort_p{
 short s_id; /* Socket ID */
};
/************************/
/* task2: Server(CPU01) */
/************************/
main()
{
 register short (*tcp_popen)();
 register short (*tcp_accept)();
 register short (*tcp_receive)();
 register short (*tcp_close)();
 register short (*tcp_abort)();
 long time;
 short rtn;
 char *rbuf;
 struct popen_p *popen;
 struct accept_p *accpt;
 struct receive_p *recv;
 struct close_p *close;
 struct abort_p *abort;

 popen = (struct popen_p *)PARADDR; /* Starting address of input parameter storage area */
 accpt = (struct accept_p *)(popen + 1);
 recv = (struct receive_p *)(accpt + 1);
 close = (struct close_p *)(recv + 1);
 abort = (struct abort_p *)(close + 1);

 while(1){
 popen->dst_ip = IPADDR; /* IP address of remote station */
 popen->dst_port = 10000; /* Port number of remote station */
 popen->src_port = 10000; /* Port number of local station */
 popen->listennum = 0; /* Maximum number of */
 /* unaccepted connections */
 popen->ttl = 0; /* Time to live */
 tcp_popen = (short (*)())TCP_POPEN;
 rtn = (tcp_popen)(popen); /* Opens TCP passively */
 if(rtn > 0){ /* Return code normal? */

5 PROGRAM EXAMPLES

5-8

 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 accpt->s_id = rtn; /* Socket ID */
 tcp_accept = (short (*)())TCP_ACCEPT;
 rtn = (tcp_accept)(accpt); /* Accepts TPC connection request. */
 recv->s_id = rtn; /* Socket ID */
 if(rtn > 0){ /* Return code normal? */
 recv->len = 1024; /* Receive buffer length(bytes) */
 recv->buf = (char *)RBUFADDR; /* Starting address of receive buffer */
 recv->tim = 60000; /* Receive wait time(ms) */
 tcp_receive = (short (*)())TCP_RECEIVE;
 rtn = (tcp_receive)(recv); /* Receives TCP */
 close->s_id = recv->s_id; /* Socket ID */
 } else {
 close->s_id = accpt->s_id; /* Socket ID */
 }
 while(1){
 tcp_close = (short (*)())TCP_CLOSE;
 rtn = (tcp_close)(close); /* Terminates TCP connection. */
 if(rtn == 0 || rtn == (short)0xFFF6){
 break;
 } else if (rtn == (short)0xF012) {
 tcp_abort = (short (*)())TCP_ABORT;
 rtn = (tcp_abort)(abort); /* Terminates TCP connection forcibly */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 return;
}

5 PROGRAM EXAMPLES

5-9

5.1.5 Flowchart of program at CPU02

Start

Opens TCP actively.
tcp_open

Return code? Abnormal

Normal

End

(1)

(2)

Sends TCP data.
tcp_send

(4)

Terminates TCP connection.
tcp_close

(5)

Terminates TCP connection forcibly.
tcp_abort

(8)

(3)

delay *

(7)

delay *

Return code? AbnormalNormal or 0xFFF6 error (6)

(1) Registers a socket with port number 10000, and puts the socket into active state.
(2) The registered socket ID is returned as the return code. When the return code is normal, it is

regarded that the socket has been registered normally.
(3) Issues the delay macro, then repeats processes (1) and (2).
(4) Transmits the data in the send buffer to CPU01.
(5) Terminates the established connection.
(6) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6

(error), terminates the program as if no error had occurred normally. When the return code is
0xF012(error), then executes process (8).

(7) Issues the delay macro, then repeats processes (5) and (6).
(8) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5 PROGRAM EXAMPLES

5-10

5.1.6 Example of C language program at CPU02

#define TCP_OPEN 0x874100L /* tcp_open() starting address */
#define TCP_CLOSE 0x874112L /* tcp_close() starting address */
#define TCP_SEND 0x874130L /* tcp_send() starting address */
#define TCP_ABORT 0x87411EL /* tcp_abort() starting address */
#define IPADDR 0xC0010001L /* IP address of remote station */
#define SBUFADDR 0x1E6000L /* Starting address of send buffer */
#define PARADDR 0x1E5000L /* Starting address of parameter strage area */

struct open_p{
 long dst_ip; /* IP address of remote station */
 short dst_port; /* Port number of remote station */
 short src_port; /* Port number of local station */
 char notuse; /* Unused(0) */
 char ttl; /* Time to live */
};

struct send_p{
 short s_id; /* Socket ID */
 short len; /* Send data length(bytes) */
 char *buf; /* Starting address of send data */
};

struct close_p{
 short s_id; /* Socket ID */
};
struct abort_p{
 short s_id; /* Socket ID */
};
/*************************/
/* task3: Client(CPU02) */
/*************************/
main()
{
 register short (*tcp_open)();
 register short (*tcp_send)();
 register short (*tcp_close)();
 register short (*tcp_abort)();
 long time;
 short rtn;
 struct open_p *open;
 struct send_p *send;
 struct close_p *close;
 struct abort_p *abort;

 open = (struct open_p *)PARADDR; /* Starting address of input parameter storage area */
 send = (struct send_p *)(open + 1);
 close = (struct close_p *)(send + 1);
 abort = (struct abort_p *)(close + 1);

 while(1){
 open->dst_ip = IPADDR; /* IP address of remote station */
 open->dst_port = 10000; /* Port number of remote station */
 open->src_port = 10000; /* Port number of local station */
 open->notuse = 0; /* Unused */
 open->ttl = 0; /* Time to live */
 tcp_open = (short (*)())TCP_OPEN;
 rtn = (tcp_open)(open); /* Opens TCP actively. */
 if(rtn > 0){ /* Return code normal？ */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);

5 PROGRAM EXAMPLES

5-11

 }
 send->s_id = rtn; /* Socket ID */
 send->len = 1024; /* Send data length(bytes) */
 send->buf = (char *)SBUFADDR; /* Starting address of send data */
 tcp_send = (short (*)())TCP_SEND;
 rtn = (tcp_send)(send); /* Sends TCP data. */
 close->s_id = send->s_id; /* Socket ID */
 while(1){
 tcp_close = (short (*)())TCP_CLOSE;
 rtn = (tcp_close)(close); /* Terminates TCP connection. */
 if(rtn == 0 || rtn == (short)0xFFF6){
 break;
 } else if (rtn == (short)0xF012) {
 tcp_abort = (short (*)())TCP_ABORT;
 rtn = (tcp_abort)(abort); /* Terminates TCP connection forcibly */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 return;
}

5 PROGRAM EXAMPLES

5-12

5.2 Example of Programs for Continuous Communication between CPUs
by Socket Handler

5.2.1 System configuration

Coaxial cableTerminator Terminator

Transceiver

Transceiver cableS10mini

Power supply
CPU

ET.NET (LQE020)

IP address:
192.001.000.001

Transceiver

Transceiver cableS10mini

Power supply
CPU

ET.NET (LQE020)

IP address:
192.001.000.002

The module number
switch is set to 0.

The module number
switch is set to 0.

(CPU02)(CPU01)

System Components List

Product name Model Quantity Remarks
Power supply LQV000 2
CPU LQP010 2
ET.NET LQE020 2
Transceiver cable HBN-TC-100 2 Manufactured by Hitachi Cable, Ltd.
Transceiver HLT-200TB 2 Manufactured by Hitachi Cable, Ltd.
Coaxial cable HBN-CX-100 1 Manufactured by Hitachi Cable, Ltd.
Terminator HBN-T-NJ 2 Manufactured by Hitachi Cable, Ltd.

5 PROGRAM EXAMPLES

5-13

5.2.2 Program structure

The program structure is shown below. The ET.NET module of CPU01 and that of CPU02 are
connected by logical line. A total of 1024 bytes of data is transmitted between the ET.NET module
of CPU02 and that of CPU01.
When running this program, start the user program from CPU01.

User program

Send/receive
buffer

Socket
(port# 10001)

Socket handler
TCP/IP

CPU01

User program

Send/receive
buffer

Socket
(port# 10001)

Socket handler
TCP/IP

CPU02

Logical line

Communication

5 PROGRAM EXAMPLES

5-14

CPU

Item CPU01 CPU02

Function Transmission/reception Transmission/reception/
comparison

Send buffer Address: 0x1E1000
Number of bytes: 1024

Address: 0x1E1000
Number of bytes: 1024

Receive buffer Address: 0x1E2000
Number of bytes: 1024

Address: 0x1E2000
Number of bytes: 1024

Port number 10001 10001
tcp_open() 0x874100 0x874100
tcp_popen() 0x874106 0x874106
tcp_accept() 0x87410C 0x87410C
tcp_close() 0x874112 0x874112
tcp_abort() 0x87411E 0x87411E
tcp_getaddr() 0x874124 0x874124
tcp_stat() 0x87412A 0x87412A
tcp_send() 0x874130 0x874130
tcp_receive() 0x874136 0x874136
udp_open() 0x874160 0x874160
udp_close() 0x874166 0x874166
udp_send() 0x87416C 0x87416C
udp_receive() 0x874172 0x874172
route_list() 0x874178 0x874178
route_del() 0x87417E 0x87417E
route_add() 0x874184 0x874184
arp_list() 0x87418A 0x87418A
arp_del() 0x874190 0x874190
arp_add() 0x874196 0x874196

Starting address of
socket handler

getconfig() 0x87419C 0x87419C

5 PROGRAM EXAMPLES

5-15

5.2.3 Flowchart of program at CPU01

Abnormal

Start

Opens TCP passively.
tcp_popen

Return code? Abnormal

Normal
Accepts TCP connection request.

tcp_accept

Return code? Abnormal

Normal
Receives TCP data.

tcp_receive

Return code?

Normal

Abnormal

ＴＣＰｺﾈｸｼｮﾝ終了

ｔｃｐ＿ｃｌｏｓｅ

(1)

(2)

(4)

(5)

(6)

(7)

(11)
Terminates TCP connection.

tcp_close

ＴＣＰｺﾈｸｼｮﾝ終了

ｔｃｐ＿ｃｌｏｓｅ

(14)
Terminates TCP connection forcibly.

tcp_abort

Copies data.

Sends TCP data.
tcp_send

Return code?

(8)

Normal

End

(9)

(10)

(3)

delay *

(13)

delay *

Abnormal
Return code?

(12)

0xF012 error

Normal or 0xFFF6 error

5 PROGRAM EXAMPLES

5-16

(1) Register a socket with port number 10001, and put the socket into passive state.
(2) The registered socket ID is returned as the return code. When the return code is normal, it is

regarded that the socket has been registered normally.
(3) Issues the delay macro, then repeats processes (1) and (2).
(4) Accept the connection request from CPU02.
(5) Judge whether normal or abnormal by the return code.
(6) Read the data sent from CPU02 into the receive buffer.
(7) When the return code is an error code or it indicates that there is no read data, jump to step

(11).
(8) Copy the data in the receive buffer into the transmission buffer.
(9) Send the data in the send buffer to CPU02.
(10) Judge whether normal or abnormal by the return code. When normal, repeats (6) to (10).
(11) Terminate the established connection.
(12) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6

(error), terminates the program as if no error had occurred normally. When the return code is
0xF012(error), then executes process (14).

(13) Issues the delay macro, then repeats processes (11) and (12).
(14) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5 PROGRAM EXAMPLES

5-17

5.2.4 Example of C language program at CPU01

#define TCP_POPEN 0x874106L /* tcp_popen() starting address(main) */
#define TCP_ACCEPT 0x87410CL /* tcp_accept() starting address(main) */
#define TCP_RECEIVE 0x874136L /* tcp_receive() starting address(main) */
#define TCP_SEND 0x874130L /* tcp_send() starting address(main) */
#define TCP_CLOSE 0x874112L /* tcp_close() starting address(main) */
#define TCP_ABORT 0x87411EL /* tcp_abort() starting address */
#define IPADDR 0xC0010002L /* IP address of remote station */
#define SBUFADDR 0x1E1000L /* Starting address of send buffer */
#define RBUFADDR 0x1E2000L /* Starting address of receive buffer */
#define PARADDR 0x1E5000L /* Starting address of parameter storage area */

struct popen_p{
 long dst_ip; /* IP address of remote station */
 short dst_port; /* Port number of remote station */
 short src_port; /* Port number of local station */
 char listennum; /* Maximum number of unaccepted connections */
 char ttl; /* Time to live */
};

struct accept_p{
 short s_id; /* Socket ID */
};

struct receive_p{
 short s_id; /* Socket ID */
 short len; /* Buffer length */
 char *buf; /* Starting address of buffer */
 long tim; /* Receive wait time(ms) */
};

struct send_p{
 short s_id; /* Socket ID */
 short len; /* Send data length(bytes) */
 char *buf; /* Starting address of send data */
};

struct close_p{
 short s_id; /* Socket ID */
};
struct abort_p{
 short s_id; /* Socket ID */
};
/**************************/
/* task2: Server(CPU01) */
/**************************/
main()
{
 register short (*tcp_popen)();
 register short (*tcp_accept)();
 register short (*tcp_receive)();
 register short (*tcp_send)();
 register short (*tcp_close)();
 register short (*tcp_abort)();
 long time;
 short rtn, i;
 char *sbuf, *rbuf;
 struct popen_p *popen;
 struct accept_p *accpt;
 struct receive_p *recv;
 struct send_p *send;
 struct close_p *close;
 struct abort_p *abort;

 popen = (struct popen_p *)PARADDR; /* Starting address of input parameter storage area */
 accpt = (struct accept_p *)(popen + 1);
 recv = (struct receive_p *)(accpt + 1);
 send = (struct send_p *)(recv + 1);
 close = (struct close_p *)(send + 1);
 abort = (struct abort_p *)(close + 1);

5 PROGRAM EXAMPLES

5-18

 while(1){
 popen->dst_ip = IPADDR; /* IP address of remote station */
 popen->dst_port = 10001; /* Port number of remote station */
 popen->src_port = 10001; /* Port number of local station */
 popen->listennum = 0; /* Maximum number of */
 /* unaccepted connections */
 popen->ttl = 0; /* Time to live */
 tcp_popen = (short (*)())TCP_POPEN;
 rtn = (tcp_popen)(popen); /* Opens TCP passively. */
 if(rtn > 0){ /* Return code normal？ */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 accpt->s_id = rtn; /* Socket ID */
 tcp_accept = (short (*)())TCP_ACCEPT;
 rtn = (tcp_accept)(accpt); /* Accepts TCP connection request. */
 if(rtn > 0){ /* Return code normal？ */
 recv->s_id = rtn; /* SocketID */
 while(1){
 recv->len = 1024; /* Receive buffer length(bytes) */
 recv->buf = (char*)RBUFADDR; /* Starting address of receive buffer */
 recv->tim = 60000; /* Receive wait time(ms) */
 tcp_receive = (short (*)())TCP_RECEIVE;
 rtn = (tcp_receive)(recv); /* Receives TCP data. */
 if(rtn < 0){ /* Return code abnormal？ */
 break;
 }
 sbuf = (char *)SBUFADDR; /* Starting address of send buffer */
 rbuf = (char *)RBUFADDR; /* Starting address of receive buffer */
 for(i = 0 ; i < 1024 ; i++){
 sbuf[i] = rbuf[i];
 }
 send->s_id = recv->s_id; /* Socket ID */
 send->len = 1024; /* Send data length(bytes) */
 send->buf = (char *)SBUFADDR; /* Starting address of send data */
 tcp_send = (short (*)())TCP_SEND;
 rtn = (*tcp_send)(send); /* Sends TCP data. */
 if(rtn < 0){ /* Return code abnormal？ */
 break;
 }
 }
 close->s_id = recv->s_id; /* Socket ID */
 } else {
 close->s_id = accpt->s_id; /* Socket ID */
 }
 while(1){
 tcp_close = (short (*)())TCP_CLOSE;
 rtn = (tcp_close)(close); /* Terminates TCP connection. */
 if(rtn == 0 || rtn == (short)0xFFF6){
 break;
 } else if (rtn == (short)0xF012) {
 tcp_abort = (short (*)())TCP_ABORT;
 rtn = (tcp_abort)(abort); /* Terminates TCP connection forcibly */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 return;
}

5 PROGRAM EXAMPLES

5-19

5.2.5 Flowchart of program at CPU02

Start

Opens TCP actively.
tcp_open

Return code? Abnormal

Normal
Sends TCP data.

tcp_send

Terminates TCP connection.
tcp_close

(1)

(2)

(4)

Return code? Abnormal

Normal

(5)

Receives TCP data.
tcp_receive

(6)

Return code? Abnormal

Normal

(7)

Result of data
comparison

Abnormal

Normal

Compares send data
with receive data.

End

(8)

(10)

Sets the complement data of
receive data in send buffer.

(9)

(11)

Terminates TCP connection forcibly.
tcp_abort

(14)

(3)

delay *

Return code? Abnormal

0xF012 error

(12)

(13)

delay *

Normal or 0xFFF6 error

5 PROGRAM EXAMPLES

5-20

(1) Register a socket with port number 10001, and put the socket into active state.
(2) The registered socket ID is returned as the return code. When the return code is normal, it is

regarded that the socket has been registered normally.
(3) Issues the delay macro, then repeats processes (1) and (2).
(4) Send the data in the send buffer to CPU01.
(5) Judge whether normal or abnormal by the return code.
(6) Read the data sent from CPU01 into the receive buffer.
(7) Judge whether normal or abnormal by the return code.
(8) Compare the data in the send buffer with that in the receive buffer of the local station.
(9) Copy the complement of the receive data into the send buffer.
(10) Judge whether the comparison result is normal or abnormal. When it is normal, repeats steps

(4) to (10).
(11) Terminate the established connection.
(12) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6

(error), terminates the program as if no error had occurred normally. When the return code is
0xF012(error), then executes process (14).

(13) Issues the delay macro, then repeats processes (11) and (12).
(14) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5 PROGRAM EXAMPLES

5-21

5.2.6 Example of C language program at CPU02

#define TCP_OPEN 0x874100L /* tcp_open() starting address(main) */
#define TCP_CLOSE 0x874112L /* tcp_close() starting address(main) */
#define TCP_SEND 0x874130L /* tcp_send() starting address(main) */
#define TCP_RECEIVE 0x874136L /* tcp_receive() starting address(main) */
#define TCP_ABORT 0x87411EL /* tcp_abort() starting address */
#define IPADDR 0xC0010001L /* IP address of remote station */
#define SBUFADDR 0x1E1000L /* Starting address of send buffer */
#define RBUFADDR 0x1E2000L /* Starting address of receive buffer */
#define PARADDR 0x1E5000L /* Starting address of parameter storage area */

struct open_p{
 long dst_ip; /* IP address of remote station */
 short dst_port; /* Port number of remote station */
 short src_port; /* Port number of local station */
 char notuse; /* Unused(0) */
 char ttl; /* Time to live */
};

struct send_p{
 short s_id; /* Socket ID */
 short len; /* Send data length(bytes) */
 char *buf; /* Starting address of send data */
};

struct receive_p{
 short s_id; /* Socket ID */
 short len; /* Buffer length */
 char *buf; /* Starting address of buffer */
 long tim; /* Receive wait time(ms) */
};

struct close_p{
 short s_id; /* Socket ID */
};
struct abort_p{
 short s_id; /* Socket ID */
};
/*************************/
/* task3: Client(CPU02) */
/*************************/
main()
{
 register short (*tcp_open)();
 register short (*tcp_send)();
 register short (*tcp_receive)();
 register short (*tcp_close)();
 register short (*tcp_abort)();
 long time;
 short rtn, i, cerr_flg;
 char *sbuf, *rbuf;
 struct open_p *open;
 struct send_p *send;
 struct receive_p *recv;
 struct close_p *close;
 struct abort_p *abort;

 open = (struct open_p *)PARADDR; /* Starting address of input parameter storage area*/
 send = (struct send_p *)(open + 1);
 recv = (struct receive_p *)(send + 1);
 close = (struct close_p *)(recv + 1);
 abort = (struct abort_p *)(close + 1);

 sbuf = (char *)SBUFADDR; /* Starting address of send buffer */
 for(i = 0 ; i < 1024 ; i++){
 sbuf[i] = 0x55;
 }
 while(1){
 open->dst_ip = IPADDR; /* IP address of remote station */
 open->dst_port = 10001; /* Port number of remote station */

5 PROGRAM EXAMPLES

5-22

 open->src_port = 10001; /* Port number of local station */
 open->notuse = 0; /* Unused */
 open->ttl = 0; /* Time to live */
 tcp_open = (short (*)())TCP_OPEN;
 rtn = (tcp_open)(open); /* Opens TCP actively. */
 if(rtn > 0){ /* Return code normal？ */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 send->s_id = rtn; /* Socket ID */
 recv->s_id = rtn; /* Socket ID */
 while(1){
 send->len = 1024; /* Send data length(bytes) */
 send->buf = (char *)SBUFADDR; /* Starting address of send data */
 tcp_send = (short (*)())TCP_SEND;
 rtn = (tcp_send)(send); /* Sends TCP data. */
 if(rtn < 0){ /* Return cond abnormal？ */
 break;
 }
 recv->len = 1024; /* Receive buffer length(bytes) */
 recv->buf = (char*)RBUFADDR; /* Starting address of receive buffer */
 recv->tim = 60000; /* Receive wait time(ms) */
 tcp_receive = (short (*)())TCP_RECEIVE;
 rtn = (tcp_receive)(recv); /* Receive TCP data. */
 if(rtn < 0){ /* Return cond abnormal？ */
 break;
 }
 cerr_flg = 0; /* Clears compare error flag. */
 sbuf = (char *)SBUFADDR; /* Starting address of srnd buffer */
 rbuf = (char *)RBUFADDR; /* Starting address of receive buffer */
 for(i = 0 ; i < 1024 ; i++){
 if(sbuf[i] != rbuf[i]){
 cerr_flg = 1; /* Sets compare error flag. */
 break;
 }
 sbuf[i] = －rbuf[i]; /* Sets complement */
 }
 if(cerr_flg == 1){ /* Compare error？ */
 break;
 }
 }
 close->s_id = send->s_id; /* Socket ID */
 while(1){
 tcp_close = (short (*)())TCP_CLOSE;
 rtn = (tcp_close)(close); /* Terminates TCP connection. */
 if(rtn == 0 || rtn == (short)0xFFF6){
 break;
 } else if (rtn == (short)0xF012) {
 tcp_abort = (short (*)())TCP_ABORT;
 rtn = (tcp_abort)(abort); /* Terminates TCP connection forcibly */
 break;
 }
 time = 100; /* Issue of 100-ms Delay macro */
 delay(&time);
 }
 return;
}

6 OPERATION

6 OPERATION

6-2

6.1 Start-up Procedure

Mount the module.

Set rotary switch.

Start up CPU.

Set up ET.NET module.

Reset CPU.

End

Start

[1] Turn off the power to the CPU, and mount the
 ET.NET module.

[2] Set the MODU. NO. switch of the ET.NET
 module as shown below.

Module No.

0 1

Description
Communication using 10BASE-5 connections
Communication using 10BASE-T connections2 3

Main Sub

Communication with a tool4 5

[3] Turn on the power to the CPU.

[4] Connect the CPU to the Windowsfi PC via an�
 RS-232C interface cable. Then, set up ET.NET for
 Windows. (Refer to the SOFTWARE MANUAL, �
 OPTION ET.NET For Windows (manual number �
 SAE-3-148)).

[5] Set up the ET.NET module. (Set IP address and
 subnetwork mask.)

[6] Press the CPU reset switch for one second or more to
 reset the CPU.

Windows® PC
programming

(ET.NET for Windows®)

6 OPERATION

6-3

NOTE

z If the IP address of the host is set to all /0s or all /Fs, then an input error will
occur.
If the setup menu for the Windows® Tool is called up with no ET.NET module
installed, the physical address /FFFFFFFFFFFF is displayed. When you
want to reference physical addresses, install an ET.NET module beforehand.
However, IP addresses and subnet masks can be set and referenced even
when no ET.NET module is installed.

z When it is found that the IP address of an ET.NET module is not set, or when
it is lost due to memory initialization during loading of the operating system,
the ERR LED for the ET.NET module lights and one of the following messages
appears in the CPU indicator. At the same time, the communication stops.

If the IP address of the main module is not set:“ETM IPNG”
If the IP address of the submodule is not set:“ETS IPNG”

7 MAINTENANCE

7 MAINTENANCE

7-2

7.1 Maintenance Inspection

To use the S10mini in an optimum condition, check the items listed below. Make this check at
routine inspection or periodic inspection (twice or more per year).

(1) Module appearance

Check that no fissure or crack exists in the module case. If the case has such a damage, there
is a possibility that the internal circuit may also be damaged, resulting in a system malfunction.

(2) Indicator’s ON status and indication
From the indicator status, check that no special fault exists.

(3) Looseness of mounting screws and terminal base screws
Check that the mounting screws and terminal base screws of the module are not loose. If any
of these screws is found to be loose, tighten it. Such a loose screw may result in a system
malfunction or a burn-out due to overheating.

(4) Module replacement
Hot swapping of modules will lead to hardware or software damage. Be sure to replace a
module in a power OFF state.

(5) Cable sheath condition
Check that the cable sheath is not abnormal. A peeled sheath may cause a system malfunction
or electric shock, or may result in a burn-out due to short circuit.

(6) Dust sticking condition
Check if dust and dirt collects on the module. If dust collects on the module, remove it with a
vacuum cleaner. Dust on the module may short the internal circuit, resulting in a burn-out.

(7) Power supply voltage
Check that neither the internal power supply of the module nor the external power supply to it is
out of the specified range. If the power supply voltage deviates from the rating, a system
malfunction may result.

 CAUTION

Static electricity may damage the module. Before starting the work, discharge
all electrostatic charge from your body.

7 MAINTENANCE

7-3

7.2 Troubleshooting

7.2.1 Procedure

Trouble occurred.

Check according to the
instructions given in
Subsection 7.2.2.

Correct if the item is not
executed correctly.

Is each item
executed correctly?

Normal return?

Troubleshooting ended.

Check the error LED and �
CPU console display, and
take a necessary action.

Normal return?

Contact your nearest
Service Center.

Fill in the Trouble
Investigation Sheet. Use
Section 8.16 "Trouble
Investigation Sheet."

YES

NO

YES

NO

YES

NO

7 MAINTENANCE

7-4

7.2.2 Before suspecting a failure

Is cabling normal?

z Check that there is disconnection or erroneous

connection of cables.
z Check that a cable with shielded ground wire is

used as the transceiver cable.

Are the modules mounted correctly?

z Check that the ET.NET modules

are inserted from the left.
z Check that no set screws loosen.

7 MAINTENANCE

7-5

Is grounding made correctly?

z Separate the grounding from that of

high-voltage equipment.
z Perform grounding work conforming to

Class D grounding or higher.

Are LG and FG separated?

z If electrical noise from the power

supply enters the FG (frame
ground) via the LG (line ground), a
malfunction may result. To
prevent this, LG and FG must be
separated.

z Ground LG at the power supply
side.

LG is near here.
FG is over there.

7 MAINTENANCE

7-6

7.3 Errors and Actions To Be Taken

7.3.1 CPU LED display messages

In the CPU LED display, a distinction is made between the main module and submodule, as shown
in the table below.

Module Display message Explanation User action
ETM @. @ The ET.NET module (main) was started up

normally.
This is not an error. Main

ETM □□□□ A hardware error was detected on the
board of the ET.NET module (main).

See Subsection 7.3.2,
“Hardware errors.”

 EXD2 PTY A parity error occurred when the CPU read
memory of the ET.NET module (main).

Set the CPU switch
OFF, then set it ON
again. If this
message still appears,
replace the ET.NET
module.

ETS @. @ The ET.NET module (sub) was started up
normally.

This is not an error.

Sub

ETS □□□□ A hardware error was detected on the
board of the ET.NET module (sub).

See Subsection 7.3.2,
“Hardware errors.”

 EXD3 PTY A parity error occurred when the CPU read
memory of the ET.NET module (sub).

Set the CPU switch
OFF, then set it ON
again. If this
message still appears,
replace the ET.NET
module.

z The “@. @” above indicates the version and revision of the ET.NET module.
z The “□□□□” indicates the error display data in Subsection 7.3.2, “Hardware errors.”

7 MAINTENANCE

7-7

7.3.2 Hardware errors

If the ET.NET module detects a hardware error, an error message as in the table below is displayed
with the CPU LED; The error LED lights and error freeze information is collected; and the operation
of the ET.NET module stops.

Display message Error User action
BUS Bus error
ADDR Address error
ILLG Invalid instruction
ZERO Division by zero
PRIV Privilege violation
FMAT Format error
SINT Spurious interrupt
EXCP Unused exception
PTY Parity error

The ET.NET module may have failed. Replace
the module.

MDSW Module switch setting
error

Check the module switch setting.

ROM1 ROM1 sum error
RAM1 RAM1 compare error
RAM2 RAM2 compare error
ROM3 ROM3 sum error

The ET.NET module may have failed. Replace
the module.

IPNG IP address not registered Register an IP address.
MAC MAC address not

registered
PRG Microprogram error

The ET.NET module may have failed. Replace
the module.

R_NG Route information setting
error

The set route information is erroneous. See
Subsection 7.3.4, “Route information setting error
table,” and correct the route information.

7 MAINTENANCE

7-8

If the ET.NET module detects a hardware error, the error LED lights and error freeze information is
registered, and the operation of the ET.NET module stops.

/840400
/840404

/840410

/840414

/840418

/84041C

/840420

/840424

/840428

/84042C

/840430

/840434

/840438

/84043C

/840440

/840444

/840448

/84044C

/840450

Error code

D0 register
D1 register
D2 register
D3 register
D4 register
D5 register
D6 register
D7 register
A0 register
A1 register
A2 register
A3 register
A4 register
A5 register
A6 register
A7 register

Stack frames
(4 words, 6 words, bus
error)

1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

0010H
0011H

0012H

0013H

0014H
0016H

0017H

0018H

0019H

0100H

0102H

0103H

0105H

Bus error
Address error
Invalid instruction
Division by zero
Privilege violation
Format error
Spurious interrupt
Unsupported exception
(CHK, TRAPV, L1010, etc.)

Parity error

Module switch setting error
ROM1 sum error
RAM1 compare error
RAM2 compare error

/8404FC

231 216 215 20

No. Code Error
Main module

/8C0400
/8C0404

/8C0410

/8C0414

/8C0418

/8C041C

/8C0420

/8C0424

/8C0428

/8C042C

/8C0430

/8C0434

/8C0438

/8C043C

/8C0440

/8C0444

/8C0448

/8C044C

/8C0450

/8C04FC

010BH ROM3 sum error
0112H

IP address not registered

Power failure notice001AH

Submodule

17 0113H

MAC address error

18

19

0114H

0200H Route information setting
error

Microprogram error

Note: The details of the stack frames are shown on the next page.

7 MAINTENANCE

7-9

The following shows the details of the stack frames in the error freeze information table.
Below are shown the details of the stack frames in the error freeze information table of the ET.NET
module (LQE020) of revision “L” or later (having the label “L” or later on the top of the casing or
whose CPU indicator indicates “ETM 4.0” or “ETS 4.0” or later)

2
2

15
0

2
2

15
0

2
2

15
0

2
2

15
0

S
ta

tu
s

re
gi

st
er

P
ro

gr
am

co

un
te

r

Ve
ct

or
 o

ffs
et

/0

2
2

15
0

Ve
ct

or
 o

ffs
et

S
ta

tu
s

re
gi

st
er

 b
ef

or
e

ex
ce

pt
io

n
oc

cu
rr

en
ce

Ve
ct

or
 o

ffs
et

 h
av

in
g

ca
us

ed

th
e

fa
ul

t

/C 1
0

S
ta

tu
s

re
gi

st
er

N
ex

t-i
ns

tru
ct

io
n

pr
og

ra
m

 c
ou

nt
er

Ve
ct

or
 o

ffs
et

P
ro

gr
am

 c
ou

nt
er

 o
f t

he

in
st

ru
ct

io
n

ha
vi

ng

ca
us

ed
 th

e
fa

ul
t

/2

例
外
発
生
前
の
ｽﾃ
ｰﾀ
ｽ･
ﾚｼ
ﾞｽ
ﾀ

Ve
ct

or
 o

ffs
et

D
B

U
F

C
ur

re
nt

-in
st

ru
ct

io
n

pr
og

ra
m

 c
ou

nt
er

/C 0
1

R
et

ur
n

pr
og

ra
m

co

un
te

r

Ve
ct

or
 o

ffs
et

A
dd

re
ss

 h
av

in
g

ca
us

ed
 th

e
fa

ul
t

D
B

U
F

C
ur

re
nt

-in
st

ru
ct

io
n

pr
og

ra
m

 c
ou

nt
er

In
te

rn
al

 tr
an

sf
er

co

un
t r

eg
is

te
r

S
pe

ci
al

 s
ta

tu
s

w
or

d

/C 0
0

/8
C

04
50

/8
C

04
52

/8
C

04
54

/8
C

04
56

/8
C

04
58

/8
C

04
5A

/8
C

04
5C

/8
C

04
5E

/8
C

04
60

/8
C

04
62

/8
C

04
64

/8
C

04
66

S
ub

m
od

ul
e

/8
40

45
0

/8
40

45
2

/8
40

45
4

/8
40

45
6

/8
40

45
8

/8
40

45
A

/8
40

45
C

/8
40

45
E

/8
40

46
0

/8
40

46
2

/8
40

46
4

/8
40

46
6

M
ai

n
m

od
ul

e

4-
w

or
d

an
d

6-
w

or
d

bu
s

er
ro

r s
tu

ff

Fo
rm

at
 $

C
Fo

rm
at

 $
C

M
O

V
E

M
 o

pe
ra

nd

bu
s

er
ro

r s
tu

ff

Fo
rm

at
 $

C
Fo

rm
at

 $
2

(6
-w

or
d

st
ac

k
fra

m
e)

Fo
rm

at
 $

0
(4

-w
or

d
st

ac
k

fra
m

e)
pr

ef
et

ch
 a

nd
 o

pe
ra

nd

bu
s

er
ro

r s
tu

ff

S
ta

tu
s

re
gi

st
er

S
ta

tu
s

re
gi

st
er

S
ta

tu
s

re
gi

st
er

R
et

ur
n

pr
og

ra
m

co

un
te

r
N

ex
t-i

ns
tru

ct
io

n
pr

og
ra

m
 c

ou
nt

er

A
dd

re
ss

 h
av

in
g

ca
us

ed
 th

e
fa

ul
t

A
dd

re
ss

 h
av

in
g

ca
us

ed
 th

e
fa

ul
t

P
ro

gr
am

 c
ou

nt
er

 o
f t

he

in
st

ru
ct

io
n

ha
vi

ng

ca
us

ed
 th

e
fa

ul
t

In
te

rn
al

 tr
an

sf
er

co

un
t r

eg
is

te
r

In
te

rn
al

 tr
an

sf
er

co

un
t r

eg
is

te
r

S
pe

ci
al

 s
ta

tu
s

w
or

d
S

pe
ci

al
 s

ta
tu

s
w

or
d

7 MAINTENANCE

7-10

Below are shown the details of the stack frames in the error freeze information table of the ET.NET
module (LQE020) of revision “L” or later.

2
2

15
0

25

24

23

22

S
ta

tu
s

re
gi

st
er

P
ro

gr
am

co

un
te

r

2
2

15
0

A
cc

es
s

ad
dr

es
s

In
st

ru
ct

io
n

re
gi

st
er

/8
C

04
50

/8
C

04
52

/8
C

04
54

/8
C

04
56

/8
C

04
58

/8
C

04
5A

/8
C

04
5C

S
ub

m
od

ul
e

/8
40

45
0

/8
40

45
2

/8
40

45
4

/8
40

45
6

/8
40

45
8

/8
40

45
A

/8
40

45
C

M
ai

n
m

od
ul

e

S
ta

ck
 fr

am
e

fo
r b

us
 e

rr
or

s
an

d
ad

dr
es

s
er

ro
rs

S
ta

ck
 fr

am
e

fo
r o

th
er

th

an
 b

us
 e

rr
or

s
an

d
ad

dr
es

s
er

ro
rs

S
ta

tu
s

re
gi

st
er

R
/W

I/N
FC

R
/W

: (
R

ea
d/

W
rit

e)
: w

rit
e

=
0

R

ea
d

=
1

I/N
: (

In
st

ru
ct

io
n/

N
on

-in
st

ru
ct

io
n)

: I
ns

tru
ct

io
n

=
0

N

on
-in

st
ru

ct
io

n
=

1
FC

: F
un

ct
io

n
co

de

P
ro

gr
am

co

un
te

r

7 MAINTENANCE

7-11

7.3.3 Error codes from the socket handler

The table below lists the error codes returned from the socket handler and the user actions to be
taken against those errors.

Error code Error Cause User action
0xF000 Connection not

established
When the handler was started, a
connection was not yet established
or a port was already released.

Issue tcp_open or tcp_popen to
establish a connection. Then re-
call the handler function.

0xF002 FIN received An FIN was received when the
handler was started.

Issue tcp_close to terminate the
connection. Then, issue tcp_open
or tcp_popen to re-establish a
connection.

0xF010 Invalid socket
ID

• The socket ID was out of range.
(For TCP, 1 ≤ ID ≤ 15; for UDP,
0 × 20 ≤ ID ≤ 0 × 27)

• The ID of an unused socket or
already-released socket was
specified.

• A connection was not yet
established.(Applicable to
tcp_accept only)

Check the user program, for
example, to see whether a value
returned by tcp_open or tcp_popen
is specified as the socket ID.

0xF011 Too many
sockets

An attempt was made to register
more sockets than the limit.
(For TCP, 12; for UDP, 8)

Close unused sockets using
tcp_close or udp_close. Then,
issue tcp_open or tcp_popen to re-
establish a connection.

0xF012 Socket driver
time-out

The socket driver did not respond
within the specified time.

Issue tcp_close to terminate the
connection. Then, issue tcp_open
or tcp_popen to re-establish a
connection. If communication
still is not resumed, check the
connectors, cables, and the remote
station for any abnormality.
When this error occurs due to tcp
close, issue tcp abort, disconnect
the line, and issue tcp open or tcp
popen to re-establish a connection.

7 MAINTENANCE

7-12

Error code Error Cause User action
0xF013 Module stopped When the handler was started,

initialization of the socket driver
was not terminated within 100
seconds.

Issue tcp_close within the range
allowed for the application.
Then, issue tcp_open or tcp_popen
to re-establish a connection.

0xF020 Invalid send
data length

The send data length was out of
range. (For TCP, 1 ≤ data length
≤ 4096; for UDP, 1 ≤ data length ≤
1472)

Check the user program to see
whether the send data length is
specified correctly.

0xF021 Invalid receive
data length

The receive data length was out of
range. (1 ≤ data length ≤ 4096)

Check the user program to see
whether the receive data length is
specified correctly.

0xF0FF Port released • After the handler was started, a
port was released (RST was
received). (tcp_open)

• When an attempt was made to
start the handler, the port was
already released. (tcp_send or
tcp_receive)

• Issue tcp_open or tcp_popen to
re-establish a connection.

• Issue tcp_close to terminate the
connection. Then, issue
tcp_open or tcp_popen to re-
establish a connection.

0xFFF0 Invalid address • Both udp_open and udp_send set
the IP address and port number
of the remote station to 0.

• udp_send caused an Ethernet-
level error such as a collision.

• Check the user program.
• Retry udp_send when the current

amount of traffic is reduced.

0xFFF3 Invalid
argument

An invalid argument was specified. Check the user program.

0xFFF5 Connection
time-out

The remote station did not
respond.

Issue tcp_close to terminate the
connection. Then, issue tcp_open
or tcp_popen to re-establish a
connection. If communication
still is not resumed, check the
connectors, cables, and the remote
station for any abnormality.

0xFFF6 Already closed A command was issued for a
socket ID for which a connection
had been terminated (closed or
aborted).

Issue tcp_open or tcp_popen to re-
establish a connection.

7 MAINTENANCE

7-13

Error code Error Cause User action
0xFFF8 FIN received An FIN was received from the

remote station.
Issue tcp_close to close the socket.

0xFFFA Forcibly
terminated
connection

A connection was forcibly
terminated by the remote station
(RST was received). (tcp_receive
was issued after RST was
received.)

Issue tcp_close to terminate the
connection. Then, issue tcp_open
or tcp_popen to re-establish a
connection.

0xFFFC Invalid network
handle

An attempt was made to perform
transmission or reception using the
number of a handle not yet opened
by TCP or UDP. This error is
likely to occur when an RST is
received. (An RST was received
during waiting for reception by
tcp_receive.)

Issue tcp_close to close the socket.
Then, issue tcp_open or tcp_popen
to re-establish a connection.

0xFFFD Duplicate
socket number

The same socket already existed.
(The IP address of the remote
station, the port number of the
remote station, and the port
number of the local station were
duplicated.)

Check the user program.

0xFFFE Invalid control
block

An attempt was made to use more
sockets than the limit.

Close unused sockets using
tcp_close or udp_close. Then,
issue tcp_open or tcp_popen to re-
establish a connection.

7 MAINTENANCE

7-14

7.3.4 Route information setting error table

When a route information setting error is detected, its error code is set in the following table:

Main module Submodule
 /873880 /8F3880
 /873884 /8F3884
 /873888 /8F3888
 /87388C /8F388C
 /873890 /8F3890
 /873894 /8F3894
 /873898 /8F3898
 /87389C /8F389C
 /8738A0 /8F38A0
 /8738A4 /8F38A4
 /8738A8 /8F38A8
 /8738AC /8F38AC
 /8738B0 /8F38B0
 /8738B4 /8F38B4
 /8738B8 /8F38B8

Default
User (1)
User (2)
User (3)
User (4)
User (5)
User (6)
User (7)
User (8)
User (9)

User (10)
User (11)
User (12)
User (13)
User (14)

Error code
Duplicate user No.

Error code : See the table below.

Duplicate user No.: A stored user number is

duplicated.
(Default = 0,
 Other users = 1 to 14)

+0
+2

2 2
031

7 MAINTENANCE

7-15

No. Code Contents Duplicate user
No. stored or not

1 0010H The remote station IP address is duplicated with the local
station IP address.

Not stored

2 0011H The remote station IP address is duplicated with another
gateway IP address.

Stored

3 0012H The remote station IP address is duplicated with another
remote station IP address.

Stored

4 0013H The same network address as the local station’s is set as the
network address of a remote station IP address.

Not stored

5 0014H The network address of a remote IP address is duplicated with
the network address of a remote station IP address.

Stored

6 0016H The remote station IP address is 255.255.255.255. Not stored
7 0020H The gateway IP address is duplicated with the local station IP

address.
Not stored

8 0022H The gateway IP address is duplicated with another local station
IP address.

Stored

9 0023H The same network address as the local station’s is set as the
network address of a gateway IP address.

Not stored

10 0024H The network address of a gateway IP address is duplicated with
the network address of another local station IP address.

Stored

11 0026H The gateway IP address is 255.255.255.255. Not stored
12 0030H The subnetwork identified by a gateway IP address does not

match the subnetwork of the local station. (*)
Not stored

(*) The user should be careful when, after setting necessary route information, he/she is connecting
the ET.NET module with the tool by cable. Setting the ET.NET module’s MODU No. switch in
4- or 5-position at that time may result in the display of the “ET*R_NG” error message on the
CPU’s LED indicator, except when the local station’s IP address uses the network address
“192.192.192.0”. Recovery from this type of error can be made by simply setting the MODU
No. switch back in its previous position. Even if this type of error is reported by error message,
normal data communication is possible with the tool (personal computer) as long as the ET.NET
module is connected directly with that tool by cable.

8 APPENDIX

8 APPENDIX

8-2

8.1 Network Components

8.1.1 Problem of connection between LQE020 and Ethernet*

LQE020 is a standard product conforming to the international standard IEEE802.3.
However, when combining different manufacturers’ transceivers, repeaters, and so forth conforming
to the same standard, the system may not operate normally due to incompatibility.
For LQE020, therefore, use the transceivers, repeaters, coaxial cables, connectors, and terminators
that are recommended by Hitachi.
In Ethernet, there are two types of specifications: IEEE802.3-conforming specifications and original
Ethernet specifications. Note that devices of the original Ethernet specifications cannot be
connected to LQE020.
* Ethernet is a registered trademark of Xerox Corp.

8.1.2 Component list

No. Product name Manufacturer Model Remarks
① ET.NET Hitachi, Ltd. LQE020 IEEE802.3-conforming LAN

controller mounted in S10mini
② Transceiver Hitachi Cable, Ltd. HLT-200TB

HBN200TZ
HBN200TD

Tap-type transceiver

③ Transceiver Hitachi Cable, Ltd. HLT-200 Connector-type transceiver
④ Repeater Hitachi Cable, Ltd. HLR-200H Repeater for extending transmission

distance of coaxial cable
⑤ Multi-port

transceiver
Hitachi, Ltd. H-7612-64

H-7612-68
4-port/8-port transceiver
AC power supply built in

⑥ Coaxial cable Hitachi Cable, Ltd. HBN-CX-100 Indoor coaxial cable
Cable length specified (up to 500 m)

⑦ Coaxial
connector

Hitachi Cable, Ltd. HBN-N-PC Connector for coaxial cable

⑧ Relay
connector

Hitachi Cable, Ltd. HBN-N-AJJ Relay connector for coaxial cable

⑨ Terminator Hitachi Cable, Ltd. HBN-T-NJ J type
⑩ Terminator Hitachi Cable, Ltd. HBN-T-NP P type
⑪ Ground

terminal
Hitachi Cable, Ltd. HBN-G-TM Ground terminal for coaxial cable

8 APPENDIX

8-3

No. Product name Manufacturer Model Remarks
⑫ Transceiver

cable
Hitachi Cable, Ltd. HBN-TC-100 With male and female D-sub 15 pin

connectors
Up to 50 m

⑬ Twisted pair
cable

Hitachi Cable, Ltd. HUTP-CAT5
4P

Twisted pair cable

⑭ Multi-port
transceiver

Hitachi Cable, Ltd. HBM-400TZ 4-port transceiver

8 APPENDIX

8-4

Trans-
ceiver Trans-

ceiver

ET.
NET

ET.
NET

Trans-
ceiver

Repeater

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Multi-port
transceiver

Hub

ET.
NET

ET.
NET

ET.
NET

ET.
NET ET.

NET
ET.
NET

①

②③

④

⑤

⑥
⑦

⑧

⑨⑩
⑪

⑫

⑬

⑭

⑦

⑫

①

① ①

To AC power supply

②

⑫

②

③

⑦
⑩

①

Multi-port
transceiver

8 APPENDIX

8-5

8.2 Cabling of Coaxial Cable

The coaxial cable shall be laid in an indoor cabling duct and must be separated from 100 V or higher
wiring.
Before laying the cable, never fail to check that there is no short circuit nor break.

8.2.1 Laying cable segment

(1) The methods of laying the cable depending on the cabling location. The major methods are

listed below.
• Rolling cabling in ceiling
• Cabling in cable rack
• Open cabling on wall surface
• Free-access cabling in floor pit
• Cabling in conduit

(2) The notes on cabling work are described below.
• In principle, lay this cable indoors.
• The weight of the cable is about 1.9 kg per 10 m.
• Do not add the tension of 245N or more to the cable body during cable laying.
• The bend radius of the cable should be 250 mm (150 mm when unavoidable) or more both

when the cable is being laid and when it is finally fixed.
• Use a saddle when fixing the cable to a wall surface or ceiling. Except for special cases, the

standard fixing interval is 1 m. When fixing the cable, take care not to deform the cable by
tightening the saddle.

• When fixing the cable to a cable rack, the standard fixing interval is 2 m.
• For cabling in conduit, use a conduit whose inside diameter is 22 mm or more except for

special cases (e.g., when it is used in the penetrated part of a fire wall).
• The bend radius of the conduit used shall be 300 mm or more.
• When the cable is laid on a floor or floor edge, it is apt to be deformed or damaged by

walking or heavy objects. Protect the cable by tying or the like.
• For safety, ground the external conductor of the cable. Ground it at one point on a segment.

Class D grounding or higher shall be applied. Insulate the connectors and terminators by
covering them with the attached boots or by winding insulating tapes onto them, so that the
exposed metallic parts of the cable except those at the grounding point do not touch the earth
or other metallic parts.

8 APPENDIX

8-6

8.3 Installation of Transceiver (Connector Type)

(1) For the transceiver, the installation location and method differ depending on the conditions of
the site. The major installation locations may be as follows:
• On a wall
• Beside a station
Figures 8-1 to 8-6 show installation examples.

(2) Notes on transceiver installation are given below.
• Fix the transceiver by wood screws or the like via metal fittings.
• The installation interval of the transceiver shall be 2.5 mm or more.

(3) Installing the transceiver
Use the HBN-N-PC connector as the connector for the coaxial cable. Fix the transceiver at the
four tapped holes so that excessive force is not added to the cable. The external conductor of
the coaxial cable floats from the ground potential. Therefore, insulate the coaxial connector
by rubber boots or vinyl tape so that it does not touch other metal products. (The case of the
transceiver body is kept at the ground potential by connection of the transceiver cable.
However, insulate the case at installation time to prevent multi-point grounding.)
For the method of attaching the connector to the coaxial cable, see Section 8.6, “Attaching
Coaxial Connector.”

(4) When selecting installation location, strictly observe the following rules:
• The looseness of the connectors and terminators can be checked.
• The looseness of the transceiver cable connectors can be checked.
• The attached LED can be checked.

8 APPENDIX

8-7

Installation examples of transceivers and transceiver cables

Figure 8-1 Installation on Wall (1)

W
oo

d
bo

ar
d

Tr
an

sc
ei

ve
r c

ab
le

Sa
dd

le

C
oa

xi
al

 c
ab

le

C
ab

lin
g

du
ct

(m

ad
e

of
 m

et
al

 o
r

po
ly

vi
ny

l c
hl

or
id

e)

8 APPENDIX

8-8

Figure 8-2 Installation on Wall (2)

Figure 8-3 Installation on Wall (3)

Figure 8-4 Installation on Wall (4)

Wood board

Wood
board

8 APPENDIX

8-9

Figure 8-5 Installation in Box (1)

Figure 8-6 Installation in Box (2)

Transceiver
ontainer box
(300×400×140mm)

Transceiver
container box

(400×300×140mm)

8 APPENDIX

8-10

8.4 Installation of Transceiver (TapType)

The installation location and method for the transceiver and the notes on installation are the same as
those for the connector-type transceiver described in Section 8.4.
For the method of attaching the tap connector to the coaxial cable, see Section 8.7, “Attaching Tap
Connector.”

8.5 Attaching Coaxial Connector

(1) Connector attachment procedure

The procedure for attaching the coaxial connector is shown below.
① Peeling off the PVC sheath

② Removing the aluminum tape

③ Peeling off the insulator

④ Parts setting and shield treatment

⑤ Shield processing and soldering of pin contact

10± 10

Remove the aluminum tape
completely at this surface.

Remove the aluminum tape
completely as shown above.

6± 0.5
0

6± 1
0

Braided shield Clamp Gasket (rubber) Nut PVC cap

Thread solder

8 APPENDIX

8-11

⑥ Assembly

(*) There shall be no gap of 1 mm or more in the pin contact insulator and no bite in the

insulator.
(2) Check after attaching the connector

(a) Dimensions of connector opening

• The difference between the external conductor at the top end of the connector and the
inside contact shall be 0 to 1 mm. There shall be no abnormal bump nor dent on the
inside contact.

• When putting a thumb to the connector opening, the top end of the inside contact slightly

touches the surface of the digital pulp.

• There shall be no abnormal eccentricity of the central conductor found by visual

inspection.
(b) Checking looseness

After attaching the connector, grasp and twist the connector body and coaxial cable to
confirm that there is no looseness. After tightening, the gap between the tightening nut and
the body shall be about 2 mm or less.

(*)

0 to 1 mm 2 mm to or less
Not loose

8 APPENDIX

8-12

(c) Insulation resistance
(Remove the terminator.)
• When no transceiver is set

Between internal and external conductors: 1000 M Ω/km or more (500 VDC)
• When a transceiver is set

Measure the external conductor by an ordinary line tester with the internal battery set to the
positive pole. At this time, ∞ shall be displayed.

 CAUTION

Never fail to discharge electricity after the test, otherwise you will get an electric
shock.

8 APPENDIX

8-13

8.6 Attaching Tap Connector

Connect the tap connector of the tap-type transceiver and the coaxial cable according to the
procedure below.

(1) To fix the coaxial cable ①, insert the cable into the groove of the tap connector body ③, and

attach the cover ② from the upper part.
(2) Tighten the hexagon bolt ⑥ by a nutdriver according to the predetermined torque, and connect

it to the external conductor of the coaxial cable ①.
Clamping torque for hexagon bolt ⑥: 3 to 4 [N･m]

(3) Tighten the backup probe ⑤ and signal probe ④ slowly, in this order, by using nutdrivers
simultaneously from both sides according to the predetermined torque, and connect them to the
central conductor of the coaxial cable ①.
Clamping torque for signal probe ④ and backup probe ⑤: 2 to 3 [N･m]

(4) Set the attached cap ⑦ on the backup probe ⑤.
Connection of the tap connector and coaxial cable is completed with the above steps.
As the top ends and thread ridges of the signal probe ④ and backup probe ⑤ are easily
deformed, they should be handled carefully.

Figure 8-7 Tap Connector Assembly Drawing

④ Signal probe

⑥ M6 bolt 30 l

⑦ Cap

⑤ Backup probe

② Tap cover

① Coaxial cable

③ Tap body

8 APPENDIX

8-14

 CAUTION

z When attaching the tap connector to the coaxial cable, do it according to the
order described above.
If the coaxial cable is attached after the probes ④ and ⑤ are attached, the
probes will be destroyed. To prevent this, attach the coaxial cable when
probes ④ and ⑤ are completely removed.

z After tightening the probes ④ and ⑤, do not tighten the bolt ⑥ further.
Otherwise, the probes may be destroyed because excessive force is added to
them.

Connect the tap connector and the transceiver according to the procedure below.
(1) Attach the tap connector ⑧ to the side of the transceiver ⑨, and the probe and ground

terminal of the tap connector ⑧ are inserted into the mounting holes of the transceiver ⑨
and are connected.

(2) Tighten the hexagon bolt ⑩ with a nutdriver according to the predetermined torque, and the

transceiver ⑨ and the tap connector ⑩ are fixed completely.
Clamping torque for hexagon bolt ⑩: 3 to 4 [N･m]

Connection of the tap connector and transceiver is completed with the above steps.

Figure 8-8 Connection of Connector and Transceiver

⑩ M6 bolt 14 l ⑧ Tap connector

⑨ Transceiver

8 APPENDIX

8-15

8.7 Attaching Transceiver Cable

The maximum length of the transceiver cable is 50 m.

Attaching transceiver cable
To connect the transceiver cable to the transceiver body, slide the locking retainer of the cable
and attach the cable so that is completely locked at the locking post of the transceiver body.
The transceiver body is male, and the transceiver cable is female.

8.8 Attaching Terminators

Attaching terminators
Connect the terminators to both ends of the coaxial segment without fail.

Connector-type transceiver
Coaxial cable

Female
Transceiver
cable

MaleTransceiver

Transceiver Male

Female

Transceiver
cable

Coaxial cableTap-type transceiver

Terminator
(P type)

Connector supplied
with transceiver

Coaxial cable

Coaxial connector

Terminator
(P type)

Transceiver
(connector type)

Transceiver
(connector type)

Terminator
(J type)

Terminator
(J type)

Coaxial connector Coaxial connector Coaxial cable

Transceiver
(TAP type)

Transceiver
(TAP type)

8 APPENDIX

8-16

8.9 Attaching Repeater

(1) Connection method

(2) Reserving installation location and space
z The repeater should be installed near a workstation (server). It is necessary that

maintenance work can be easily done at this place. (Roof space or underground space of an
office is inappropriate.) Reserve sufficient space around and over the repeater. The
minimum space to be reserved is shown in the figure below. As AC power supply is
required for the repeater, prepare a grounded outlet.

z Do not use the repeater in a place where there is much dust.
z There is an air inlet at the base and an air outlet on the top. Do not cover these parts.
z Considering maintenance, a telephone should be installed near the repeater installation place.

To another
transceiver

Transceiver

Female
Male

MaleMale

Female Female

Repeater

Note: Before attaching or detaching the
transceiver cable, turn off the power
to the repeater without fail.

200 Rating: 100 VAC ± 10%

100

100

100

100

When normal 0.07 kVA
On rush: 10A

Note: Reserve the space
where the front panel
can be opened.

Plug with 2 ground poles
15 A 125 V
(JIS C8303)

Unit: mm

8 APPENDIX

8-17

z Use independent power supply to prevent the power from being cut off erroneously. If the
power to the repeater is cut off, the transmission function stops.

8.10 Grounding the System

z Grounding the repeater

Use three-pole power supply for the repeater, or ground the repeater by a ground terminal.
z Grounding each station

Execute Class D grounding or higher for all devices connected to the LAN control processor.
If there is an ungrounded device in the system, an electric shock may occur between this
device and a grounded device. A data error (CRC error) may also be caused.

z Grounding the coaxial cable
For each segment, perform single-point grounding for the coaxial cable.
The above grounding is for the purpose of safety. Further, it prevents the occurrence of
electric noise due to incomplete contact with the earth.
For grounding, use ground terminals.

8.11 Attaching Ground Terminal

(1) Insert the insertion teeth into the body.

(2) Attach the terminal to the coaxial cable, and tighten the M4 screws alternately. At this time,

attach the crimp terminal to one of the screws.
Attach the terminal at any one position on the coaxial segment where it can be attached easily.

Body

Insertion teeth

Shield washer

Shield washer
M4 screw

Spring washer

Spring washer

Coaxial cable

Terminal body

Crimp terminal (Class D grounding at 5.5)

8 APPENDIX

8-18

(3) After tightening the screws, cut the protruding portions of the insertion teeth.

8.12 Setting Single-port Transceiver

(1) Setting the SQE switch of single-port transceiver
For the SQE switch of a single-port transceiver, the setting change shown below is required
depending on the connected device.

Connected device
SQE switch

ET.NET controller Multi-port
transceiver

Repeater

Setting ON OFF OFF

For the single transceivers HLT-200 and HLT-200TB, the SQE switch is contained in the case.
When changing the setting, open the case to do the work. (The switch is set to ON by turning
it to the “SQE” side of silk printing on the board.)

OFF ON

SQE

Cut the protruding portion
of the insertion teeth.

8 APPENDIX

8-19

8.13 Setting and Display of Multi-port Transceiver

(1) Setting operation mode
The multi-port transceiver can be used in two operation modes: network and local. Operation
mode can be set by operating the switch on the rear panel.
z Local mode

In local mode, the transceiver is disconnected from the coaxial cable and is used
independently.
Do not connect the transceiver cable to the relay port.
Set the mode switch to ‘L’ (local mode).
At this moment, set the SQE switch of the support port to ‘ON’.

z Network mode

In network mode, the transceiver is connected to the coaxial cable.
Set the mode switch to ‘N’ (network mode).
At this moment, set the SQE switch of the single-port transceiver connected to the relay port
to ‘OFF’.

H-7612-64
H-7612-68

Multi-port transceiver
Mode “L”
SQE “ON”

Branching port

Transceiver cable length = 5 m

ET.
NET

ET.
NET

Coaxial cable
HLT-200
HLT-200TB

Single-port transceiver
(SQE “OFF”)

Trans-
ceiver

Transceiver cable length ≤ 15 m
Relay port

H-7612-64
H-7612-68

ET.
NET

ET.
NET

Multi-port transceiver
Mode “L”
SQE “ON”

Branching port

Transceiver cable length = 5 m

8 APPENDIX

8-20

(2) Switch setting
The multi-port transceiver is equipped with two switches; the functions of each switch are
mentioned in Table 8-1.

Table 8-1 Switch Setting

Switch type Switch position Function Setting at shipment time
SQE switch Rear panel Setting SQE function to

ON/OFF
“ON”

Operation mode switch Rear panel Switching operation mode ‘N’ (network mode)

(3) Setting SQE switch on repeater connection
When connecting a repeater to a multi-port transceiver, set the SQE switch of the corresponding
branching port of the multi-port transceiver to ‘OFF’.

(4) Power switch
Set the switch on the rear panel to ‘I’, and the power of the multi-port transceiver is turned
‘ON’.

(5) LED display
The “POWER” LED and the “LINK” LEDs for each branching port are placed on the front
panel of the cabinet.

“POWER” LED: Lights when the power switch is ‘ON’.
“LINK” LED: Lights when the information station is connected to the branching port of the

multi-port transceiver (when 12 VDC is supplied from the information station).

8 APPENDIX

8-21

8.14 CPU Memory Map

OS-ROM

System
hardware

area

Sequence
RAM

Free

PI/O
Bit type

Free

PI/O
Word type

OS

RAM

Extended memory
for processing by

computer

/2FFFFE

/200000

/1FFFFE

/100000

/0FFFFE

/0F0000

/0E0000

/0C0000

/0A0000

/080000

/060000

/010000

/000000

Extended memory
(1 MB)

Address MSB LSB

/07FFFE

/063000

/061000

/060BF0

/060000

Address MSB LSB

System table

SQET

Data register�
DW000 to DWFFF

(4 k words)

T000
to T1FF

U000
to U07F

C000
to C07F

S
et

tin
g

va
lu

e
Ladder

program
area

(28 k steps)

/063400

/063600

/063800

T000
to T1FF

U000
to U07F

C000
to C07F

/0F0000

/0F0400

/0F0600

Extended memory
(1 MB)

Extended memory
for processing by

computer

D
is

cr
et

e
va

lu
e

8 APPENDIX

8-22

8.15 Memory Map of ET.NET Module

Main module Submodule
 /840000 /8C0000

 /840400 /8C0400

 /840C00 /8C0C00

/843000 /8C3000

/844000 /8C4000

/854000 /8D4000

/864080 /8E4080

/864880 /8E4880

/867880 /8E7880

/873880 /8F3880

TCP send buffer

Error freeze table

R
A

M
 (s

ha
re

d
m

em
or

y)

Module information table

TCP information table

TCP receive buffer

UDP send buffer

UDP information table

UDP receive buffer

Work table

8 APPENDIX

8-23

8.16 Trouble Investigation Sheet

� Trouble Investigation Sheet
Your company name
Person in charge Date and time of occurence

Address
Phone

Contact address
and numbers

Fax
Model of defective module CPU model
OS Ver. Rev. Program name: Ver. Rev.
Support program Program name: Ver. Rev.
Symptom of
defect

Type
Model
Cabling status

Connection load

System configuration and switch setting

Space for
correspondence

SUPPLEMENTARY

SUPPLEMENTARY

Z-2

Supplementary: Replacing or adding on the module

z What you should get in preparation

① Personal computer (with Hitachi’s S10 ET.NET System installed in it)
② RS-232C cable
③ New or add-on ET.NET module (LQE020)
④ Copies of the parameter values for the module to be replaced. (These copies are prepared

for use in cases where the parameters are not accessible for some reason.)
z Replacement procedure

① Write down, on a piece of paper, the current settings of the rotary switches that are, as shown
below, accessible at the front side of the ET.NET module to be replaced.

② Write down also the current settings of three switches, labeled LADDER (toggle switch),
MODE (toggle switch), and PROTECT (toggle switch), respectively, that are, as shown
below, accessible at the front side of the CPU module.

③ Connect the personal computer and the CPU module together with the RS-232C cable.
④ Start Hitachi’s S10 ET.NET System and make a hand-written record of the currently used IP

address. (If the existing parameters are not accessible for some reason, use the copies of
their set values [item ④] that were obtained in preparation.)

⑤ Set the CPU module’s LADDER switch in STOP position and turn off the power supply of
the controller unit.

⑥ Remove the connecting cables from the ET.NET module to be replaced.
⑦ Replace the existing ET.NET module with the new one and set the new ET.NET module’s

rotary switches in the same way as you wrote down in Step ①.
⑧ Turn on the power supply of the controller unit. Then, set the same IP address as you

recorded in Step ④, by using the S10 ET.NET System.

←

LADDER
RUN STOP

CPU module’s toggle
switches settings

MODE

RESET
ON OFF

PROTECT
NORM SIMU

Rotary switches

Power
supply

CPU

RS-232C cable

RS-232C

ET.
NET

SUPPLEMENTARY

Z-3

⑨ Check that the set IP address is identical to the one that was recorded in Step ④.
⑩ Turn off the power supply of the controller unit.
⑪ Remove the RS-232C cable from both the personal computer and CPU module, which were

connected together in Step ③.
⑫ Connect to the new ET.NET module the connecting cables that you removed in Step ⑥.
⑬ Set the CPU module’s LADDER, MODE, and PROTECT switches in the same way as you

wrote down in Step ②.
⑭ Turn on the power supply of the controller unit and check that the new ET.NET module is

running normally.
z Add-on procedure

① Write down, on a piece of paper, the current settings of three switches, labeled LADDER
(toggle switch) , MODE (toggle switch), and PROTECT (toggle switch), respectively, that
are accessible at the front side of the CPU module, the one that is installed in the controller
unit in which you are adding on a ET.NET module.

② Ensure that your application system has been shut down. Then, set the CPU module’s
LADDER switch in STOP position and turn off the power supply of the controller unit.

③ Mount the add-on ET.NET module in place according to the instructions given under “1.2
Mounting Optional Modules.”

④ Set the add-on ET.NET module’s rotary switches in such a way that a new module No.
setting, which must be a sub-module No. setting, will not duplicate with the current rotary
switch settings of the existing main ET.NET module.

⑤ Connect the personal computer and the CPU module together with the RS-232C cable.
Then, turn on the power supply of the controller unit and set parameters for the add-on
ET.NET module by using the S10 ET.NET System.

⑥ Turn off the power supply of the controller unit and connect the connecting cables to the add-
on ET.NET module.

⑦ Set the CPU module’s LADDER, MODE, and PROTECT switches in the same way as you
wrote down in Step ①.

⑧ Remove the RS-232C cable from both the personal computer and CPU module, which were
connected together in Step ⑤.

⑨ Turn on the power supply of the controller unit and check that the add-on ET.NET module is
running normally.

	Cover
	Copyright
	SAFETY PRECAUTIONS
	WARRANTY AND SERVICING
	Revision record
	PREFACE
	CONTENTS
	FIGURES
	TABLE
	1 BEFORE USE
	1.1 CPU Mount Base
	1.2 Mounting Optional Modules
	1.3 Ground Wiring

	2 SPECIFICATIONS
	2.1 Usage
	2.2 Specifications
	2.2.1 System specifications
	2.2.2 Line specifications

	3 NAMES AND FUNCTIONSOF EACH PART ANDCABLING
	3.1 Names and Functions of Each Part
	3.2 Cabling

	4 USER GUIDE
	4.1 System Configuration of 10BASE-5
	4.2 10BASE-T System Configuration
	4.3 Example of System Configuration with S10mini
	4.4 System Definition Information
	4.4.1 Physical address
	4.4.2 IP address
	4.4.3 Subnetwork mask
	4.4.4 Route information

	4.5 Software Configuration of ET.NET
	4.6 ET.NET System Programs
	4.6.1 Socket handler
	4.6.2 Socket driver
	4.6.3 TCP program
	4.6.4 UDP program
	4.6.5 IP program
	4.6.6 Driver

	4.7 User-created Program
	4.7.1 User program

	4.8 Socket Handler
	4.8.1 Socket handler function list

	4.9 Examples of Socket Handler Issuance Procedure
	4.9.1 Example of using TCP/IP program
	4.9.2 Example of using UDP/IP program

	5 PROGRAM EXAMPLES
	5.1 Example of Programs for Communication between CPUs by SocketHandler
	5.1.1 System configuration
	5.1.2 Program structure
	5.1.3 Flowchart of program at CPU01
	5.1.4 Example of C language program at CPU01
	5.1.5 Flowchart of program at CPU02
	5.1.6 Example of C language program at CPU02#

	5.2 Example of Programs for Continuous Communication between CPUsby Socket Handler
	5.2.1 System configuration
	5.2.2 Program structure
	5.2.3 Flowchart of program at CPU01
	5.2.4 Example of C language program at CPU01
	5.2.5 Flowchart of program at CPU02
	5.2.6 Example of C language program at CPU02

	6 OPERATION
	6.1 Start-up Procedure

	7 MAINTENANCE
	7.1 Maintenance Inspection
	7.2 Troubleshooting
	7.2.1 Procedure
	7.2.2 Before suspecting a failure

	7.3 Errors and Actions To Be Taken
	7.3.1 CPU LED display messages
	7.3.2 Hardware errors
	7.3.3 Error codes from the socket handler
	7.3.4 Route information setting error table

	8 APPENDIX
	8.1 Network Components
	8.1.1 Problem of connection between LQE020 and Ethernet
	8.1.2 Component list

	8.2 Cabling of Coaxial Cable
	8.2.1 Laying cable segment

	8.3 Installation of Transceiver (Connector Type)
	8.4 Installation of Transceiver (TapType)
	8.5 Attaching Coaxial Connector
	8.6 Attaching Tap Connector
	8.7 Attaching Transceiver Cable
	8.8 Attaching Terminators
	8.9 Attaching Repeater
	8.10 Grounding the System
	8.11 Attaching Ground Terminal
	8.12 Setting Single-port Transceiver
	8.13 Setting and Display of Multi-port Transceiver
	8.14 CPU Memory Map
	8.15 Memory Map of ET.NET Module
	8.16 Trouble Investigation Sheet

	SUPPLEMENTARY
	Supplementary: Replacing or adding on the module

