HITACHI

S10mini
HARDWARE MANUAL

OPTION

ET.NET

SME-1-103 (E)

S10mini
HARDWARE MANUAL

OPTION

ET.NET

First Edition, November 1998, SME-1-103(A) (out of print)

Second Edition, May 2000, SME-1-103(B) (out of print)

Third Edition, November 2001, SME-1-103(C) (out of print)

Fourth Edition, October 2008, SME-1-103(D) (out of print)

Fifth Edition, February 2009, SME-1-103(E)

All Rights Reserved, Copyright © 1998, 2009, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission
in writing from the publisher.

Printed in Japan.

BI-KB-SK<IC-IC> (FL-MW20, AI8.0, PS)

SAFETY PRECAUTIONS

Be sure to read this manual and all other attached documents carefully before installing,
operating inspecting or conducting maintenance on this unit. Always use this unit properly.

Be sure to carefully read the information about the device, the safety information and precautions
before using this unit. Be sure that the person(s) responsible for maintenance receives and
understands this manual completely.

This manual divides the safety precautions into DANGERs and CAUTION:S.

‘ DANGER| : Failure to observe these warnings may result in death or serious injury.

A CAUTION/| : Failure to observe these cautions may result in injury or property
damage.

Failure to observe any A CAUTION | may lead to serious consequences.

All of these DANGERs and CAUTIONSs provide very important precautions and should
always be observed.
Additional safety symbols representing a prohibition or a requirement are as follows:

® : Prohibition. For example, “Do not disassemble” is represented by:

®

0 : Requirement. For example, if a ground is required, the following will be shown:

A\ DANGER

® Devise an emergency stop circuit, interlock circuit, and other similar circuits
outside the programmable controller. Disregarding this rule may result in
damage to the equipment or cause an accident if the programmable controller
fails.

® Keep it in mind that this hardware unit operates on a high voltage. If the user
touches a high-voltage terminal inadvertently during connection or
disconnection of this hardware unit or its cable, he or she may suffer from an
electric shock. Also, this hardware unit may be damaged due to a short
circuit or noise. Be sure to switch off the hardware unit before connecting or
disconnecting it or its cable.

4\ CAUTION

® This hardware unit may fail if the ambient temperature is too high. The
hardware unit may also malfunction due to interference by electromagnetic
waves from adjacent hardware. To dissipate heat and reduce
electromagnetic interference, provide the specified mount of space between
the cubicle and this hardware unit and between the hardware unit and other
ones.
® After installing this hardware unit, measure temperatures near the in-cubicle
controller and the mount base during operation, and check whether the
measurements are within the limits. If the specified amount of space cannot
be provided or the measured temperature is too high, use a cooling fan.
® At an extremely high temperature, this hardware unit may fail. Secure the
mount base to a vertical surface. If the mount base is secured horizontally,
heat does not dissipate efficiently, resulting in an extremely high temperature.
This may further cause the hardware unit to fail or its parts to deteriorate.
® This hardware unit may be damaged due to static electricity. Ground yourself
before setting switches or connecting or disconnecting cables or connectors
with the hardware unit.
® This hardware unit may be damaged during its installation or removal unless
the following rules are observed:
» Check that the connector pins are not damaged (bent or broken), are
aligned straight and are free from dust.
» Move the hardware unit along an imaginary vertical surface to the face of
the mount base. If the product is inserted or removed slantwise from the
connector on the mount base, connector pins may be bent.

@ REQUIREMENT

An electric shock may lead to a death or burn. Noise may cause the system to
malfunction. Ground the line ground (LG), frame ground (FG), and shield (SHD)
terminals, as described below.

« Electrically insulate the mount base from the cubicle. To assure this, do not
remove the insulating sheet from the mount base.

» Ground the LG and FG terminals separately to prevent mutual interference.
The LG terminal is grounded to prevent intrusion of power line noise, while
FG and SHD terminals are grounded to suppress intrusion of line noise into
external interfaces for remote I/0O modules, interface modules, and other
modules.

» Connect the FG terminal on each module to the FG terminal on the mount
base. Note, however, that the FG terminal for each remote 1/O line or
JPCN-1 line must be connected separately to a single place on the
terminating side.

0 REQUIREMENT

Excessive accumulation of heat in the cubicle may cause a fire or hardware
failure. When the temperature in the cubicle reaches 48°C or higher, the
maximum output current of the power supply module is limited. At 55°C, for
instance, it is limited to 5.85 A. Where this is very likely, install a cooling fan in
the cubicle or reduce the number of modules installed therein.

@ PROHIBITION

If a part in a module is damaged, do not replace the part, but replace the faulty
module in its entirety, except when the part is the battery for the CPU.

WARRANTY AND SERVICING

Unless a special warranty contract has been arranged, the following warranty is applicable to this
product.

1. Warranty period and scope
Warranty period
The warranty period for this product is for one year after the product has been delivered to the
specified delivery site.

Scope

If a malfunction should occur during the above warranty period while using this product under
normal product specification conditions as described in this manual, please deliver the
malfunctioning part of the product to the dealer or Hitachi Engineering & Services Co., Ltd.
The malfunctioning part will be replaced or repaired free of charge. If the malfunctioning is
shipped, however, the shipment charge and packaging expenses must be paid for by the
customer.

This warranty is not applicable if any of the following are true.

® The malfunction was caused by handling or use of the product in a manner not specified in
the product specifications.

The malfunction was caused by a unit other than that which was delivered.

The malfunction was caused by modifications or repairs made by a vendor other than the
vendor that delivered the unit.

The malfunction was caused by a relay or other consumable which has passed the end of its
service life.

The malfunction was caused by a disaster, natural or otherwise, for which the vendor is not
responsible.

The warranty mentioned here means the warranty for the individual product that is delivered.
Therefore, we cannot be held responsible for any losses or lost profits that result from the
operation of this product or from malfunctions of this product. This warranty is valid only in
Japan and is not transferable.

2. Range of services
The price of the delivered product does not include on-site servicing fees by engineers.
Extra fees will be charged for the following:

® [nstruction for installation and adjustments, and witnessing trial operations.

® [nspections, maintenance and adjustments.

® Technical instruction, technical training and training schools.

® Examinations and repairs after the warranty period is concluded.

® Even if the warranty is valid, examination of malfunctions that are caused by reasons
outside the above warranty scope.

This manual provides information for the following hardware product:

<Hardware product>
ET.NET (LQE020)

<Changes added to this manual>

Description of added changes Page

The following information is newly added: setting the module no. setting switch (or,
simply, MODU No. switch) in 4- or 5-position may result in a route information 3-2,7-15
setting error.

In addition to the above changes, all the unclear descriptions and typographical errors found are also

corrected without prior notice.

Revision record

Revision No. Revision Record (revision details and reason for revision) Month, Year Remarks
A First Edition November 1998
D Supplementary, “Replacing or adding on the module” is| October 2008
newly added.
E The following information is newly added: setting the February 2009

module no. setting switch (or, simply, MODU No.
switch) in 4- or 5-position may result in a route
information setting error.

PREFACE

We greatly appreciate your making use of the CPU option ET.NET module.
This hardware manual on the option ET.NET describes how to handle the ET.NET module. Read

this manual carefully to use the module properly.

Two specifications are available for S10mini series products: standard specifications and
environmental resistance specifications.
The products with the environmental resistance specifications have thicker plating and more
strengthened coating than those with standard specifications.
The model name of the products with the environmental resistance specifications have “-Z” after those
with standard specifications.
Example: Standard specifications: LQE020

Environmental resistance specifications: LQE(020-Z
The manuals for standard specifications and environmental resistance specifications are commonly
used. The module types indicated in the manuals are those with standard specifications.
When you use a product with environmental resistance specifications, follow these manuals for proper

use.

When S10mini and Windows® programming tools are connected through an ET.NET module, up to
four programming tools (ladder drawing or HI-FLOW system) can be connected to S10mini at a time
under the following conditions.

Note that, under the conditions other than these, only one programming tool can be connected.

* The revision No. of the ET.NET module is E or later. (Check that the seal attached on the upper end
of the case is E or later or the CPU indicator display is ETM 3.1 or later.)

* The version or revision No. of a ladder drawing system or HI-FLOW system is 07-00 or later.
(However, in case of HI-FLOW, a HI-FLOW system is only one unit and others are HI-FLOW for
monitors.)

* The ET.NET module (LQE020) of revision “F” (having the “H” or later label on the lower left of the
casing or whose CPU indicator indicates “ETM 3.2 or “ETS 3.2”) updates the content (program
data) of flash memory at intervals of about 1 month to increase the reliability of the program data as
the mask of the flash memory is changed. For this updating, the socket handler is made to wait for
about 3 seconds.

If the reception wait time of tcp_receive() or udp_receive() is set smaller than 3 seconds, a timeout

error may occur. In this case, retry.

<Note for storage capacity calculations>

® Memory capacities and requirements, file sizes and storage requirements, etc. must be calculated
according to the formula 2". The following examples show the results of such calculations by 2"
(to the right of the equals signs).
1 KB (kilobyte) = 1,024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes

® As for disk capacities, they must be calculated using the formula 10". Listed below are the
results of calculating the above example capacities using 10" in place of 2".
1 KB (kilobyte) = 1,000 bytes
1 MB (megabyte) = 1,000” bytes
1 GB (gigabyte) = 1,000’ bytes

* Microsoft® Windows® is registered trademarks of Microsoft Corporation in the United States
and/or other countries.

CONTENTS

I BEFORE USE ...ttt sttt et 1-1
I.1 CPU MOUNE BASE ..ottt sttt st 1-2
1.2 Mounting Optional MOdUIES.........ccceeriiiiiiiiiieiieiieeit ettt 1-2
1.3 Ground WITINEc.eeiuiiiiieiieeiteiie ettt ettt e e te et e saeeteesateebeesaeeenseessseenseessaeenseensnaans 1-4
2 SPECIFICATIONS ..ottt ettt sttt ettt ettt et nb e et saee e 2-1
1 B U Y T OO SRRPPR 2-2
2.2 SPECIHICATIONSeeeiiieiiieciie ettt ettt ettt e et et e e te et e e bt e s seeenteessbeenseessseenseensaeenseensnens 2-2
2.2.1 System SPECITICALIONSeeruiieiieeiieiieeieeite et eriee et etteeteesieeeteesteeebeessaesseenaeeens 2-2
2.2.2 LiNE SPECTIICATIONS ...euuviiiieeiieiieeieeeiie ettt et esieeeteestteeebeesseeebeeseesnseesseesnseeseenns 2-2
3 NAMES AND FUNCTIONS OF EACH PART AND CABLINGcccccoevieierieieenenne. 3-1
3.1 Names and Functions of Each Partcccoooiiiiiiiiiiniiiic e 3-2
TN O 1) 111V OO SUPR PSP 3-4
4 USER GUIDE ...ttt ettt ettt et sttt st b e s 4-1
4.1 System Configuration of 10BASE-5.......cccooiiiiiiiiieee e 4-2
4.2 10BASE-T System Configuration...........cccceeeueeruierieeriienieenieesieesiesreesseesveesseessnesnseens 4-8
4.3 Example of System Configuration with STOMINIccccvveriieriiieniieniieieeieeee e 4-10
4.4 System Definition INfOrmationcccoecieriiiiiiiniiiiiee e 4-11
4.4.1 Physical address.....c.ceeuiiiiiiiiieiieie et 4-11
442 TP AdAI@SS.c.ueeeieieeiieiieieeee ettt ettt 4-11
4.43 Subnetwork mMaskcccccieiiiiiiiiiie e 4-13
4.4.4 RoULE INFOIMALION.cuiiiiiieiieiie ettt ettt e eaeeneees 4-13
4.5 Software Configuration of ET.NETccccoiiiiiiiiiiiiieteee e 4-16
4.6 ET.INET SysStem Programs..........cccceeiiiiiiiiieiiiieeiieeiieeeiee ettt saee e s 4-17
4.6.1 Socket handlercceeviiiiiiiiiiiiieee s 4-17
4.6.2 SOCKEL AITVET...ccutiiiiiiiiieeiieteeee et sttt sttt 4-17
4.6.3 TCP PrOZIAIN ..cooueviieiiieeiiieeiite et e eiteeeite e et e et e e st e e s beeesabeeesabeeesabeesnaseeenaseesnns 4-17
4.6.4 UDP PIrOGrAM...cccuviieiiieiiiieeiieeeiteeeite ettt et e et eeite e satee e sbeessabeeseabeesaneesanee 4-18
T T U o) (0 o4 11 SRR 4-18
4.0.0 DIIVET...iiiiiiiiiieieetee ettt ettt ettt ettt sttt 4-18
4.7 User-created PrOZraml.........ccoeouieiiiiiiieiieeiiecie ettt ettt et e seae e e snaeenbeeneeas 4-19
T T U 1S o o) 04 ¢ 1 4 F OO 4-19
4.8 Socket HANAICTooiiiiiiiiiiiireeeee ettt 4-20

4.8.1 Socket handler TUNCHION LISt . .uueneeeeeeeeeeee e e e e e eeeeeeeeeeeeeeeeeaeaaeens 4-21

4.9 Examples of Socket Handler Issuance Procedure.............cccccoevieniiinieniiniienieeieee, 4-55
4.9.1 Example of using TCP/IP Program..........cccceceeviierieeiiienieeieeniieeieesieesveenieeseneens 4-55
4.9.2 Example of using UDP/IP PrOZramccccceeiieriieriienieeiieenieeieesieesveenseeseneens 4-56

5 PROGRAM EXAMPLES ..ottt sttt 5-1

5.1 Example of Programs for Communication between CPUs by Socket Handler............. 5-2
5.1.1 System CONTIGUIATIONeevuiiiiieiiieiieeie ettt ettt e ebeesaeeeseeeeas 5-2
5.1.2 Program STIUCTUIEceeruiieeiiieeiitee ettt e eiteeeitte et e et eeesitee sttt e etteessteesabeeesabeeesaneeenns 5-3
5.1.3 Flowchart of program at CPUOTLcoooiiiiiiiiiieiieieeeeee e 5-5
5.1.4 Example of C language program at CPUOTccceeeiieiiiiiiieieieceeeeeeeeen 5-7
5.1.5 Flowchart of program at CPUO2cccoiieiiiiiieeiieieeeeeeeee e 5-9
5.1.6 Example of C language program at CPUO2...........c.cocieviieiiieniieiiierieeieeee e 5-10

5.2 Example of Programs for Continuous Communication between CPUs by

SOCKEt HANAICTooueiiiiiiiiiiieece e 5-12
5.2.1 System CONTIGUIATIONeeeviiiiiieiieeiieeiieeieeiee ettt ettt e esbe et e snbe e saeenseens 5-12
5.2.2 Program STIUCTUIEcceruiieeiiieeiieeeiieeeiteeeieeesitteesiteeeiteeeieeestteesabteesabeeesaseeenaseeas 5-13
5.2.3 Flowchart of program at CPUOLccooiiiiieiiiiniieiieeeeeee e 5-15
5.2.4 Example of C language program at CPUOTccoovieiiiiiiiniiiiieieeiceee e 5-17
5.2.5 Flowchart of program at CPUO2ccciiiiieiiiiiiieiieeeeeeee e 5-19
5.2.6 Example of C language program at CPUO2...........c.cocuieriieiiienieiiieieeeieeee e 5-21

0 OPERATIONottt ettt ettt be st sb et et esaeebesanens 6-1

0.1 Start-up PrOCEAUIEcoouiiiiieiieeieeee ettt et 6-2

7T MAINTENANCE ..ottt ettt sttt et saeeatesaeens 7-1

7.1 Maintenance INSPECLIONccuieuieriiieiieiie ettt ettt et eseae et e saeenbeenes 7-2

7.2 TrOUDIESROOING. ...ccuiiiiiiiiieeiiee ettt ettt ettt e e beeenaeensee e 7-3
T.2.1 PIOCEAULE ..ottt sttt et st b et st be et st e b eanes 7-3
7.2.2 Before suspecting a failure.........c.coovieiieiiiiiiieiiecie e 7-4

7.3 Errors and Actions To Be Takenccccecueviiiiiniiniiiiiiieieneeeeseeeeeseee e 7-6
7.3.1 CPU LED diSplay MESSAZES.....cccvteruieeiieiieeiieriieeieenieeeteenieesseesseessseensaesnseenseensnes 7-6
7.3.2 HAIAWAIE CTTOTS.c...eiuiiiiiiieiieieeiteet ettt ettt ettt sttt et ettt et st et et saeenbeenees 7-7
7.3.3 Error codes from the socket handlercccocoeviniiiiiiinininc 7-11
7.3.4 Route information setting error tableccoceeriieiieniiieiierie e 7-14

8 APPENDIX L. ..ot s 8-1

8.1 Network COMPONENLSccuiireiiiiieriieeiieeieeittestte et e see et eseteebeessaeebeesseesnseessaesnseenseennne 8-2
8.1.1 Problem of connection between LQE020 and Ethernetcccccovvevvieennnnnne. 8-2
8.1.2 ComMPONENL LISeieiiieiiieiieeiie ettt ettt et s e et sebe e eenseenneas 8-2

8.2 Cabling of Coaxial Cable.........ccceeiiieiiieiiieiieeie et 8-5
8.2.1 Laying cable SEEMENLccccuieiiieiiieiieiie ettt et et saeebee e 8-5

8.3 Installation of Transceiver (Connector TYPE)ccveecvierierieeniienieeieeeie e 8-6

8.4 Installation of Transceiver (TaPTYPE)....ccueecvierieriieriieeiieiee ettt 8-10

8.5 Attaching Coaxial CONNECTOT.ccuiiiuierieeiierie et eite ettt ettt sae b e seeeeseens 8-10

8.6 Attaching Tap CONNECIOTc..uieiuiiiiiieiieeieeieeete ettt eeeete et e e beesteesnbeebeesnseeseens 8-13

8.7 Attaching Transceiver Cable.........cocoiiiiiiiiiiiiiieiece e 8-15

8.8 Attaching TermMiNAtOTScccuieruiieiiieriieeiieiie et eite et reeeete et eebeenteesteebeesaseenseesneean 8-15

8.9 Attaching RePEAter.......c.coiiiiiiiiiiieiieie ettt et 8-16

8.10 Grounding the SYSTEMc.cccuiiiiiiiiieeieeierte ettt ettt beesbeesaesaseens 8-17

8.11 Attaching Ground Terminal...........c.ccccieiiiiiiiiiiiiiiieieee e 8-17

8.12 Setting Single-port TTANSCEIVETc..eevuieriieiieiieeiieiie ettt eite e e e b e seaeeaeens 8-18

8.13 Setting and Display of Multi-port TTanSCeIVETeecveerierireriienieeieeeie e 8-19

8.14 CPU MEMOTY MADiiiiiiiieiiie ettt ettt ettt e st e st e s e e sabeeesans 8-21

8.15 Memory Map of ET.NET MoOdUI@cccoeiiiiiiiiiiiieeiieieeee e 8-22

8.16 Trouble Investigation SHEEtcccueiviiiriiiiiieie ettt 8-23

SUPPLEMENTARY ..ottt ettt sttt ettt naes Z-1

Supplementary: Replacing or adding on the module.............ccccoeviiiiiiiniiiiiiniiee e, Z-2

Figure 4-1

Figure 4-2

Figure 4-3

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8

Table 8-1

FIGURES

Minimum Configuration (No Repeater Used and Segment Length of

UP 0 500 M) 1.ttt ettt ettt sttt 4-3
Medium-scale Configuration (Repeaters Used and Distance between
Transceivers of Up to 1,500 M) ..c.eeeriiiiiieniieiiieiieeieeeece e 4-3
Large-scale Configuration (Repeaters and Link Segments Used and
Distance between Transceivers of Up t0 2,500 M)ccceevvvevieniieniieniieeieeeians 4-4
Installation 0n Wall (1)cooviiiiiiieeiieeee e 8-7
Installation 0n Wall (2)oooouiiiiiiieeieeeee e 8-8
Installation 0n Wall (3)oeoouiiiiiiiccieecee e e e 8-8
Installation 0N Wall (4)oooouiiiiiiieeeeceee e e 8-8
Installation in BOX (1) ...ccciiiiiiiieiiecciee et 8-9
Installation N BOX (2) ...cccuiiioiiiiciieecee e 8-9
Tap Connector Assembly Drawing...........cccecceeviieviieniieniienieeieenie e eiie s 8-13
Connection of Connector and TranSCeIVercccvveverieneenieriieneeienieneenens 8-14
TABLE
SWILCH SNeieiiieiieiee ettt ettt et e e sebeesaesareens 8-20

vi

1 BEFORE USE

1 BEFORE USE

(1 .1 CPU Mount Base

8-slot mount base

There are three types of CPU mount bases:

* 2-slot mount base (model: HSC-1020)

* 4-slot mount base (model: HSC-1040)

* 8-slot mount base (model: HSC-1080)

On the 8-slot mount base, for example, up to eight
modules, except the power supply module and
CPU module, can be mounted.

(1.2 Mounting Optional Modules

CPU mount base

Option slots
/—'—_—___—J______“~\\

000

o[2] 13| [4]| 5] 6] |7

< Pl
i3

000000

/N

CPU power CPU

CPU mount base: HSC-1080
PS slot: A slot into which the CPU power
supply (LQV000, LQV020 or
LQV100) module is inserted.
CPU slot: A slot into which the CPU
module (LQP000, LQPO10,

LQPO11 or LQP120) is

I~
]\D\D\D\\\

inserted.
Slots 0 to 7: Slots into which optional

modules or I/O modules.

= —

supply module module CPU option module

4\ CAUTION

between ET.NET modules.

® [nsert ET.NET modules sequentially into the slots, starting from the leftmost
slot, without creating any empty slots in between. Do not insert /O modules

® \When only one ET.NET module is inserted, set it as the main module.

1-2

1 BEFORE USE

When mounting an option module, observe following rules.
® Mount the module straight to the front of the mount base. If it is mounted at a slant as shown in
the bad examples, the connectors may be damaged and the option module may malfunction.

[Bad examples] [Good example]

< N e

| |

4\ CcAUTION

When the CPU mount base is located over the head because of the cabinet
structure used, take care not to mount the optional modules aslant by using a
stepladder or the like.

1-3

1 BEFORE USE

(1 .3 Ground Wiring)

Ground the unit according to the following figure:
* Grounding for 10BASE-5

\J
\|
\J

2000

@000 9000

\/
\/
\ /

/Ground port

12V

n =

=l

[l
[/
[l

] Within 2 m

2 mm? or more

12 VDC Class D grounding

* Grounding for 10BASE-T (Do not connect the FG of the ET.NET module.)

2000
@

\|

\|

\|

9000 9 00O

\/
\/
\/

/ Ground port

n]
Within 2 m

Class D_grounding

12v
[GND
FG

(L
(L
(L

2 mm? or more

* Class D grounding is defined in the Technical Standard for Electrical Facilities of Japan. This
standard states that the grounding resistance must be 100 ohms or less for equipment operating on
300 VAC or less, and 500 ohms or less for devices that shut down automatically within 0.5 seconds

when shorting occurs in low tension lines.

1 BEFORE USE

@ REQUIREMENT

® Ground the FG (frame ground) terminal as follows: Connect the FG terminal
on each module provided with external terminals to the grounding terminal on
the mount base. Make sure that the line used for grounding is at most 2 m
long. Perform Class D grounding for the grounding terminal on the mount
base.

® Use ground lines whose size is 2mm? or more.

® Do not touch the 10BASE-5 connector during power-on. Otherwise, the
system may malfunction due to static electricity, etc.

1-5

2 SPECIFICATIONS

2 SPECIFICATIONS

(2.1 Usage

The ET.NET module (model: LQE020) is connected to a local area network conforming to the
IEEE802.3 specifications, and performs data communication by the TCP/IP or UDP/IP protocol.

(2.2 Specifications

2.2.1 System specifications

ltem Specification
Model LQE020
Maximum number of installable ET.NET 2 per CPU. (Insert ET.NET modules
modules sequentially into the slots, starting from the
leftmost slot.)
Module width One slot wide
Mass 240 g
NOTE

required.

When using 10BASE-5 connections, a 12-VDC external power supply is

2.2.2 Line specifications

Item

Specification

Transmission method

Serial (bit serial) transmission

Electrical interface

Conforming to IEEE 802.3 (conforming to CSMA/CD)
standard

Coding system

Manchester

Protocol

TCP/IP or UDP/IP

Maximum number of connectable
units

10BASE-5: 100 per segment
10BASE-T: n per hub. (The value of n depends on the
hub.)

Maximum number of stations

1024 per network

Connection cable

10BASE-5 coaxial cable: Up to 500 m per segment
10BASE-5 transceiver cable: Up to 50 m
10BASE-T twisted-pair cable: Up to 100 m per segment

Data transmission rate

10 Mbps

2-2

3 NAMES AND FUNCTIONS
OF EACH PART AND
CABLING

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

(3.1 Names and Functions of Each Part)
No. Name Function
@ | TXLED Lights during data transfer.
@. @ |RXLED Lights when data flows on the transmission line (when
EQE%g ETNET /@ a carrier is detected).
o) T @ ‘ﬁ @ | ERRLED Lights when a hardware error is detected.
| e © @ | Module Specifies the main module or submodule and also sets
1 number switch | a communication port type. The setting of this
switch becomes effective when resetting of the
computer system is completed.
'\;/Ia?:ule IS\IL?b Description
S ® 0 1 Communication using 10BASE-
// 5 connections
f 2 3 Communication using 10BASE-
10BASE T connections
° B/ 4 5 Communication with tools
(Windows PC) via
10BASE-T connections (*)
R@J—L 6 7 Error
® 8 9 Error
‘_,J:L_ / o A B Error
10BASE = C D | Error
-T — E F Error
: 7 @ If the module number is set to 4 or 5, the IP address
/ must be as shown below. Up to four windows can be
12v & / opened on the tool (Windows PC) at the same time.
aND| | |19)[1 IP address: 192.192.192.001
G @ - / ® | 10BASE-5 Connects with a PC or another controller.
connector
® | 10BASE-T Connects to a personal computer or another
connector controller.
@ | Power input Connects with the power supply (12 VDC) for a
terminal transceiver which is connected with 10BASE-5.
Frame ground | Connected to the shield line of the transceiver cable.

(*) Setting the MODU No. switch in one of these two positions may result in a
route information setting error. For more information, see “7.3.4 Route
information setting error table.”

4\ CAUTION

When setting the module No. switch, turn off the power switch. Otherwise, the
system may malfunction.

3-2

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

NOTE

The following 12 VDC external power supply is recommended. Use the
recommended power supply.
Power supply model name: HK-25A-12 (manufacturer: Densei-Lambda K.K.)

3-3

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

(3.2 Cabling)

(1) Wiring for 10BASE-5

LQE020 _ETNET

S ° MODUY|
S No Insert the cable into the 10BASE-5
connector.

e]

10BASE-5 cable

[10BASE
T

12V

GND

ro FG
|—————————— |

12 VDC

Connect with the [Push up the retainer to the
mount base FG terminal. arrow direction and insert
the connector.

Retainer Connector at [

/ the cable side

ﬂ- After inserting the connector,
Connector at the Lock post push down the retainer to the
module side arrow direction.
4\ cAuTION

® This hardware unit may malfunction if it is connected poorly or has a broken
line. After connecting the 10BASE-5 connector, check whether the locking
post is locked by the retainer.

® Do not touch the 10BASE-5 connector during power-on. Otherwise, the
system may malfunction due to static electricity, etc.

3-4

3 NAMES AND FUNCTIONS OF EACH PART AND CABLING

(2) Wiring for IOBASE-T

LQEO020 ETNET

o
NO

10BASE
-5

Insert the cable into the 10BASE-T
connector.

= \

10BASE-T cable

10BASE
T

12v
GND
FG

NOTE

® \When using 10BASE-T, do not wire the FG terminal.

® There are two types of T0BASE-T twist-pair cable available: straight cable and
cross cable. The user should choose one of these two types according to the
requirements of the hardware unit to which this product is to be connected.

Hardware unit | Cable type
Hub Straight
PC Cross

3-5

4 USER GUIDE

4 USER GUIDE

(4.1 System Configuration of 10BASE-5)

As shown in Figure 4-1, a basic configuration consists of a single coaxial cable of up to 500 m and
stations connected to this cable. Each station is connected to the coaxial cable via a transceiver
cable and a transceiver. (The station means Ethernet equipment including LQE020.)

This basic configuration is also called a segment; up to 100 stations can be connected in one
segment.

When the distance between stations exceeds 500 m, the number of segments can be increased by
branching by using repeaters. (See Figure 4-2.) This figure shows an example of a system in
which the maximum distance between stations does not exceed 1,500 m. Construct the system so
that the number of repeaters between any two stations is two or less.

Figure 4-3 is an example in which the maximum distance between stations is 2,500 m. A repeater
to which a link cable (up to 500 m) is attached is counted as one repeater, which is called a link
segment.

The parameters related to system configuration are listed below.

ltem Specification
Maximum segment length 500 m
Maximum number of transceivers in segment 100
Maximum distance between stations 2,500 m or less (excluding transceiver cable)
Maximum number of stations in system 1,024
Maximum length of transceiver cable 50 m
Maximum number of repeaters in route 2
between stations

NOTE

® Connect a repeater to a coaxial cable via a transceiver cable and a
transceiver.

® A repeater can be attached to a transceiver at any position in the coaxial
segment.

® Do not attach a station to a link cable.

® The distance between attached transceivers shall be a multiple of 2.5 (m).

® |f a tool PC is connected in this way to call up MCS screens on that PC, only
up to four such screens can be viewed on the PC.

4-2

4 USER GUIDE

. — — — — -
Upto 50 m
—— : Coaxial cable . Station

—— : Transceiver cable B erminator
—— : Transceiver

< Upto500m———

Figure 4-1 Minimum Configuration (No Repeater Used and Segment Length of
Up to 500 m)

Segment B Segment D

1 - | —
T

Segment A

: Repeater
® o e
The length of each segment is
up to 500 m.

B —

Segment C

Figure 4-2 Medium-scale Configuration (Repeaters Used and Distance between
Transceivers of Up to 1,500 m)

NOTE

® The number of repeaters between any two stations shall be two(2) or less.
® The number of segments to which two or more repeaters can be connected
shall be one(1).

4-3

4 USER GUIDE

Link segment 1 Link segment 3

Segment B

Segment D

H - []
Segment A
O L ®

Link segment 2
(o))
8
3

|
[u n

Segment C

Figure 4-3 Large-scale Configuration (Repeaters and Link Segments Used and
Distance between Transceivers of Up to 2,500 m)

NOTE

® The maximum length of a link segment is 500 m.

® Do not attach a station to a link segment.

® The number of repeaters between any two stations shall be two(2) or less.

® The number of segments to which two or more repeaters can be connected
shall be one(1).

® A link segment including the repeaters at both ends is regarded as one
repeater.

4-4

4 USER GUIDE

NOTE

Restrictions on multi-port transceiver installation positions

® \When multi-port transceivers are installed on the most distant coaxial cable
segment in a system in which the maximum length of coaxial cables is 2,500
m (five segments), data delay time increases due to the installation. To avoid
this, restrictions are placed on the multi-port transceiver installation positions.
The maximum distance between stations via multi-port transceivers decreases
by 100 m (in terms of coaxial cable length) if it passes one single multi-port
transceiver. For this reason, there is the following restriction on the coaxial
cable length (L [m]) of the route from a station to another station:

L [m] £2,500 [m] - 100 x N [m]

N: Total number of passing multi-port transceivers

® |n a system consisting of coaxial cables of 2,500 m in total, set a multi- port
transceiver 100 m or more inside from the most distant coaxial cable
terminator (such terminator position decreasing the distance between

stations).

Coaxial segment Link segment Coaxial segment Link segment Coaxial segment
500 m - ‘ 500 m J ‘ 500 m - L 500 m ‘ ‘ 500 m
omy | i | || etoom,

L N L I in L I |

W Lyl L@

. Station
: Multi-port transceiver

@ : Repeater
(cont.)

4-5

4 USER GUIDE
|

NOTE

When connecting a repeater between segments by using multi-port transceivers,
it is also necessary to set the multi-port transceivers at the positions decreasing
the distance between the most distant stations by 100 m each time in passes one
of the multi-port transceiver.

Coaxial segment
500 m

| 100 m

Link segment

Coaxial segment Coaxial segment
J 500 m

500 m 500 m 500 m

} Link segment

100m, 100m| | 100 m ‘

. Station
: Multi-port transceiver
@ : Repeater

4-6

4 USER GUIDE

NOTE

® \When multi-port transceivers (H-7612-64/68) are used in network mode, multi-
step connection is impossible due to the restrictions on transmission
characteristics.

Coaxial cable

‘ ~g . : Station
—— <mnale-port transceiver
I 1
H-.312-64 H-7612-64
H-7¢ 12-68 H-7612-68
N
S
| H-1812-F H-7612-64
N H-761 .-68 H-7612-68
j_:l_:l_\j—_l* T T
\ Multi-step connection is impossible. \ Multi-step connection is impossible.

(One-step connection is possible.)

Network mode Local mode

® |In network mode, use the following specified device types as the single-port
transceivers connected at higher level than multi-port transceivers, so that the
condition to operate on the 12 VDC power supplied from the multi-port
transceivers is assured:

« HLT-200TB (manufactured by Hitachi Cable, Ltd.)
* HLT-200 (manufactured by Hitachi Cable, Ltd.)

* HBN-200TZ (manufactured by Hitachi Cable, Ltd.)
* HLT-200TD (manufactured by Hitachi Cable, Ltd.)

4-7

4 USER GUIDE

(4.2 10BASE-T System Configuration)

Connecting the HUB (multi-port repeater) to a transceiver through a transceiver cable (AUI cable)
enables connecting multiple stations to the HUB. For connecting stations to the HUB, use twisted-
pair cables (10BASE-T).

= i

MPT HUB

: Twisted-pair cable (up to 100 m) : Station
: Terminator L——— : Transceiver

;

: Transceiver cable

| m

: Coaxial cable
When the distance between stations is relatively short (within 200 meters), each station can be

connected directly to the HUB through twisted-pair cables without using any coaxial cable or

transceiver, as shown in the figure below.

4-8

4 USER GUIDE

NOTE

Constraints on multi-HUB connection

® \When using multiple HUBs, configure the system so that the number of HUBs
are up to four and the number of link segments up to five for any routing
between stations.

Link segment HUB HUB HUB HUB
\

| |
® \When connecting HUBs with a coaxial cable, also configure the system so that

the number of HUBs are up to four and the number of ring segments up to five
(three for coaxial segments) for any routing between stations.

Coaxial segment

B i T =

HU

A

/

HUB
-

Link segment

4-9

4 USER GUIDE

(4.3 Example of System Configuration with S10mini)

Terminator .
Transceiver cable [

Coaxial cable (up to 50 m)

Transceiver

Repeater

Segment length (up to 500 m)

al b W
€en tranSCeive
(0] 25,77) rs

R TR =) iy ey \ Twisted-pair cable [
: (up to 100 m)

4-10

4 USER GUIDE

(4.4 System Definition Information)

Set the following @ and (@ information for ET.NET (LQE020). To connect a station to another
network through a router, define item@), too. Do not use a same address as that of another station.
Item(@needs to have a consistent value throughout one single subnetwork.

(D Physical address —— An original number is set for each ET.NET ROM.

© 1P address

@ Subnetwork mask
@ Route information — Define this item when connecting a station to another network through a

:I—Deﬁne these items for each ET.NET by using the ET.NET system tool

router. The item can be set by the ET.NET system tool or by a user
program.

4.4.1 Physical address

A 48-bit physical address is assigned to each ET.NET.
This is a unique address which is set on the ROM; the user cannot change it. An example of a
physical address (in hexadecimal) is shown below.

Example:
00008700B001

4.4.2 |IP address

The IP address used for TCP/IP and UDP/IP is a 32-bit logical address. An IP address consists of a
network number and a host number. There are three types of address assignment depending on the
number of hosts.

(i) Class A. (The high-order one bit of the network number is set to 0.)

Network number

(8 bits) Host number (24 bits)

(i) Class B. (The high-order two bits of the network number are set to 10 in binary.)

Network number

(16 bits) Host number (16 bits)

(ii1) Class C. (The high-order three bits of the network number are set to 110 in binary.)

Network number

(24 bits) Host number (8 bits)

4-11

4 USER GUIDE
|

An IP address is represented in decimal; the eight-bit values are delimited from each other by a

period (“.”). For example, an IP address of class C is represented as shown below.

For class C

11000000 00000001 00000000 00000001
000 192 00OOODO 001 OOODOO 000 00 O OOO001
ooooobd Network address Host number

A network is determined by a network number. Define a unique host number for each host in the
network. If the number of hosts in a network is 200 or less, select class C. For instance, assume
that the number 192.001.000 is sclected as the network number.

Host number Host number Host number Host number
1 2 3 4

Network [
number

. T‘ﬂ T‘ﬁ T‘ﬂ T‘ﬂ (192 001.000)
_'_1

E

Host number
5

As the stations A, B, C, D, and E belong to the same network, assign the numbers 1 to 5 as the
unique host numbers. In this case, the IP addresses of the stations A to E are as follows:

Station A: 192.001.000.001

Station B: 192.001.000.002

Station C: 192.001.000.003

Station D: 192.001.000.004

Station E: 192.001.000.005
There are two special IP addresses: one indicates the entire network by setting all bits of host
number to 0, and the other is the broadcast address in which all bits of host number are set to 1.
The broadcast address is used when data is sent to all stations belonging to the network. (In this

case, send data by UDP/IP communication.)

4-12

4 USER GUIDE

4.4.3 Subnetwork mask
When splitting an IP address into subnetworks, define the boundary between subnetwork number
and local host number by a subnetwork mask. If a subnetwork mask is used with other than the

default value, the address is a the broadcast address as shown in the example below.

Example: For class B:

IP address Subnetwork mask Broadcast address
128.123.000.001 255.255.000.000 128.123.255.255
128.123.001.001 255.255.255.000 128.123.001.255

4.4.4 Route information

Route information must be defined if you want to connect a station to another network through a
router. As the route information, the IP addresses of both the communication destination and

router are registered in a pair.

(1) IP address of communication destination
For each communication destination, an IP address is registered. When multiple
communication destinations exist in the same network, a network address may be set as a
generic address. (The host number of the IP address that has been set to “0” is used as the

network address.)

(2) IP address of router
The IP address of the router in the same network as the ET.NET module is registered. When
multiple routers is involved in the communication route to the destination, register only the

router in the same network as the ET.NET module.

The following two methods are available for setting route information.

® Setting in the socket handler route_add() in a C program
» Refer to the item pertaining the socket hander route add().

® Setting by using the Windows® version of ET.NET system tool (V6 or later)

» Refer to the OPTION ET.NET For Windows software manual (manual number
SAE-3-148).

4-13

4 USER GUIDE
|

NOTE

® Routing information setting function by a Windows® ET.NET system can be
used only when the LQE020 module revision No. is C (the CPU indicator
display is ETM 2.0 or ETS 2.0) or later and the ET.NET system tool version is
V06 or later.

® Up to 15 items of route information including both route_add() and tool
settings can be registered.

® |f the same setting is made by route_add() and the tool, the setting made by
the latter has priority and that made by route_add() is invalidated. In this
case, an error return code will be given back.

® The route information setting is supported only by the Windows® version tool
(it is not supported by the PSE & version tool).

® The addresses that can be registered are IP and network addresses. No
subnetwork address can be registered.
This is because the ET.NET module recognizes route information as an IP
address or network address but not as a subnetwork address. Even if a
subnetwork address is registered, it is not recognized as an IP address, so no
communication can be performed.

4-14

4 USER GUIDE
|

NOTE

The following are examples of route information registered for the network
configuration shown in the figure below.

- Examples of registering route information -

® Route information registered for communication with host H1
« IP address of router Rn: IPn
* I[P address of host H1: IP1

® Route information registered for communication with host H3
* I[P address of router Rn: IPn
« I[P address of host H3: IP3 or network address NETO

|_‘__| ETNET

NETn
Router IP address: IPn

H3 | IP address: IP3

IP address: IP2

Subnetwork address: NET1 Subnetwork address: NET2

IP address: IP1

Network address: NETO

4-15

4 USER GUIDE

(4.5 Software Configuration of ET.NET

CPU
User program
Socket handler Socket handler
Socket driver Socket driver
TCP [UDP TCP [UDP
program program program program
IP program IP program
ETNET Driver Driver ETNET
: main module || (10BASE-5) | (10BASE-T) (10BASE-5) | (10BASE-T)|| submodule :

S)

o

T

i

1.

.................

Cable
H

Transceiver

Transceiver

E Cable

Transceiver

Transceiver

4-16

—

4 USER GUIDE

(4.6 ET.NET System Programs)

This section explains the system programs shown in Section 4.5, “Software Configuration of
ET.NET”.

The system programs are classified into the six types listed below. Each program runs on a CPU or
ET.NET module.

® Socket handler

® Socket driver

® TCP program

® UDP program

® [P program

® Driver

4.6.1 Socket handler

The socket handler, invoked as a function in C, controls the ET.NET module for user program. By
using the socket handler, the user can create programs without considering the hardware
specifications and communication protocol.

4.6.2 Socket driver

The socket driver passes commands from the socket handler to the TCP or UDP program via the
memory interface for subsequent processing.

4.6.3 TCP program

The TCP program as a higher-level protocol conducts high-reliability data transmission/reception
management.

The functions of the TCP program are listed below.
® Reliability check
* Confirmation of reception response signal (ACK)
» Sequence check by sequence numbers
* Data checksum check
® Data retransmission (when an error is detected by reliability check)
® Flow control for receivable data amount
® Simultaneous communication with multiple processes (multiplexing)
® [ogical connection by connection establishment
® Data security and priority management

4-17

4 USER GUIDE

4.6.4 UDP program

The UDP program as a higher-level protocol manages high-speed transmission/reception of a large
amount of data.

The UDP program has the following functions:

® Connectionless communication

® Simultaneous communication

® Packet-based data transmission

4.6.5 |IP program

The IP program as a low-level protocol conducts logical connection of communication paths.
The IP program has the following functions:

® Disassembling or reassembling data according to the maximum packet length

® Exchanging IP address and physical address

4.6.6 Driver

The driver controls the communication circuit, and sends data to and receives data from lines
(transceivers).

The driver has the following functions:

® CRC (Cyclic Redundancy Check) for transmission/reception of data

® Data collision detection during transmission/reception and retransmission

4-18

4 USER GUIDE

(4.7 User-created Program)

This section describes programs that needs to be created by the user.
4.7.1 User program

The user program starts the socket handler, and sends or receives data.

Create the user program as a C mode program, and load it into the S10mini series.

A C mode program is written in programming languages such as C, assembler language, etc., and
can be executed in the form of tasks or P coil. Use the CPMS (Compact Process Monitor System)

as the OS. Extended memory is required for a C mode program.

The socket handler is explained in Section 4.8, “Socket Handler.”
For programming using the socket handler, see CHAPTER 5, “PROGRAM EXAMPLES.”

4-19

4 USER GUIDE

(4.8 Socket Handler)

The socket handler, invoked as a function in C, controls the ET.NET module for user program, and
carries out data transmission and reception. The socket handler consists of 20 functions.
Call the socket handler by specifying its entry addresses. A user program cannot be created

(linked) in a form including the socket handler.

Calling by address

o Socket handler (main)
specification

tcp_open()

User application N
tcp_popen()

program

getconfig()

Linking only by
user program

Socket handler (sub)
tcp_open()
tcp_popen()

getconfig()

4-20

4 USER GUIDE

4.8.1 Socket handler function list

The table below lists the functions of the socket handler.

Subroutine call address , Corresponding
Name Function
Main Sub program

tcp open() /874100 /8F4100 Actively opens TCP. TCP/IP

tcp popen() | /874106 /8F4106 Passively opens TCP. TCP/IP

tcp accept() | /87410C /8F410C Accepts a TCP connection request. | TCP/IP

tcp close() /874112 /8F4112 Terminates a TCP connection. TCP/IP

tcp abort() /87411E /8F411E Kills a TCP connection. TCP/IP

tcp getaddr() | /874124 /8F4124 Reads TCP socket information. TCP/IP

tcp stat() /8T412A /8F412A Reads TCP connection status. TCP/IP

tcp send() /874130 /8F4130 Sends TCP data. TCP/IP

tcp receive() | /874136 /8F4136 Receives TCP data. TCP/IP

udp open() /874160 /8F4160 Opens UDP. UDP/IP

udp close() /874166 /8F4166 Closes UDP. UDP/IP

udp send() /87416C /8F416C Sends UDP data. UDP/IP

udp receive() | /874172 /8F4172 Receives UDP data. UDP/IP

route_list() /874178 /8F4178 Reads routing information. TCP/IP and
UDP/IP

route_del() /87417E /8F417E Deletes routing information. TCP/IP and
UDP/IP

route_add() /874184 /8F4184 Registers routing information. TCP/IP and
UDP/IP

arp_list() /8T418A /8F418A Reads ARP information. TCP/IP and
UDP/IP

arp_del() /874190 /8F4190 Deletes ARP information. TCP/IP and
UDP/IP

arp_add() /874196 /8F4196 Registers ARP information. TCP/IP and
UDP/IP

getconfig() /87419C /8F419C Reads configuration information. TCP/IP and
UDP/IP

4-21

4 USER GUIDE
|

NOTE

® The maximum number of sockets that can be used simultaneously by one
single module is 12 for TCP and 8 for UDP.

® The port numbers 0 to 9999 are reserved by the system; the user can use port
numbers 10000 to 65535.

® The length of data to be transmitted or received in each invocation of a
function is 1 to 4096 bytes for TCP and 1 to 1472 bytes for UDP.

® The IP addresses and subnet masks are set in the operating system table in
the CPU. When the CPU is replaced or the operating system is reloaded,
these items need be set again.

- Kill of task -

If a task using the socket handler is killed, the socket remains in registered state

(except when the task has executed tcp_close() or udp_close() for the socket

used by that task). That is, the socket status at the time of task kill remains

undeleted although the task terminated. The socket in such a state is called a

floating socket.

As a floating socket cannot be used by other tasks, take any one of the following

actions for the floating socket or module:

1. Execute tcp_close() or udp_close() for the floating socket by another task or
built-in subroutine.

2. Reset the CPU.

3. Cut off the power supply, then recover it.

4-22

4 USER GUIDE

tcp_open()

Function

This function registers a socket of the TCP/IP program, reserves a port, and issues a
connection request for a remote station. The registered socket ID or an error code
is returned as the return value. This function transmits SYN and waits for
connection establishment (SYN reception from remote station). If there is no
response from the remote station within 75 seconds, this function ends up with a port

release error (error code: OxFOFF). In this case, reissue tcp_open().

Linking procedure

C language
Main Sub
struct open_p { struct open_p {
long dst ip; long dst ip;
short dst port; short dst port;
short src_port; short src_port;
char notuse; char notuse;
char ttl; char ttl;
B ¥
{ {
short (*tcp_open)(); short (*tcp_open)();
short rtn; short rtn;
struct open p *padr; struct open p *padr;
{
tep_open =(short (*) ())0x874100; tcp_open =(short (*) ())0x8F4100;
{ {
rtn = (*tcp_open)(padr); rtn = (*tcp_open)(padr);
{ {
Parameters
Input parameters:

padr: Starting address of input parameters

padr -> dst_ip: IP address of remote station

padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> notuse: Fixed at 0 (unused)

padr > ttl: Time to live

If ttl is set to 0, the default value (30) is assumed.

4-23

4 USER GUIDE

Output parameters:
Return value: The registered socket ID or an error code is returned.
(0 to 0x000F) Registered socket ID
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-24

4 USER GUIDE
|

tcp_popen()

Function

This function registers a socket for the TCP/IP program, and puts the socket into
The registered socket ID or an error code is returned as the return
If dst ip and

dst port are set to 0, a connection request from any remote station can be accepted.

passive state.
value. This function is equivalent to socket+bind+listen in UNIX.

If src_port is set to 0, optional port from 1024 to 2047 is reserved.

Linking procedure

C language
Main Sub
struct popen p { struct popen p {
long dst ip; long dst ip;
short dst port; short dst port;
short src_port; short src_port;
char listennum,; char listennum,;
char ttl; char ttl;
IR 55
{ {
short (*tcp_popen)(); short (*tcp_popen)();
short rtn; short rtn;
struct popen p *padr; struct popen p *padr;
{ {
tcp_popen = (short (*)())0x874106; tcp_popen = (short (*)())0x8F4106;
{ {
rtn = (*tcp_popen)(padr); rtn = (*tcp_popen)(padr);
{ {
Parameters
Input parameters:

padr: Starting address of input parameters
padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> listennum: Maximum number of connections not accepted (fixed at 0: reserved
for future extension)

padr > ttl: Time to live

4-25

4 USER GUIDE

If no remote station is specified, set dst_ip and dst_port to 0.
If ttl is set to 0, the default value (30) is assumed.
Output parameters:
Return value: The registered socket ID or an error code is returned.
(0 to 0x000F) Registered socket ID
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-26

4 USER GUIDE
|

tcp_accept()

Function This function waits for a connection request (SYN reception) for the socket ID that
was placed in passive state by the tcp_popen() function in the TCP/IP program, and
accepts connection establishment. The socket ID registered after connection
establishment or an error code is returned as the return value. The socket ID in an
input parameter and that registered after connection establishment have the same

value. This function continues waiting until the remote station is connected.

Linking procedure

C language
Main Sub
struct accept p { struct accept p {
short s id; short s id;
I8 ¥
{ {
short (*tcp_accept)(); short (*tcp_accept)();
short rtn; short rtn;
struct accept p *padr; struct accept p *padr;
{ {
tcp_accept =(short (*) ())0x87410C; tep_accept =(short (*) ())0x8F410C;
{

rtn = (*tcp_accept)(padr);

{

rtn = (*tcp_accept)(padr);

Parameters

Input parameters:

padr: Starting address of input parameters

padr -> s _id: Socket ID

Output parameters:

Return value: The registered socket ID or an error code is returned.

(0 to 0x000F) Registered socket ID
(0xF000 to OxFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-27

4 USER GUIDE

tep_close()

Function This function terminates the connection corresponding to a socket ID, and deletes
the socket. The processing result is returned as the return value. This function
transmits FIN characters and waits for connection termination (FIN reception from
remote station). If there is no response from the remote station within 30 seconds,
this function ends up with a socket driver timeout error (error code: 0xF012). In
this case, issue tcp_abort().

Linking procedure

C language
Main Sub
struct close p { struct close p {
short s id; short s id;
1 ¥
{ {
short (*tcp_close)(); short (*tcp_close)();
short rtn; short rtn;
struct close p *padr; struct close p *padr;
{ {
tep_close = (short (¥) ())0x874112; tep_close = (short (¥) ())Ox8F4112;
{ {
rtn = (*tcp_close)(padr); rtn = (*tcp_close)(padr);
{

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> s _id: Socket ID
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-28

4 USER GUIDE
|

tcp_abort()

This function kills (by sending RST characters) the connection corresponding to a
socket ID, and deletes the socket.

Function
The processing result is returned as the return

value.

Linking procedure

C language
Main Sub
struct sid p { struct sid p {
short s id; short s id;
55 ¥
{ {
short (*tcp_abort)(); short (*tcp_abort)();
short rtn; short rtn;
struct sid p *padr; struct sid p *padr;
{ {
tcp_abort = (short (*) ())0x87411E; tcp_abort = (short (*) ())0x8F411E;
{ {
rtn = (*tcp_abort)(padr); rtn = (*tcp_abort)(padr);
{ {
Parameters
Input parameters:

padr: Starting address of input parameters
padr -> s _id: Socket ID
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-29

4 USER GUIDE

tcp_getaddr()

Function This function obtains the IP address of the remote station to be connected
corresponding to a socket ID and the port numbers of the local and remote stations.
The processing result is returned as the return value. When the result is normal
termination, the obtained information at outinf is validated.
Linking procedure
C language
Main Sub
struct sid p { struct sid p {
short s _id; short s _id;
1 13
struct getaddr p { struct getaddr p {
long ipaddr; long ipaddr;
short src_port; short src_port;
short dst port; short dst port;
¥ 1
{ {
short (*tcp_getaddr)(); short (*tcp_getaddr)();
short rtn; short rtn;
struct sid p *padr; struct sid p *padr;
struct getaddr p *outinf; struct getaddr p *outinf;
{ {
tep_getaddr = (short(*)())0x874124; tep_getaddr = (short(*)())0x8F4124;
{ {
rtn = (*tcp_getaddr)(padr, outinf); rtn = (*tcp_getaddr)(padr, outinf);
{

Parameters

Input parameters:

padr: Starting address of input parameters

padr ->s_id: Socket ID
Output parameters:

outinf: Starting address of output parameters

outinf -> ipaddr: IP address of remote station

outinf -> src_port: Port number of local station

outinf -> dst_port: Port number of remote station

4-30

4 USER GUIDE

Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-31

4 USER GUIDE

tcp_stat()

Function This function obtains the status of the connection corresponding to a socket ID.
The processing result is returned as the return value. When the result is normal

termination, the obtained information at outinf is validated.

Linking procedure

C language
Main Sub
struct sid p { struct sid p {
short s _id; short s _id;
1 I
struct stat_p { struct stat_p {

unsigned short stat; unsigned short stat;

unsigned short urg; unsigned short urg;
unsigned short sendwin; unsigned short sendwin;

unsigned short recvwin; unsigned short recvwin;

}5 15
{ {
short (*tcp_stat)(); short (*tcp_stat)();
short rtn; short rtn;
struct sid p *padr; struct sid p *padr;
struct stat p *outinf} struct stat p *outinf}
{ {
tep_stat =(short(*)())0x87412A; tep_stat =(short(*)() J0x8F412A;
{ {
rtn = (*tcp_stat)(padr, outinf); rtn = (*tcp_stat)(padr, outinf);
{ {

Parameters

Input parameters:

padr: Starting address of input parameters

padr ->s_id: Socket ID

4-32

4 USER GUIDE

Output parameters:
outinf: Starting address of output parameters
outinf -> stat: Connection status
0: CLOSED
: LISTEN
: SYN_SENT
: SYN_RECEIVED
: ESTABLISHED
: CLOSE_WAIT
: FIN._ WAIT 1
: CLOSING
: LAST ACK
: FIN._ WAIT 2
10: TIME_WAIT

outinf -> urg: Whether there is urgent data

O© 0 3 O L B W N =

0: There is no urgent data.
Other than 0: Number of urgent data items
outinf -> sendwin: Remaining quantity of send data of send window
outinf -> recvwin: Amount of receive data that has arrived
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-33

4 USER GUIDE
|

tcp_send()

Function This function sends data to the connection corresponding to a socket ID. The
starting address and the length of the sent data are indicated by parameters buf and
If the

value OxFO012 is returned as the processing result, confirm that transmission is being

len, respectively. The processing result is returned as the return value.

retried, by checking the connection status and the residual quantity of the send
window obtained by the tcp stat() function. The tcp send() function makes a
return when the data is stored in the send window. Confirm the data transmission
status by the remaining quantity of send data of the send window obtained by

tcp_stat().

Linking procedure

C language
Main Sub
struct send p { struct send p {
short s _id; short s _id;
short len; short len;
char *buf; char *buf;
¥ 15
{ {
short (*tcp_send)(); short (*tcp_send)();
short rtn; short rtn;
struct send p *padr; struct send p *padr;
{ {
tep_send = (short(*) ())0x874130; tep_send = (short(*) ())0x8F4130;
{ {
rtn = (*tcp_send)(padr); rtn = (*tcp_send)(padr);
{
Parameters

Input parameters:

padr: Starting address of input parameters

padr ->s_id: Socket ID

padr -> len: Length of sent data (1 to 4096 bytes)
padr -> buf: Starting address of sent data

4-34

4 USER GUIDE

Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-35

4 USER GUIDE
|

tep_receive()

Function

This function receives data from the connection corresponding to a socket ID. The
received data is stored in the receive buffer whose the starting address is indicated by
parameter buf. The data length is specified by parameter len. The processing
result is returned as the return value. In this function, receive wait time can be
specified for parameter tim. However, this function makes a return when the data

is received, even if the wait time has not elapsed.

Linking procedure

C language
Main Sub
struct receive p { struct receive p {
short s _id; short s _id;
short len; short len;
char *buf; char *buf;
long tim; long tim;
¥ 1
{ {
short (*tcp_receive)(); short (*tcp_receive)();
short rtn; short rtn;
struct receive p *padr; struct receive p *padr;
tep_receive =(short(*) ())0x874136; tep_receive =(short(*) ())0x8F4136;
{ {
rtn = (*tcp_receive)(padr); rtn = (*tcp_receive)(padr);
{ {
Parameters

Input parameters:

padr: Starting address of input parameters

padr -> s _id: Socket ID

padr -> len: Receive buffer length (1 to 4096 bytes)

padr -> buf: Starting address of receive buffer

padr -> tim: Receive wait time (0 to 86400000 ms [24 hours])

4-36

4 USER GUIDE

Output parameters:
Return value: The processing result is returned.
(0) Normal termination (no receive data)
(0x0001 to 0x1000) Normal termination (number of received bytes)
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-37

4 USER GUIDE
|

udp_open()

Function This function registers a socket for the UDP/IP program, and reserves a port. The
registered socket ID or an error code is returned as the return value.
If a 0 is specified for parameter dst _ip, packets can be received from an arbitrary
host.
If a 0 is specified in the parameter dst port, data can be received from an arbitrary
port.
If a 0 is specified in the parameter src_port, unused ports from 1024 to 2048 are

reserved.

Linking procedure

C language
Main Sub
struct uopen_p { struct uopen_p {
long dst ip; long dst ip;
short dst port; short dst port;
short src_port; short src_port;
char pktmode; char pktmode;
char ttl; char ttl;
¥ 15
{ {
short (*udp_open)(); short (*udp_open)();
short rtn; short rtn;
struct uopen_p *padr; struct uopen_p *padr;
udp_open =(short(*) ())0x874160; udp_open =(short(*) ())0x8F4160;
rtn = (*udp_open)(padr); rtn = (*udp_open)(padr);

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> dst_ip: IP address of remote station
padr -> dst_port: Port number of remote station
padr -> src_port: Port number of local station
padr -> pktmode: Packet mode (fixed to 0)

4-38

4 USER GUIDE

padr -> ttl: Time to live
If ttl is set to 0, the default value (30) is assumed.
Output parameters:
Return value: The registered socket ID or an error code is returned.
(0x0020 to 0x0027) Registered socket ID
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-39

4 USER GUIDE

udp_close()

Function

This function deletes the socket identified by a given socket ID. The processing

result is returned as the return value.

Linking procedure

C language
Main Sub
struct uclose p { struct uclose p {
short s _id; short s _id;
1 I
{ {
short (*udp close)(); short (*udp close)();
short rtn; short rtn;
struct uclose p *padr; struct uclose p *padr;
{ {
udp_close =(short(*) ())0x874166; udp_close =(short(*) ())0x8F4166;
{ {
rtn = (*udp_close)(padr); rtn = (*udp_close)(padr);
{ {
Parameters

Input parameters:

padr: Starting address of input parameters

padr ->s_id: Socket ID

Output parameters:

Return value: The processing result is returned.

(0) Normal termination

(0xF000 to OXFFFF)

Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-40

4 USER GUIDE

udp_send()

Function

This function sends data to the socket identified by a given socket ID. The starting
address and the length of the sent data are indicated by the parameters buf and len,
respectively. The processing result is returned as the return value. As for

specifications of dst_ip and dst port, those specified in udp open() have priority.

Linking procedure

C language
Main Sub
struct usend p { struct usend p {
short s id; short s id;
short notuse; short notuse;
long dst ip; long dst ip;
short dst port; short dst port;
short len; short len;
char *buf; char *buf;
15 15
{ {
short (*udp_send)(); short (*udp_send)();
short rtn; short rtn;
struct usend p *padr; struct usend p *padr;
{ {
udp_send =(short(*) ())0x87416C; udp_send =(short(*) ())0x8F416C;
{ {
rtn = (*udp_send)(padr); rtn = (*udp_send)(padr);
{ {
Parameters

Input parameters:

padr:

Starting address of input parameters

padr -> s _id: Socket ID

padr -> notuse: Fixed at 0 (unused)

padr -> dst_ip: IP address of remote station

padr -> dst_port: Port number of remote station
padr -> len: Length of sent data (1 to 1472 bytes)
padr -> buf: Starting address of send data

4-41

4 USER GUIDE

If a value other than 0 is specified in udp_open(), dst_ip and dst_port specifications in
udp open() are used.
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

NOTE

Specifications of dst_ip and dst_port

® |f a value other than 0 is specified in udp_open(), the parameters specified in
udp_open() are used.

® |f a 0 is specified in udp_open(), the parameters specified in udp_send() are
used.

® |f a 0 is specified in both udp_open() and udp_send(), the function returns with
an invalid address error (error code: OxFFFQ). In this case, correct the user
program.

4-42

4 USER GUIDE

udp receive()

Function

This function receives data from the socket identified by a given socket ID. The
received data is stored in the receive buffer whose starting address is indicated by the
parameter buf.

The processing result is returned as the return value. In this function, receive wait
time can be specified in the parameter tim. However, this function makes a return

when the data is received, even if the wait time has not elapsed.

Linking procedure

C language
Main Sub
struct ureceive p { struct ureceive p {
short s id; short s id;
short notuse; short notuse;
char *buf} char *buf}
long tim; long tim;
15 15
{ {
short (*udp_receive)(); short (*udp_receive)();
short rtn; short rtn;
struct ureceive p *padr; struct ureceive p *padr;
{ {
udp_receive =(short(*) ())0x874172; udp_receive =(short(*) ())0x8F4172;
{ {
rtn = (*udp_receive)(padr); rtn = (*udp_receive)(padr);
{ {
Parameters

Input parameters:

padr: Starting address of input parameters
padr ->s_id: Socket ID
padr -> notuse: Fixed at 0 (unused)

padr -> buf: Starting address of receive buffer
padr -> tim: Receive wait time (0 to 86400000 ms [24 hours])

Output parameters:

Return v

alue: The processing result or an error code is returned.

4-43

4 USER GUIDE

(0) Normal termination (no receive data)
(0x0001 to 0x05C0) Normal termination (number of received bytes)
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

NOTE

Because the udp_receive() function receives data in units of packets, reserve a
buffer area of 1472 bytes.

4-44

4 USER GUIDE

route list()

Function This function obtains routing information. (The maximum size in of the routing
information table is 16 [routes].) The number of obtained entries is returned as the
return value. Ifa 0 is specified for parameter len, only the number of obtained

entries is returned. For len, specify a multiple of 16 (bytes).

Linking procedure

C language
Main Sub
struct Istrt p { struct Istrt p {
short len; short len;
short notues; short notues;
void *buf; void *buf;
¥ ¥
{ {
short (*route_list)(); short (*route list)();
short rtn; short rtn;
struct Istrt p *padr; struct Istrt p *padr;
{ {
route_list = (short(*) ())0x874178; route list = (short(*) ())0x8F4178;
{ {
rtn = (*route list)(padr); rtn = (*route list)(padr);
{ {
Parameters

Input parameters:

padr: Starting address of input parameters

padr -> len: Data length (number of bytes; multiple of 16)

padr -> notes: Fixed at 0 (unused)
padr -> buf: Starting address of data
Output parameters:
Return value: The number of obtained entries is returned.
(0) No entry
(0x0001 to 0x0010) Number of obtained entries

4-45

4 USER GUIDE

Structure of obtained data (contents of buf):
typedef struct{

unsingined long dstaddr: P address of remote station
unsigined long getwayadder: IP address of gateway
unsigined short metric: Metric (number of gateways passed)
unsigined short rt_types: Type
unsigineed short refcnt: Reference counter
unsigined short notuse: (Unused)

}routeentry

4-46

4 USER GUIDE

route del()

Function

This function deletes routing information from the routing information table.

The

processing result is returned as the return value.

Linking procedure

C language
Main Sub
struct delrt p { struct delrt p {
long dstaddr; long dstaddr;
long gtwayaddr; long gtwayaddr;
15 15
{ {
short (*route del)(); short (*route del)();
short rtn; short rtn;
struct delrt p *padr; struct delrt p *padr;
{ {
route_del = (short(*) ())0x87417E; route_del = (short(*) () J0x8F417E;
{ {
rtn = (*route_del)(padr); rtn = (*route_del)(padr);
{ {
Parameters

Input parameters:
padr: Starting address of input parameters
padr -> dstaddr: IP address of remote station
padr -> gtwayaddr: IP address of gateway
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-47

4 USER GUIDE

route add()

Function This function adds routing information to the routing information table. The
processing result is returned as the return value.
Linking procedure
C language
Main Sub
struct addrt p { struct addrt p {
long dstaddr; long dstaddr;
long gtwayaddr; long gtwayaddr;
short metric; short metric;
1 1
{ {
short (*route_add)(); short (*route_add)();
short rtn; short rtn;
struct addrt p *padr; struct addrt p *padr;
{ {
route_add = (short(*) ())0x874184 route_add = (short(*) ())0x8F4184;
{ {
rtzn = (*route_add)(padr); rtzn = (*route_add)(padr);

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> dstaddr: IP address of remote station
padr -> gtwayaddr: IP address of gateway
padr -> metric: Metric (number of gateways passed)
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code

For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-48

4 USER GUIDE

arp_list()

Function

This function obtains ARP information. (The maximum size in of the ARP
information table is 32 [ARPs].) The number of obtained entries is returned as the
return value. Ifa 0 is specified for parameter len, only the number of obtained

entries is returned. For len, specify a multiple of 12 (bytes).

Linking procedure

C language
Main Sub
struct Istarp p { struct Istarp p {
short len; short len;
short notuse; short notuse;
void *buf; void *buf;
¥ ¥
{ {
short (*arp list)(); short (*arp list)();
short rtn; short rtn;
struct Istarp p *padr; struct Istarp p *padr;
{ {
arp_list =(short (*)())0x87418A; arp_list =(short (*)() JOx8F418A;
{ {
rtn = (*arp_list)(padr); rtn = (*arp_list)(padr);
{ {
Parameters

Input parameters:

padr: Starting address of input parameters

padr -> len: Data length (number of bytes; multiple of 12)
padr -> notuse: Fixed at 0 (unused)
padr -> buf: Starting address of data

Output parameters:

Return value: The number of obtained entries is returned.

(0) No entry
(0x0001 to 0x0020) Number of obtained entries

4-49

4 USER GUIDE

Structure of obtained data (contents of buf):
typedef struct{
unsigined long ip_addr: IP address of remote station
unsigined char et addr(6): Physical address of remote station
unsigined char ar_timer: Timer

unsigined char ar_flags: Flag

}arpt-t

4-50

4 USER GUIDE
|

arp_del()

Function This function deletes ARP information from the ARP information table. The

processing result is returned as the return value.

Linking procedure

C language
Main Sub
struct delarp p { struct delarp p {
unsigned long ipaddr; unsigned long ipaddr;
unsigned char etaddr[6]; unsigned char etaddr[6];
15 15
{ {
short (*arp_del)(); short (*arp_del)();
short rtn; short rtn;
struct delarp p *padr; struct delarp p *padr;
arp_del =(short(*) ()) 0x874190; arp_del =(short(*) ()) 0x8F4190;
rtn = (*arp_del)(padr); rtn = (*arp_del)(padr);

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> ipaddr: IP address of remote station
padr -> etaddr[6]: Physical address of remote station
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-51

4 USER GUIDE
|

arp_add()

Function This function adds ARP information to the ARP information table. The processing

result is returned as the return value.

Linking procedure

C language
Main Sub
struct addarp p { struct addarp p {
long ipaddr; long ipaddr;
char etaddr[6]; char etaddr[6];
short flag; short flag;
I I
{ {
short (*arp_add)(); short (*arp_add)();
short rtn; short rtn;
struct addarp p *padr; struct addarp p *padr;
{ {
arp_add =(short(*) ())0x874196; arp_add =(short(*) ())0x8F4196;
{ {
rtn = (*arp_add)(padr); rtn = (*arp_add)(padr);
{ {

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> ipaddr: IP address of remote station
padr -> etaddr[6]: Physical address of remote station
padr -> flag: Flag (fixed at 0)
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
(0xF000 to OxFFFF) Error code
For error codes, see Section 7.3, “Errors and Actions To Be Taken.”

4-52

4 USER GUIDE
|

getconfig()

Function This function obtains the configuration blocks. The processing result is returned as

the return value.

Linking procedure

C language
Main Sub
struct config p { struct config p {
void *config_ptr; void *config_ptr;
55 ¥
{ {
short (*getconfig)(); short (*getconfig)();
short rtn; short rtn;
struct config p *padr; struct config p *padr;
getconfig = (short(*) ())0x87419C; getconfig = (short(*) ())0x8F419C;
rtn = (*getconfig)(padr); rtn = (*getconfig)(padr);

Parameters
Input parameters:
padr: Starting address of input parameters
padr -> config_ptr: Starting address of configuration block
Output parameters:
Return value: The processing result is returned.
(0) Normal termination
Configuration block:
Data structure of configuration block
struct config_ptr{
long ip_addr: IP address (network order) of local station (optional)
long netmask: Subnetwork mask (optional)
long broadcast: Broadcast address (optional)
char tcp_num: Maximum number of TCP sockets (16)

char udp num: Maximum number of UDP sockets (8)

4-53

4 USER GUIDE

char rt num: Size of routing information table (16)
char arp_num: Size of ARP information table (32)
short tcp_win: Size of TCP send/receive window (1024)

}s

4-54

4 USER GUIDE

(4.9 Examples of Socket Handler Issuance Procedure

)

4.9.1 Example of using TCP/IP program

(Cliant)
N

Before connection
establishment

(Server)

tcp_popen()

tcp_accept()

-------------- tcp_open()]
Connection
established Range in which Range in which route_
tcp_stat() and list(), route_del(), route__
tcp_getaddr() (1| | add(), arp_list(), arp_
are usable del(), arp_add(), and
getconfig() are usable
tcp_send() I
(Data)

tcp_receive()

tcp_receive()

p_close() or
tcp_abort()

Connection
terminated

tcp_send()

4-55

tcp_close() or
Fcp_abort()

4 USER GUIDE
|

4.9.2 Example of using UDP/IP program

(Cliant) (Server)
Y X
Before socket
registration
""""""" udp_open() A et U (o [o o] o 1o ()]
Socket registered Range in which route
list(), route_del(), route__
add(), arp_list(), arp_
del(), arp_add(), and
getconfig() are usable
udp_send() > udp_receive()
)
\ (Data)
udp_receive() < udp_send()
-------------- udp_close() [rmmmmmmmmmessmmmsssooooqeoooooeoooooooooo-oo----o|ydp_close()
Socket deletion
AN AN

4-56

4 USER GUIDE

NOTE

Note the following points before using the S10mini Ethernet module LQE020:

1. Error handling for tcp_close
You may issue tcp_close when the return code from a socket handler
function indicates an error. If you have issued it, also check the return code
from tcp_close. If the code indicates an error, issue tcp_close again as
indicated in the table, which lists codes associated with errors detected by
the socket handler, in order to eliminate the cause of the error. Otherwise,
a connection may not be established again or a floating socket may be
generated. An example of programming (flowchart) showing how the socket
handler issues socket library functions is given below.

[I
| Issue tcp_open(). | | delay* |
| No
< Issued correctly?
Yes
| Issue tcp_send(). |
I
No
< Issued correctly? -
Yes |
' | Issue tcp_close(). | | delay*
|
No
< Issued correctly? Other
error
<Socket driver timeout'>-
In case of the error code OxFFF6 |Timeout (0xF012 error)
returned reporting an already closed
connection, tcp_close need not be | Issue tcp-abort().
issued again. Yes or OXFFF6 error |Succeeded

Note: This flowchart also applies to error handling for
udp_close.

2. Inhibited asynchronous access to the same socket
Multiple socket library functions asynchronously issued to a single socket
may result in incorrect execution results of functions. This problem is likely
to occur when multiple tasks issue socket library functions to the same
socket. Make sure that one task handles one socket.

" For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

4-57

4 USER GUIDE

NOTE

3. Time to detect a transmission timeout
When the LQEO20 issues a socket library function, an ACK packet may
cause a timeout due to a communication error or a failure in the remote
device. It takes time to detect a timeout as indicated in the table below.
Therefore, at least the time in the table is required after a timeout of the
socket handler is detected before the socket library function is issued again
or a connection is established again. Assuming that communication errors
are inevitable, confirm at the design stage that the timeout values in the table
do not cause a problem.

Time Value Description
Time to detect a tcp_open 75s | When receiving no response from the
timeout (SYN retry interval) remote device, the socket handler retries
SYN at the following intervals: 6s, 12s,
24s, and 33s
Time to detect a tcp_send 30s | When receiving no response from the
timeout (SEND retry interval) remote device, the socket handler

retransmits at the following intervals: 1s,
2s, 4s, 8s, and 16s

If 30 seconds pass after the socket
handler has issued tcp_send, the socket
handler detects a socket driver timeout
(return code: OxF012).

Time to detect a tcp_close 30s | When receiving FIN from the remote

timeout (FIN retry interval) device and detecting the normal line
disconnection, the socket handler ends
immediately.

When the module (LQE020) sends FIN
to disconnect the line, the socket handler
also ends immediately.

When receiving no response from the
remote device, the socket handler retries
FIN at the following intervals: 1s, 2s, 4s,
8s, and 16s

If 30 seconds pass after the socket
handler has issued tcp_close, the socket
handler detects a socket driver timeout
(return code: 0xF012). Issue tcp_abort
to disconnect the line.

(cont.)

4-58

4 USER GUIDE

NOTE
Time Value Description
Timeto |tcp_close,tcp_send, 30s | Time from when the socket handler
detecta |udp_close issues a command to a microprogram
response |tcp_abort,route_list, 10s | until it is judged that there is no
timeout |route_del,route_add, response.

arp_list,arp_del,
arp_add,getconfig,
udp_send,tcp_getaddr,
tcp_stat

4-59

5 PROGRAM EXAMPLES

5 PROGRAM EXAMPLES

5.1 Example of Programs for Communication between CPUs by Socket
Handler

5.1.1 System configuration

Power supply Power supply
CPU CPU
F ET.NET (LQE020) F ET.NET (LQE020)
(The module number) (The module number)
switch is set to 0. switch is set to 0.
IP address: IP address:
192.001.000.001 192.001.000.002
S10mini Transceiver cable S10mini | Transceiver cable
(CPUO1) (CPU02)
= —— Transceiver — Tra.nsceiver
Terminator Coaxial cable Terminator
System components list
Product name Model Quantity Remarks
Power supply LQV000 2
CPU LQPO10 2
ET.NET LQE020 2
Transceiver cable HBN-TC-100 2 Manufactured by Hitachi Cable, Ltd.
Transceiver HLT-200TB 2 Manufactured by Hitachi Cable, Ltd.
Coaxial cable HBN-CX-100 1 Manufactured by Hitachi Cable, Ltd.
Terminator HBN-T-NJ 2 Manufactured by Hitachi Cable, Ltd.

5-2

5 PROGRAM EXAMPLES
|

5.1.2 Program structure

The program structure is shown below. The ET.NET module of CPUO1 and that of CPUO02 are
connected by logical line. The ET.NET module of CPU02 sends 1024 bytes of data, and the
ET.NET module of CPUOI receives that much data.

When operating this program, start the user program from CPUOI.

CPUO1 CPUO02
User program . User program
Receive Socket Send Socket
buffer < () (porté# 10000) i 0 (port# 10000)
Socket handler Socket handler
TCP/IP TCP/IP

Communication

Logical line

5-3

5 PROGRAM EXAMPLES

CPU
ltem CPUO1 CPUO02
Function Reception Transmission
Send buffer Address: 0x1E6000
Number of bytes: 1024
Receive buffer Address: 0x1E6000
Number of bytes: 1024

Port number 10000 10000
Starting address of tcp_open() 0x874100 0x874100
socket handler tcp_popen() 0x874106 0x874106

tcp accept() 0x87410C 0x87410C

tcp close() 0x874112 0x874112

tcp abort() 0x87411E 0x87411E

tcp getaddr() 0x874124 0x874124

tcp stat() 0x87412A 0x87412A

tcp send() 0x874130 0x874130

tcp receive() 0x874136 0x874136

udp open() 0x874160 0x874160

udp close() 0x874166 0x874166

udp send() 0x87416C 0x87416C

udp receive() 0x874172 0x874172

route list() 0x874178 0x874178

route del() 0x87417E 0x87417E

route add() 0x874184 0x874184

arp list() 0x87418A 0x87418A

arp del() 0x874190 0x874190

arp add() 0x874196 0x874196

getconfig() 0x87419C 0x87419C

5-4

5 PROGRAM EXAMPLES

5.1.3 Flowchart of program at CPUO1

(Start)

<
1 3) |
O TCP ively.
pens TCP passively delay *
tcp_popen
(2) Ab |
Return code? norma
(4) Normal
Accepts TCP connection request.
tcp_accept
(5)
Return code? Abnormal
6) Normal
Receives TCP data.
tcp_receive
< Y
A
(7) (9)
Terminates TCP connection.
delay *
tcp_close
Normal or OxFFF6 error (8) Abnormal
Return code?
(10) 0xF012 error
Terminates TCP connection forcibly.
tcp_abort
End

5-5

5 PROGRAM EXAMPLES

(1) Registers a socket with port number 10000, and puts the socket into passive state.

(2) The registered socket ID is returned as the return code. When the return code is normal, it is
regarded that the socket has been registered normally.

(3) Issues the delay macro, then repeats processes (1) and (2).

(4) Accepts the connection request from CPUO02.

(5) Judges whether normal or abnormal by the return code.

(6) Reads the data sent from CPUO2 into the receive buffer.

(7) Terminates the established connection.

(8) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6
(error), terminates the program as if no error had occurred normally. When the return code is
0xFO012(error), then executes process (10).

(9) Issues the delay macro, then repeats processes (7) and (8).

(10) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5-6

5 PROGRAM EXAMPLES

5.1.4 Example of C language program at CPUO1

#tdefine TCP_POPEN 0x874106L /% tcp_popen() starting address(main) */
#tdefine TCP_ACCEPT 0x87410CL /* tcp_accept() starting address(main) */
ftdefine TCP_CLOSE 0x874112L /% tcp_close(starting address(main) */
#tdefine TCP_RECEIVE 0x874136L /* tcp_receive() starting address(main) */
ftdefine TCP_ABORT 0x87411EL /% tcp_abort() starting address */
#define IPADDR 0xC0010002L /* IP address of remote station */
#tdefine RBUFADDR 0x1EB000L /* Starting address of receive buffer */
#tdefine PARADDR 0x1E5000L /#* Starting address of parameter strage area */
struct popen_p{
long dst_ip; /* IP address of remote station */
short dst_port; /% Port number of remote station */
short src_port; /% Port number of local station */
char listennum; /* Maximum number of unaccepted connections */
} char ttl; /% Time to live */
struct accept_p{
short s_id; /% Socket ID %/
struct receive_pf{
short s_id; /% Socket ID */
short len; /* Buffer length */
char *buf; /* Starting address of buffer */
long tim; /% Receive wait time (ms) %/
struct close_p{
short s_id; /* Socket ID */
struct abort_pf{
short s_id; /% Socket ID */
/ /
/% task2: Server (CPUO1) */
/ /
main ()
register short (*tcp_popen) ();
register short (*tcp_accept) ();
register short (*tcp_receive) ();
register short (*tcp_close) ();
register short (*tcp_abort) ();
long time;
short rtn;
char *rbuf;
struct popen_p *popen;
struct accept_p *acept;
struct receive_p *recv;
struct close_p *close;
struct abort_p *abort;
popen = (struct popen_p *)PARADDR; /* Starting address of input parameter storage area */
accpt = (struct accept_p *) (popen + 1);
recv = (struct receive_p *) (accpt + 1);
close = (struct close_p *)(recv + 1);
abort = (struct abort_p *) (close + 1);
while(1){
popen—>dst_ip = IPADDR; /% 1P address of remote station */
popen—>dst_port = 10000; /* Port number of remote station */
popen—>src_port = 10000; /% Port number of local station */
popen—>listennum = 0; /* Maximum number of */
/* unaccepted connections */
popen—>ttl =0; /* Time to live */
tep_popen = (short (%) ())TCP_POPEN;
rtn = (tcp_popen) (popen) ; /* Opens TCP passively %/
if(rtn > 0){ /% Return code normal? */

5-7

5 PROGRAM EXAMPLES
|

break;
time = 100; /* Issue of 100-ms Delay macro */
delay (&time);
accpt—>s_id = rtn; /* Socket ID */
tep_accept = (short (%) ())TCP_ACCEPT;
rtn = (tcp_accept) (acept) ; /% Accepts TPC connection request. */
recv—>s_id = rtn; /% Socket ID */
if(rtn > 0) { /% Return code normal? */
recv—>len = 1024; /% Receive buffer length(bytes) */
recv—>buf = (char *)RBUFADDR; /* Starting address of receive buffer */
recv—>tim = 60000; /% Receive wait time (ms) */
tep_receive = (short () ()) TCP_RECEIVE;
rtn = (tcp_receive) (recv); /% Receives TCP */
close—>s_id = recv—>s_id; /* Socket ID */
} else {
close—>s_id = accpt—>s_id; /* Socket ID */
while(1){
tep_close = (short (%) ())TCP_CLOSE;
rtn = (tcp_close) (close); /* Terminates TCP connection. */
if(rtn == 0 || rtn == (short)OxFFF6) {
break;

} else if (rtn == (short)0xF012) {
tep_abort = (short (%) ()) TCP_ABORT;

rtn = (tep_abort) (abort); /* Terminates TCP connection forcibly */
break;
time = 100; /* Issue of 100-ms Delay macro */

delay(&time);

return;

5-8

5 PROGRAM EXAMPLES

5.1.5 Flowchart of program at CPU02

(Start)

(1) D (3) |
Opens TCP actively. delay *
tcp_open
(2)
Return code? Abnormal
4 Normal
Sends TCP data.
tcp_send
(5) = (7) |
Terminates TCP connection.
delay *
tcp_close
Normal or OxFFF6 error (6) Abnormal
Return code?
(8)
Terminates TCP connection forcibly.
tcp_abort

(D
2

3)
“4)
)
(6)

(7
®)

Ve

(End)

Registers a socket with port number 10000, and puts the socket into active state.

The registered socket ID is returned as the return code. When the return code is normal, it is
regarded that the socket has been registered normally.

Issues the delay macro, then repeats processes (1) and (2).

Transmits the data in the send buffer to CPUOI.

Terminates the established connection.

Judges whether normal or abnormal by the return code. When the return code is OxFFF6
(error), terminates the program as if no error had occurred normally. When the return code is
0xFO012(error), then executes process (8).

Issues the delay macro, then repeats processes (5) and (6).

Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5-9

5 PROGRAM EXAMPLES

5.1.6 Example of C language program at CPU02

ttdefine
ttdefine
ttdefine
ttdefine
#tdefine
ttdefine
ttdefine

struct
long
shor
shor
char
char

s

struct
shor
shor
char

s

struct
shor
1
struct
shor
}s

TCP_OPEN 0x874100L /* tep_open() starting address */

TCP_CLOSE 0x874112L /* tcp_close() starting address */

TCP_SEND 0x874130L /* tep_send() starting address */

TCP_ABORT 0x87411EL /* tcp_abort() starting address */

TPADDR 0xC0010001L /* IP address of remote station */

SBUFADDR 0x1E6000L /* Starting address of send buffer */

PARADDR 0x1E5000L /#* Starting address of parameter strage area*/

open_p{
dst_ip; /% 1P address of remote station */

t dst_port; /% Port number of remote station */

t src_port; /% Port number of local station */
notuse; /% Unused (0) */
ttl; /* Time to live */

send_p {

t s_id; /* Socket ID */

t len; /* Send data length(bytes) %/
*buf; /% Starting address of send data */

close_pf{

t s_id; /* Socket ID */

abort_p{

t s_id; /% Socket ID */

/skskskskoskokskokekskskokskokokskskoskskokokoksksk /
/* task3: Client (CPU02) */
/eksksksioskokskokskskskokskokokskskoskoskokokoksksk /

main ()

{
regi
regi
regi
regi
long
shor
stru

struct

short
short
short
short
time;
t rtn;
ct open_p
send_p

ster
ster
ster
ster

(*tcp_open)
(*tcp_send)
(*tcp_close
(*tcp_abort

*open;
*send;

)5
)
)5
).

>

(
(
) (
) (

close_p
abort_p

struct
struct

= (struct
(struct
= (struct
= (struct

open
send =
close
abort

while(1){
open—>dst_ip
open—>dst_port
open—>src_port
open—>notuse
open—>ttl

open_p
send_p

close_p
abort_p

*close;
*kabort;

= IPADDR;

= 10000;

= 10000;
0;

= 0;

%) PARADDR ;
*) (open
%) (send
%) (close

+1);
+1);
+1);

/% Starting address of input parameter storage area */

/% IP address of remote station */
/% Port number of remote station %/
/* Port number of local station */

/* Unused
/* Time to live

*/
*/

tep_open = (short (%) ()) TCP_OPEN;
rtn = (tcp_open) (open) ;
if(rtn > 0){

break;
}

time = 100;
delay (&time);

/* Opens TCP actively. */
/* Return code normal ? */

/* Issue of 100-ms Delay macro */

5-10

5 PROGRAM EXAMPLES

}

send—>s_id = rtn; /% Socket ID */
send->len = 1024; /* Send data length(bytes) */
send—>buf = (char *)SBUFADDR; /* Starting address of send data */
tep_send = (short (%) ())TCP_SEND;
Ttn = (tep_send) (send); /% Sends TCP data. */
close—>s_id = send->s_id; /* Socket ID */
while(1){

tep_close = (short (%) ())TCP_CLOSE;

Ttn = (tep_close) (close) ; /% Terminates TCP connection. %/

if(rtn == 0 || rtn == (short) OxFFF6) {

break;

} else if (rtn == (short)0xF012) {
tep_abort = (short (%) ()) TCP_ABORT;

rtn = (tcp_abort) (abort); /* Terminates TCP connection forcibly */
break;

}

time = 100; /* Issue of 100-ms Delay macro */

delay (&time);
}

return;

5-11

5 PROGRAM EXAMPLES

5.2 Example of Programs for Continuous Communication between CPUs
by Socket Handler

5.2.1 System configuration

Power

supply

CPU

h ET.NET (LQE020)

switch is set to 0.

(The module number)

Power supply

CPU

— ET.NET (LQE020)

(The module number)
switch is set to 0.

IP address: IP address:
192.001.000.001 192.001.000.002
S10mini : S10mini :
(CPUO1) Transceiver cable (CPU02) Transceiver cable
- —— Transceiver — Tra.nsceiver
Terminator Coaxial cable Terminator
System Components List
Product name Model Quantity Remarks
Power supply LQV000 2
CPU LQPO10 2
ET.NET LQE020 2
Transceiver cable HBN-TC-100 2 Manufactured by Hitachi Cable, Ltd.
Transceiver HLT-200TB 2 Manufactured by Hitachi Cable, Ltd.
Coaxial cable HBN-CX-100 1 Manufactured by Hitachi Cable, Ltd.
Terminator HBN-T-NJ 2 Manufactured by Hitachi Cable, Ltd.

5-12

5 PROGRAM EXAMPLES
|

5.2.2 Program structure

The program structure is shown below. The ET.NET module of CPUO1 and that of CPUO02 are
connected by logical line. A total of 1024 bytes of data is transmitted between the ET.NET module
of CPUO2 and that of CPUOI.

When running this program, start the user program from CPUOL1.

CPUO1 CPUO2
User program - - User program
Send/receive Socket Send/receive Socket
buffer (® (port# 10001) buffer < @ (port# 10001)
Socket handler Socket handler
TCP/IP TCP/IP
,,,,,,,,,,,,,,,, Communication

Logical line

5-13

5 PROGRAM EXAMPLES

CPU
ltem CPUO1 CPUO02
Function Transmission/reception Transmission/reception/
comparison
Send buffer Address: 0x1E1000 Address: 0x1E1000
Number of bytes: 1024 Number of bytes: 1024
Receive buffer Address: 0x1E2000 Address: 0x1E2000
Number of bytes: 1024 Number of bytes: 1024

Port number 10001 10001
Starting address of tcp_open() 0x874100 0x874100
socket handler tcp_popen() 0x874106 0x874106

tcp accept() 0x87410C 0x87410C

tcp close() 0x874112 0x874112

tcp abort() 0x87411E 0x87411E

tcp getaddr() 0x874124 0x874124

tcp stat() 0x87412A 0x87412A

tcp send() 0x874130 0x874130

tcp receive() 0x874136 0x874136

udp open() 0x874160 0x874160

udp close() 0x874166 0x874166

udp send() 0x87416C 0x87416C

udp receive() 0x874172 0x874172

route list() 0x874178 0x874178

route del() 0x87417E 0x87417E

route add() 0x874184 0x874184

arp list() 0x87418A 0x87418A

arp del() 0x874190 0x874190

arp add() 0x874196 0x874196

getconfig() 0x87419C 0x87419C

5-14

5 PROGRAM EXAMPLES

5.2.3 Flowchart of program at CPUO1

(Start)

(1) B (3) |

Opens TCP passively.
tcp_popen

delay *

Abnormal

Return code?

Normal
Accepts TCP connection request.
tcp_accept

Abnormal

Return code?

Normal

Receives TCP data.
tcp_receive

Abnormal

Y

Return code?

Normal

Copies data.

9 |
Sends TCP data.
tcp_send

(10) Abnormal

- 4
<

(11) 13)
Normal Terminates TCP connection.

Return code?

delay *

tcp_close

Normal or OXFFF6 error (12) Abnormal

Return code?

(14) 0xF012 error
Terminates TCP connection forcibly.

tcp_abort

> |
>

End

5-15

5 PROGRAM EXAMPLES

(1) Register a socket with port number 10001, and put the socket into passive state.
(2) The registered socket ID is returned as the return code. When the return code is normal, it is
regarded that the socket has been registered normally.
(3) Issues the delay macro, then repeats processes (1) and (2).
(4) Accept the connection request from CPUO02.
(5) Judge whether normal or abnormal by the return code.
—(6) Read the data sent from CPUO2 into the receive buffer.
(7) When the return code is an error code or it indicates that there is no read data, jump to step
(11).
(8) Copy the data in the receive buffer into the transmission buffer.
(9) Send the data in the send buffer to CPU02.
— (10) Judge whether normal or abnormal by the return code. When normal, repeats (6) to (10).

(11) Terminate the established connection.

(12) Judges whether normal or abnormal by the return code. When the return code is 0xFFF6
(error), terminates the program as if no error had occurred normally. When the return code is
0xFO012(error), then executes process (14).

(13) Issues the delay macro, then repeats processes (11) and (12).

(14) Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5-16

5 PROGRAM EXAMPLES

5.2.4 Example of C language program at CPUO1

#tdefine TCP_POPEN 0x874106L /% tcp_popen() starting address(main) */
#tdefine TCP_ACCEPT 0x87410CL /* tcp_accept() starting address(main) */
ftdefine TCP_RECEIVE 0x874136L /% tcp_receive() starting address(main) */
#tdefine TCP_SEND 0x874130L /% tcp_send() starting address (main) */
#define TCP_CLOSE 0x874112L /% tcp_close() starting address(main) */
#tdefine TCP_ABORT 0x87411EL /% tcp_abort() starting address */
ftdefine IPADDR 0xC0010002L /* IP address of remote station */
#tdefine SBUFADDR 0x1E1000L /#* Starting address of send buffer */
ttdefine RBUFADDR 0x1E2000L /% Starting address of receive buffer */
#tdefine PARADDR 0x1E5000L /#* Starting address of parameter storage area */
struct popen_p{

long dst_ip; /% 1P address of remote station */

short dst_port; /% Port number of remote station */

short src_port; /% Port number of local station */

char listennum; /* Maximum number of unaccepted connections */
} char ttl; /% Time to live %/
struct accept_p{

short s_id; /% Socket ID */
struct receive_pf{

short s_id; /% Socket ID */

short len; /* Buffer length */

char *buf; /% Starting address of buffer */
} long tim; /% Receive wait time (ms) */
struct send_pf{

short s_id; /* Socket ID */

short len; /% Send data length(bytes) */

char *buf’; /* Starting address of send data */
struct close_p{

short s_id; /* Socket ID */
struct abort_pf{

short s_id; /* Socket ID */
/ /
/% task2: Server (CPUO1) */
/ /
main ()

register short (*tcp_popen) ();

register short (*tcp_accept) ()

register short (*tcp_receive) ();

register short (*tcp_send) ();

register short (*tcp_close) ();

register short (*tcp_abort) ();

long time;

short rtn, 1i;

char *ksbuf, s*rbuf;

struct popen_p *popen;

struct accept_p *accept;

struct receive_p *recv;

struct send_p *ksend;

struct close_p *close;

struct abort_p *abort;

popen = (struct popen_p *)PARADDR; /* Starting address of input parameter storage area */

accpt = (struct accept_p *) (popen + 1);

recv = (struct receive_p %) (accpt + 1);

send = (struct send_p %) (recv + 1);

close = (struct close_p *)(send + 1);

abort = (struct abort_p *)(close + 1);

5-17

5 PROGRAM EXAMPLES

while(1) {
popen—>dst_ip = IPADDR; /% IP address of remote station */
popen—>dst_port = 10001; /% Port number of remote station */
popen—>src_port = 10001; /* Port number of local station */
popen—>listennum = 0; /% Maximum number of */

/* unaccepted connections */
popen—>ttl =0; /% Time to live */
tcp_popen = (short (%) ())TCP_POPEN;
rtn = (tcp_popen) (popen); /* Opens TCP passively. */
if(rtn > 0) { /% Return code normal ? */
} break;
time = 100; /* Issue of 100-ms Delay macro */

\ delay (&time);
acept—>s_id = rtn; /* Socket ID */
tep_accept = (short (%) ())TCP_ACCEPT;
rtn = (tcp_accept) (acept) ; /% Accepts TCP connection request. */
if(rtn > 0) { /% Return code normal ? %/
recv—rs_id = rtn; /* SocketID */
while(1) {
recv—>len = 1024; /* Receive buffer length(bytes) */
recv—>buf = (char#*)RBUFADDR; /* Starting address of receive buffer %/
recv—>tim = 60000; /% Receive wait time (ms) */
tep_receive = (short (%) ()) TCP_RECEIVE;
rtn = (tcp_receive) (recv); /% Receives TCP data. */
if(rtn < 0) { /% Return code abnormal ? */
break;
sbuf = (char *)SBUFADDR; /* Starting address of send buffer */
rbuf = (char *)RBUFADDR; /* Starting address of receive buffer %/

for(i =0 ; i< 1024 ; i++){
sbuf[i] = rbuflil;
}

send—>s_id = recv—>s_id; /% Socket ID */
send->len = 1024; /* Send data length(bytes) */
send->buf = (char *)SBUFADDR; /% Starting address of send data */
tep_send = (short (%) ())TCP_SEND;
rtn = (*tcp_send) (send) ; /% Sends TCP data. */
if(rtn < 0){ /% Return code abnormal ? */
break;
}
close—>s_id = recv—>s_id; /* Socket ID */
} else {
close—>s_id = accpt—>s_id; /* Socket ID */
while(1){
tep_close = (short (%) ()) TCP_CLOSE;
rtn = (tcp_close) (close); /* Terminates TCP connection. */
if(rtn == 0 || rtn == (short)OxFFF6) {
break;

} else if (rtn == (short)0xF012) {
tep_abort = (short (%) ()) TCP_ABORT;

rtn = (tep_abort) (abort); /* Terminates TCP connection forcibly %/
break;
time = 100; /* Issue of 100-ms Delay macro */

delay(&time);

return;

5-18

5 PROGRAM EXAMPLES

5.2.5 Flowchart of program at CPU02

(Start)

(1) = @]
Opens TCP actively.
tcp_open

Abnormal

Return code?

4) > Normal
Sends TCP data.
tcp_send

Abnormal

Return code?

Normal
Receives TCP data.
tcp_receive

Return code? Abnormal

Y

Normal

Compares send data
with receive data.

(9) |
Sets the complement data of
receive data in send buffer.

Result of data
comparison

Abnormal -
(1) (13) |

Terminates TCP connection. .
Normal delay

tcp_close

Normal or OxFFF6 error (12) Abnormal

Return code?

(14) 0xF012 error
Terminates TCP connection forcibly.
tcp_abort

5-19

5 PROGRAM EXAMPLES

(1D
(12)

(13)
(14)

Register a socket with port number 10001, and put the socket into active state.

The registered socket ID is returned as the return code. When the return code is normal, it is
regarded that the socket has been registered normally.

Issues the delay macro, then repeats processes (1) and (2).

Send the data in the send buffer to CPUOI.

Judge whether normal or abnormal by the return code.

Read the data sent from CPUO1 into the receive buffer.

Judge whether normal or abnormal by the return code.

Compare the data in the send buffer with that in the receive buffer of the local station.

Copy the complement of the receive data into the send buffer.

Judge whether the comparison result is normal or abnormal. When it is normal, repeats steps
(4) to (10).

Terminate the established connection.

Judges whether normal or abnormal by the return code. When the return code is 0xFFF6
(error), terminates the program as if no error had occurred normally. When the return code is
0xFO012(error), then executes process (14).

Issues the delay macro, then repeats processes (11) and (12).

Terminates the connection as no response is returned from the remote station.

* For the delay macro instruction, refer to the SOFTWARE MANUAL GENERAL
DESCRIPTION & MACROS COMPACT PMS V5 (manual number SAE-3-201).

5-20

5 PROGRAM EXAMPLES

5.2.6 Example of C language program at CPU02

#tdefine TCP_OPEN 0x874100L /* tcp_open() starting address (main) */
ftdefine TCP_CLOSE 0x874112L /% tcp_close() starting address(main) */
ttdefine TCP_SEND 0x874130L /* tcp_send() starting address (main) */
#tdefine TCP_RECEIVE 0x874136L /* tcp_receive() starting address(main) */
#define TCP_ABORT 0x87411EL /% tcp_abort() starting address */
#define IPADDR 0xC0010001L /* IP address of remote station */
ttdefine SBUFADDR 0x1E1000L /% Starting address of send buffer */
#tdefine RBUFADDR 0x1E2000L /#* Starting address of receive buffer */
#define PARADDR 0x1E5000L /* Starting address of parameter storage area */
struct open_pf{

long dst_ip; /* IP address of remote station */

short dst_port; /% Port number of remote station */

short src_port; /* Port number of local station */

char notuse; /* Unused (0) %/
| char ttl; /* Time to live */
struct send_pf{

short s_id; /* Socket ID */

short len; /% Send data length(bytes) */

char *buf’; /* Starting address of send data */
struct receive_pf{

short s_id; /* Socket ID */

short len; /* Buffer length */

char *kbuf'; /% Starting address of buffer */

long tim; /% Receive wait time (ms) */
struct close_pf{

short s_id; /% Socket ID */
struct abort_p{

short s_id; /* Socket ID */

/kksksskskekskokskskoskskekokokskokskekkokskoksk /
/% task3: Client (CPU02) */
/kksksskskekekokskskoskskekokekskokskekkekskoksk /

?ain()
register short (*tcp_open) ();
register short (*tcp_send) ();
register short (*tcp_receive) ();
register short (*tcp_close) ();
register short (*tcp_abort) ();
long time;
short rtn, i, cerr_flg;
char *ksbuf, s*rbuf;
struct open_p *open;
struct send_p *ksend;
struct receive_p *recv;
struct close_p *close;
struct abort_p *abort;
open = (struct open_p *) PARADDR; /* Starting address of input parameter storage area/
send = (struct send_p %) (open + 1);
recv = (struct receive_p *) (send + 1);
close = (struct close_p %) (recv + 1);
abort = (struct abort_p *) (close + 1);

sbuf = (char *)SBUFADDR;
for(i=0; i< 1024 ; i++){
sbuf[i] = 0x55;

/% Starting address of send buffer */

}

while(1){
open—>dst_ip
open—>dst_port

IPADDR;
10001;

*/
*/

/% IP address of remote station
/% Port number of remote station

5-21

5 PROGRAM EXAMPLES
|

open—ysrc_port = 10001; /% Port number of local station */
open—»>notuse =0; /* Unused */
open—>ttl =0; /% Time to live */
tep_open = (short (%) ()) TCP_OPEN;
rtn = (tcp_open) (open) ; /* Opens TCP actively. */
if(rtn > 0) { /% Return code normal ? */
} break;
time = 100; /% Issue of 100-ms Delay macro */
\ delay (&time) ;
send->s_id = rtn; /* Socket ID */
recv—>s_id = rtn; /% Socket ID */
while(1){
send—>len = 1024; /% Send data length(bytes) %/
send—>buf = (char *)SBUFADDR; /% Starting address of send data */
tep_send = (short (%) ())TCP_SEND;
rtn = (tcp_send) (send); /* Sends TCP data. */
if(rtn < 0){ /% Return cond abnormal ? */
break;
recv—>len = 1024; /% Receive buffer length(bytes) */
recv—>buf = (char#*)RBUFADDR; /% Starting address of receive buffer */
recv—>tim = 60000; /* Receive wait time (ms) */
tep_receive = (short (%) ()) TCP_RECEIVE;
rtn = (tcp_receive) (recv); /% Receive TCP data. */
if(rtn < 0) { /% Return cond abnormal ? %/
break;
cerr_flg = 0; /* Clears compare error flag. */
sbuf = (char *)SBUFADDR; /* Starting address of srnd buffer */
rbuf = (char *)RBUFADDR; /* Starting address of receive buffer */

for(i =03 i< 1024 ; i++){
if (sbuf[i] != rbuf[i]) {

cerr_flg = 1; /* Sets compare error flag. %/
break;
sbuf[i] = “rbuflil]; /* Sets complement */
if(cerr_flg == 1) { /* Compare error ? */
break;
}
}
close—>s_id = send->s_id; /* Socket ID */
while(1) {
tep_close = (short (%) ())TCP_CLOSE;
rtn = (tcp_close) (close); /% Terminates TCP connection. %/
if(rtn == 0 || rtn == (short)O0xFFF6) {
break;

} else if (rtn == (short)0xF012) {
tep_abort = (short (%) ()) TCP_ABORT;

rtn = (tep_abort) (abort) ; /* Terminates TCP connection forcibly */
break;
time = 100; /* Issue of 100-ms Delay macro */

delay (&time) ;

return;

5-22

6 OPERATION

6 OPERATION

(6.1 Start-up Procedure

(st)

Mount the module.

Set rotary switch.

[1] Turn off the power to the CPU, and mount the
ET.NET module.

[2] Set the MODU. NO. switch of the ET.NET
module as shown below.

Module No. g

Viain | Sub Description
0 1 Communication using 10BASE-5 connections
2 3 Communication using 10BASE-T connections
4 5 Communication with a tool

Start up CPU.

Windows® PC
programming
(ET.NET for Windows®)

Set up ET.NET module.

Reset CPU.

e

[3] Turn on the power to the CPU.

[4] Connect the CPU to the Windowsfi PC via an[]
RS-232C interface cable. Then, set up ET.NET for
Windows. (Refer to the SOFTWARE MANUAL, []
OPTION ET.NET For Windows (manual number [/
SAE-3-148)).

[5] Setup the ET.NET module. (Set IP address and
subnetwork mask.)

[6] Press the CPU reset switch for one second or more to
reset the CPU.

6-2

6 OPERATION
|

NOTE

@ |f the IP address of the host is set to all /0s or all /Fs, then an input error will
occur.
If the setup menu for the Windows® Tool is called up with no ET.NET module
installed, the physical address /FFFFFFFFFFFF is displayed. When you
want to reference physical addresses, install an ET.NET module beforehand.
However, IP addresses and subnet masks can be set and referenced even
when no ET.NET module is installed.

® \When it is found that the IP address of an ET.NET module is not set, or when
it is lost due to memory initialization during loading of the operating system,
the ERR LED for the ET.NET module lights and one of the following messages
appears in the CPU indicator. At the same time, the communication stops.

If the IP address of the main module is not set: “ETM IPNG”
If the IP address of the submodule is not set: “ETS IPNG”

6-3

7 MAINTENANCE

7 MAINTENANCE

(7.1 Maintenance Inspection)

To use the S10mini in an optimum condition, check the items listed below. Make this check at

routine inspection or periodic inspection (twice or more per year).

(1

)

3)

4

)

(6)

(7

Module appearance

Check that no fissure or crack exists in the module case. If the case has such a damage, there
is a possibility that the internal circuit may also be damaged, resulting in a system malfunction.
Indicator’s ON status and indication

From the indicator status, check that no special fault exists.

Looseness of mounting screws and terminal base screws

Check that the mounting screws and terminal base screws of the module are not loose. If any
of these screws is found to be loose, tighten it. Such a loose screw may result in a system
malfunction or a burn-out due to overheating.

Module replacement

Hot swapping of modules will lead to hardware or software damage. Be sure to replace a
module in a power OFF state.

Cable sheath condition

Check that the cable sheath is not abnormal. A peeled sheath may cause a system malfunction
or electric shock, or may result in a burn-out due to short circuit.

Dust sticking condition

Check if dust and dirt collects on the module. If dust collects on the module, remove it with a
vacuum cleaner. Dust on the module may short the internal circuit, resulting in a burn-out.
Power supply voltage

Check that neither the internal power supply of the module nor the external power supply to it is
out of the specified range. If the power supply voltage deviates from the rating, a system

malfunction may result.

A cAuTiON

Static electricity may damage the module. Before starting the work, discharge
all electrostatic charge from your body.

7-2

7 MAINTENANCE

(7.2 Troubleshooting

)

Procedure

@ouble occurre@

Check according to the
instructions given in
Subsection 7.2.2.

Is each item YES

executed correctly?

Correct if the item is not
executed correctly.

NO
Normal return?

YES

\

Check the error LED and |}
CPU console display, and

take a necessary action.

YES

CTroubIeShooting ended.)

Normal return?

NO

Fill in the Trouble
Investigation Sheet. Use
Section 8.16 "Trouble
Investigation Sheet."

Contact your nearest
Service Center.

7 MAINTENANCE

7.2.2 Before suspecting a failure

Is cabling normal? ,

X
® Check that there is disconnection or erroneous C:Q
connection of cables.
® Check that a cable with shielded ground wire is 9,

used as the transceiver cable.

Are the modules mounted correctly?

® Check that the ET.NET modules
are inserted from the left.

® Check that no set screws loosen.

7-4

7 MAINTENANCE

Is grounding made correctly?

® Separate the grounding from that of
high-voltage equipment.
® Perform grounding work conforming to

Class D grounding or higher.

Are LG and FG separated?

® [f electrical noise from the power
supply enters the FG (frame
ground) via the LG (line ground), a
malfunction may result. To
prevent this, LG and FG must be

separated.

® Ground LG at the power supply

LG is near here.

side. FG is over there.

7-5

7 MAINTENANCE

(7.3 Errors and Actions To Be Taken)

7.3.1 CPU LED display messages

In the CPU LED display, a distinction is made between the main module and submodule, as shown
in the table below.

Module | Display message Explanation User action
Main ETM @.@ The ET.NET module (main) was started up | This is not an error.
normally.
ETM [JLJLIC] | A hardware error was detected on the See Subsection 7.3.2,
board of the ET.NET module (main). “Hardware errors.”
EXD2 PTY A parity error occurred when the CPU read | Set the CPU switch

memory of the ET.NET module (main). OFF, then set it ON
again. Ifthis

message still appears,

replace the ET.NET
module.
Sub ETS @. @ The ET.NET module (sub) was started up | This is not an error.
normally.
ETS LJOJOIL | A hardware error was detected on the See Subsection 7.3.2,
board of the ET.NET module (sub). “Hardware errors.”
EXD3 PTY A parity error occurred when the CPU read | Set the CPU switch
memory of the ET.NET module (sub). OFF, then set it ON

again. If this
message still appears,
replace the ET.NET
module.

® The “@. @” above indicates the version and revision of the ET.NET module.

® The “[J[J[1[J” indicates the error display data in Subsection 7.3.2, “Hardware errors.”

7-6

7 MAINTENANCE

7.3.2 Hardware errors

If the ET.NET module detects a hardware error, an error message as in the table below is displayed

with the CPU LED; The error LED lights and error freeze information is collected; and the operation
of the ET.NET module stops.

Display message

Error

User action

BUS

Bus error

The ET.NET module may have failed. Replace

ADDR Address error the module.

ILLG Invalid instruction

ZERO Division by zero

PRIV Privilege violation

FMAT Format error

SINT Spurious interrupt

EXCP Unused exception

PTY Parity error

MDSW Module switch setting Check the module switch setting.
error

ROM1 ROMI1 sum error The ET.NET module may have failed. Replace

RAMI1 RAMI compare error the module.

RAM?2 RAM?2 compare error

ROM3 ROM3 sum error

IPNG IP address not registered | Register an IP address.

MAC MAC address not The ET.NET module may have failed. Replace
registered the module.

PRG Microprogram error

R NG Route information setting | The set route information is erroneous. See

€rror

Subsection 7.3.4, “Route information setting error

table,” and correct the route information.

7-7

7 MAINTENANCE

If the ET.NET module detects a hardware error, the error LED lights and error freeze information is

registered, and the operation of the ET.NET module stops.

Main module Submodule 531 516 215 0
/840400 /8C0400 [Erorcode | —— No. | Code Error
/840404 /8C0404 — T T
/840410 /8C0410 DO register 2 | O0mH | Address error
/840414 /8C0414 D1 register 3 | Ool2H | Invalid instruction
/840418 /8C0418 D2 register 4 | O0013H | Division by zero
/84041C /8CO41C D3 register 5 | Ool4H | Privilege violation
/840420 /8C0420 D4 register 6 00T6H Fo@at error
/840424 /8C0424 D5 register 7 | COITH | Spurious interrupt
/840428 /8C0428 D6 register 8 | ootsH Eénl—sllll(r,,pTogzdPiZ(fll)f)li)(l)l, o)
/84042C /8C042C D7 register ‘
/840430 /8C0430 AO register 9 | O0I9H | Parity eror____
/1840434 /8C0434 A1 register 10 001AH Power fallu‘re notlc?
/840438 /8C0438 A2 register 11 | O100H | Module switch setting error
/84043C /8C043C A3 register 12 | O102H | ROMI sum error
/840440 /8C0440 A4 register 13 | 0103H | RAMI compare error
/840444 /8C0444 A5 register 14 | 0105H | RAM?2 compare error
/840448 /8C0448 A6 register 15 | O010BH | ROMS sum error
/84044C [8CO44C AT register 16 | oOu2H | Microprogram error
/840450 /8C0450 17 0113H IP address not registered
Stack frames 18 0114H MAC address error
(4 words, 6 words, bus 19 0200H Route information setting
error) error
/BA04FC /BCO4FC

Note: The details of the stack frames are shown on the next page.

7-8

7 MAINTENANCE

pJom snjess [e10ads [o |1

pJom snjejs |eoads | o

pJom snjejs [erads o o

J9ys16a1 Junoo
Jajsuely [eulaju|

19381681 JUNOD
Jajsuely [eusdiu|

Jays1681 JUNOD
Jaysuely [eussiu|

}Iney 8y} pasned
— Buiaey uononuysul —
8y Jo Jayunod welboid

Jayunod welboid _|
uononJisul-jualing

Jayunoo welboud _|
uononJsulUaLIND

Jinej ay}
pasned BuiAeY }oSHO J0JOBA

90U81IN000 uondooxs
a10joq Jo)sibal snjelg

4naa

4nada

Jney ay) pasneo
Buiney ssaippy

ey} 8y} pesneo
Buiney ssaippy

1Iney} 8y} pasneo
Buiney ssaippy

1Nk} 8y} pasneo

— Buiaey uononsjsul

ay} Jo Jaunod welboid

18SY0 J0J08A | D/

18S40 I0J08A |/

18s10 J0JoeA |/

18SY0 I0J08A | 2/

18s10 008N | 0/

Ja1unoo weuboud

uononJsul-IxeN

Jajunod

wesboud uinyey

Jo2]unod

wesboud uinyey

Ja1unoo wesboud
uonoNUISuI-IXaN

Jajunoo
welibold

Ja)sibal snielg

J9)s16a1 snieys

Jaysibal snielg

19181681 snieys

J9)s16a1 snieyg

99¥008/ 99¥0¥8/
¥9v008/ ¥9v0¥8/
9008/ 29r0v8/
09v008/ 09¥0¥8/
35008/ 3S¥0V8/
067008/ OG¥0v8/
VG¥008/ VSr0v8/
8G¥008/ 8G¥0¥8/
967008/ 9G¥0¥8/
¥S¥008/ ¥S¥0v8/
¢Sv008/ ¢Sv0ov8/

05¥008/ 0S¥0v¥8/

7-9

Below are shown the details of the stack frames in the error freeze information table of the ET.NET

module (LQE020) of revision “L” or later (having the label “L” or later on the top of the casing or

The following shows the details of the stack frames in the error freeze information table.
whose CPU indicator indicates “ETM 4.0” or “ETS 4.0” or later)

S —7F"™—F— ¢ ¢ —7 —<¢ ¢ —— ¢ ¢ — ¢ ¢ — ¢

0 Sl 0 Sl 0 Sb 0 13 0 Sh

8|npow snpow
Jn)s Jold snq }#nis Joss snq Hnjs ol m:nv
pJOM-9 pue pJom-i puesado WIAOW puelado pue yojejaid

ans ure\
09$ 1ewlo 09$ 1ewlo 0¢$ 1ewlo

(awe.y yoels piom-y)
0$ lew.o

(eweuy yoels piom-9)
Z$ ewlod

7 MAINTENANCE

Below are shown the details of the stack frames in the error freeze information table of the ET.NET

module (LQE020) of revision “L” or later.

J921uNnod

welboiyg

JaisiBal snie1g

Jo)sibal uononasu|

8p02 uonouN4 104

| = UONONJISUI-FUON O = UonoNnJIsu| :(uononJSuI-UON/uUoIoNASU|) N/

| =peay (= alm (Sjp/PeSY) MY

061008/ OG¥0¥8/

VSvr008/ VSi0v8/

867008/ 8G¥0¥8/

9G¥008/ 951018/

¥G¥008/ vSv0v8/

¢Sv008/ ¢Sv0v8/

ssalppe J9)unoo
SS90y weJsboid
o4 | N/ M Jaysibai snieyg

057008/ 0S¥0¥8/

¢ ¢¢ ¢ ¢ —
o ¢ ¢ ¥ S

Sl

Si0Jle ssalppe pue

SI0JI8 SNQ 10} BWRl} YOB)S

4

0

[4

[4

Gl
s|npow 8jnpow

SJIOLIS SSsaippe angs uep
pUB SJOLIS SNQ Uey} .

Jay}o 10} swely Yoeys

7-10

7 MAINTENANCE
|

7.3.3 Error codes from the socket handler

The table below lists the error codes returned from the socket handler and the user actions to be

taken against those errors.

Error code Error Cause User action
0xF000 Connection not | When the handler was started, a Issue tcp_open or tcp_popen to
established connection was not yet established |establish a connection. Then re-
or a port was already released. call the handler function.
0xF002 FIN received An FIN was received when the Issue tcp close to terminate the
handler was started. connection. Then, issue tcp _open

or tcp_popen to re-establish a
connection.

0xF010 Invalid socket |+ The socket ID was out of range. |Check the user program, for

ID (For TCP, 1 £ ID £ 15; for UDP, |example, to see whether a value
0x20<ID<0x27) returned by tcp_open or tcp_popen

¢ The ID of an unused socket or is specified as the socket ID.
already-released socket was
specified.

* A connection was not yet
established.(Applicable to
tcp_accept only)

0xFO11 Too many An attempt was made to register |Close unused sockets using
sockets more sockets than the limit. tcp _close or udp close. Then,
(For TCP, 12; for UDP, 8) issue tcp_open or tcp_popen to re-
establish a connection.
0xF012 Socket driver | The socket driver did not respond |Issue tcp_close to terminate the
time-out within the specified time. connection. Then, issue tcp_open

or tcp_popen to re-establish a
connection. If communication
still is not resumed, check the
connectors, cables, and the remote
station for any abnormality.

When this error occurs due to tcp_
close, issue tcp_abort, disconnect
the line, and issue tcp_open or tcp_

popen to re-establish a connection.

7-11

7 MAINTENANCE

Error code Error Cause User action

0xF013 Module stopped | When the handler was started, Issue tcp_close within the range
initialization of the socket driver |allowed for the application.
was not terminated within 100 Then, issue tcp_open or tcp_popen
seconds. to re-establish a connection.

0xF020 Invalid send The send data length was out of Check the user program to see

data length

range. (For TCP, 1 < data length
<4096; for UDP, 1 < data length <
1472)

whether the send data length is
specified correctly.

0xF021 Invalid receive |The receive data length was out of |Check the user program to see
data length range. (1 <datalength <4096) |whether the receive data length is
specified correctly.
0xFOFF Port released » After the handler was started, a |+ Issue tcp_open or tcp_popen to
port was released (RST was re-establish a connection.
received). (tcp_open) * [ssue tcp_close to terminate the
* When an attempt was made to connection. Then, issue
start the handler, the port was tcp_open or tcp_popen to re-
already released. (tcp send or establish a connection.
tcp_receive)
OxFFFO Invalid address |+ Both udp open and udp_send set |* Check the user program.
the IP address and port number |+ Retry udp send when the current
of the remote station to 0. amount of traffic is reduced.
* udp_send caused an Ethernet-
level error such as a collision.
0xFFF3 Invalid An invalid argument was specified. | Check the user program.
argument
OxFFF5 Connection The remote station did not Issue tcp close to terminate the
time-out respond. connection. Then, issue tcp _open
or tcp_popen to re-establish a
connection. If communication
still is not resumed, check the
connectors, cables, and the remote
station for any abnormality.
0xFFF6 Already closed |A command was issued for a Issue tcp_open or tcp_popen to re-

socket ID for which a connection
had been terminated (closed or
aborted).

establish a connection.

7-12

7 MAINTENANCE

Error code Error Cause User action
OxFFF8 FIN received An FIN was received from the Issue tep_close to close the socket.
remote station.
OxFFFA Forcibly A connection was forcibly Issue tcp close to terminate the
terminated terminated by the remote station |connection. Then, issue tcp _open
connection (RST was received). (tcp_receive |or tcp_popen to re-establish a
was issued after RST was connection.
received.)
OxFFFC Invalid network |An attempt was made to perform |Issue tcp_close to close the socket.

handle

transmission or reception using the
number of a handle not yet opened
by TCP or UDP. This error is
likely to occur when an RST is
(An RST was received
during waiting for reception by

received.

tcp_receive.)

Then, issue tcp_open or tcp_popen
to re-establish a connection.

OxFFFD

Duplicate
socket number

The same socket already existed.
(The IP address of the remote
station, the port number of the
remote station, and the port
number of the local station were
duplicated.)

Check the user program.

OxFFFE

Invalid control
block

An attempt was made to use more
sockets than the limit.

Close unused sockets using
Then,
issue tcp_open or tcp_popen to re-

tcp_close or udp_close.

establish a connection.

7-13

7 MAINTENANCE

7.3.4 Route information setting error table

When a route information setting error is detected, its error code is set in the following table:

7-14

Main module Submodule 2™ 2’
/873880 /8F3880 Default +0 Error code
1873884 18F3884 User (1) +2 Duplicate user No.
/873888 /8F3888 User (2)
/87388C /8F388C User (3)
1873890 /8F3890 User (4) Error code : See the table below.
1873894 /8F3894 User (5)
1873898 /8F3898 User (6) Duplicate user No.: A stored user number is
/187389C /8F389C User (7) duplicated.
/8738A0 /8F38A0 User (8) (Default = 0,
/18738A4 /8F38A4 User (9) Other users = 1 to 14)
/8738A8 /8F38A8 User (10)
/8738AC /8F38AC User (11)
/8738B0 /8F38B0 User (12)
/8738B4 /8F38B4 User (13)
/8738B8 /8F38B8 User (14)

7 MAINTENANCE
|

Duplicate user

No.| Code Contents No. stored or not
1 [0010H | The remote station IP address is duplicated with the local Not stored
station IP address.
2 | 0011H | The remote station IP address is duplicated with another Stored
gateway IP address.
3 | 0012H | The remote station IP address is duplicated with another Stored
remote station IP address.
4 | 0013H | The same network address as the local station’s is set as the Not stored

network address of a remote station IP address.
5 | 0014H | The network address of a remote IP address is duplicated with | Stored
the network address of a remote station IP address.

6 | 0016H | The remote station IP address is 255.255.255.255. Not stored
7 | 0020H | The gateway IP address is duplicated with the local station I[P | Not stored
address.
8 | 0022H | The gateway IP address is duplicated with another local station | Stored
IP address.
9 | 0023H | The same network address as the local station’s is set as the Not stored

network address of a gateway IP address.
10 | 0024H | The network address of a gateway IP address is duplicated with | Stored
the network address of another local station IP address.
11 | 0026H | The gateway IP address is 255.255.255.255. Not stored
12 | 0030H | The subnetwork identified by a gateway IP address does not Not stored
match the subnetwork of the local station. (*)
(*) The user should be careful when, after setting necessary route information, he/she is connecting
the ET.NET module with the tool by cable. Setting the ET.NET module’s MODU No. switch in
4- or 5-position at that time may result in the display of the “ET*R_NG” error message on the
CPU’s LED indicator, except when the local station’s IP address uses the network address
“192.192.192.0”. Recovery from this type of error can be made by simply setting the MODU
No. switch back in its previous position. Even if this type of error is reported by error message,
normal data communication is possible with the tool (personal computer) as long as the ET.NET
module is connected directly with that tool by cable.

7-15

8 APPENDIX

8 APPENDIX

(8.1 Network Components

8.1.1 Problem of connection between LQE020 and Ethernet*

LQEO020 is a standard product conforming to the international standard IEEE802.3.

However, when combining different manufacturers’ transceivers, repeaters, and so forth conformin
9 9 b

to the same standard, the system may not operate normally due to incompatibility.

For LQEO020, therefore, use the transceivers, repeaters, coaxial cables, connectors, and terminators

that are recommended by Hitachi.

In Ethernet, there are two types of specifications: IEEE802.3-conforming specifications and original

Ethernet specifications.
connected to LQE020.

Note that devices of the original Ethernet specifications cannot be

* Ethernet is a registered trademark of Xerox Corp.

8.1.2 Component list

No. | Product name Manufacturer Model Remarks
@ |ETNET Hitachi, Ltd. LQE020 IEEE802.3-conforming LAN
controller mounted in S10mini
@ | Transceiver Hitachi Cable, Ltd. | HLT-200TB Tap-type transceiver
HBN200TZ
HBN200TD
@ | Transceiver Hitachi Cable, Ltd. | HLT-200 Connector-type transceiver
@ | Repeater Hitachi Cable, Ltd. | HLR-200H Repeater for extending transmission
distance of coaxial cable
® | Multi-port Hitachi, Ltd. H-7612-64 4-port/8-port transceiver
transceiver H-7612-68 AC power supply built in
® | Coaxial cable | Hitachi Cable, Ltd. | HBN-CX-100 | Indoor coaxial cable
Cable length specified (up to 500 m)
@ | Coaxial Hitachi Cable, Ltd. | HBN-N-PC Connector for coaxial cable
connector
Relay Hitachi Cable, Ltd. | HBN-N-AJJ Relay connector for coaxial cable
connector
© | Terminator Hitachi Cable, Ltd. | HBN-T-NJ J type
Terminator Hitachi Cable, Ltd. | HBN-T-NP P type
@ | Ground Hitachi Cable, Ltd. | HBN-G-TM Ground terminal for coaxial cable
terminal

8-2

8 APPENDIX

No. | Product name Manufacturer Model Remarks
@ | Transceiver Hitachi Cable, Ltd. | HBN-TC-100 | With male and female D-sub 15 pin
cable connectors
Up to S0 m
@ | Twisted pair Hitachi Cable, Ltd. | HUTP-CATS | Twisted pair cable
cable 4P
Multi-port Hitachi Cable, Ltd. | HBM-400TZ | 4-port transceiver
transceiver

8-3

8 APPENDIX

[\1 \1 I | j | | | \lll/
Trans- T —
ceiver Trans- Trans-
ceiver ceiver
ET. ET.
- N - N
Repeater
/EI \ \ drans
celver
Trans- Trans- Trans-
ceiver ceiver ceiver
\ 1 1 To AC power supply D |:|
Multi-port Multi-port Hub
transceiver transceiver D

N/

NE ET. ET.

R 7

8-4

8 APPENDIX

(8.2 Cabling of Coaxial Cable)

The coaxial cable shall be laid in an indoor cabling duct and must be separated from 100 V or higher
wiring.

Before laying the cable, never fail to check that there is no short circuit nor break.

8.2.1 Laying cable segment

(1) The methods of laying the cable depending on the cabling location. The major methods are
listed below.

* Rolling cabling in ceiling

* Cabling in cable rack

* Open cabling on wall surface

* Free-access cabling in floor pit

* Cabling in conduit

(2) The notes on cabling work are described below.

* In principle, lay this cable indoors.

 The weight of the cable is about 1.9 kg per 10 m.

* Do not add the tension of 245N or more to the cable body during cable laying.

* The bend radius of the cable should be 250 mm (150 mm when unavoidable) or more both
when the cable is being laid and when it is finally fixed.

* Use a saddle when fixing the cable to a wall surface or ceiling. Except for special cases, the
standard fixing interval is 1 m. When fixing the cable, take care not to deform the cable by
tightening the saddle.

* When fixing the cable to a cable rack, the standard fixing interval is 2 m.

* For cabling in conduit, use a conduit whose inside diameter is 22 mm or more except for
special cases (e.g., when it is used in the penetrated part of a fire wall).

* The bend radius of the conduit used shall be 300 mm or more.

* When the cable is laid on a floor or floor edge, it is apt to be deformed or damaged by
walking or heavy objects. Protect the cable by tying or the like.

* For safety, ground the external conductor of the cable. Ground it at one point on a segment.
Class D grounding or higher shall be applied. Insulate the connectors and terminators by
covering them with the attached boots or by winding insulating tapes onto them, so that the
exposed metallic parts of the cable except those at the grounding point do not touch the earth

or other metallic parts.

8-5

8 APPENDIX

(8.3 Installation of Transceiver (Connector Type))

(1

)

3)

4

For the transceiver, the installation location and method differ depending on the conditions of
the site. The major installation locations may be as follows:

* On a wall

* Beside a station

Figures 8-1 to 8-6 show installation examples.

Notes on transceiver installation are given below.

* Fix the transceiver by wood screws or the like via metal fittings.

* The installation interval of the transceiver shall be 2.5 mm or more.

Installing the transceiver

Use the HBN-N-PC connector as the connector for the coaxial cable. Fix the transceiver at the
four tapped holes so that excessive force is not added to the cable. The external conductor of
the coaxial cable floats from the ground potential. Therefore, insulate the coaxial connector
by rubber boots or vinyl tape so that it does not touch other metal products. (The case of the
transceiver body is kept at the ground potential by connection of the transceiver cable.
However, insulate the case at installation time to prevent multi-point grounding.)

For the method of attaching the connector to the coaxial cable, see Section 8.6, “Attaching
Coaxial Connector.”

When selecting installation location, strictly observe the following rules:

* The looseness of the connectors and terminators can be checked.

* The looseness of the transceiver cable connectors can be checked.

* The attached LED can be checked.

8-6

8 APPENDIX

Installation examples of transceivers and transceiver cables

f

————N gp

<
N
Z

Cabling duct
(made of metal or
polyvinyl chloride)

Coaxial cable
Saddle

i
b
\Transceiver cable
1]
1]
g

P

Wood board

Figure 8-1 Installation on Wall (1)

8-7

8 APPENDIX

/ Wood board

Figure 8-2 Installation on Wall (2)

Wood
board

Figure 8-3 Installation on Wall (3)

\m_;ﬁn

Figure 8-4 Installation on Wall (4)

8-8

8 APPENDIX

Transceiver
ontainer box

(300x400x140mm)

Figure 8-5 Installation in Box (1)

Transceiver
container box

(400x300x140mm)

Figure 8-6 Installation in Box (2)

8-9

8 APPENDIX

<8.4 Installation of Transceiver (TapType))

The installation location and method for the transceiver and the notes on installation are the same as
those for the connector-type transceiver described in Section 8.4.
For the method of attaching the tap connector to the coaxial cable, see Section 8.7, “Attaching Tap

Connector.”

(8.5 Attaching Coaxial Connector)

(1) Connector attachment procedure
The procedure for attaching the coaxial connector is shown below.
D Peeling off the PVC sheath

1
10+)

@ Removing the aluminum tape

/*’- Remove the aluminum tape
completely at this surface.

Remove the aluminum tape
completely as shown above.

@ Parts setting and shield treatment

%}j[\ e R

Braided shield Clamp Gasket (rubber) Nut PVC cap

(® Shield processing and soldering of pin contact

@‘—T

Thread solder

8-10

8 APPENDIX

©® Assembly

@]_—\l:

)

(*) There shall be no gap of 1 mm or more in the pin contact insulator and no bite in the

insulator.

(2) Check after attaching the connector

(a) Dimensions of connector opening
* The difference between the external conductor at the top end of the connector and the
inside contact shall be 0 to 1 mm. There shall be no abnormal bump nor dent on the
inside contact.

Oto1mm 2 mm to or less

Not loose

* When putting a thumb to the connector opening, the top end of the inside contact slightly
touches the surface of the digital pulp.

o

—

* There shall be no abnormal eccentricity of the central conductor found by visual

inspection.
(b) Checking looseness
After attaching the connector, grasp and twist the connector body and coaxial cable to
confirm that there is no looseness. After tightening, the gap between the tightening nut and

the body shall be about 2 mm or less.

8-11

8 APPENDIX

(¢c) Insulation resistance
(Remove the terminator.)
* When no transceiver is set
Between internal and external conductors: 1000 M QQ/km or more (500 VDC)
* When a transceiver is set
Measure the external conductor by an ordinary line tester with the internal battery set to the
positive pole. At this time, oo shall be displayed.

A\ cAuTiON

Never fail to discharge electricity after the test, otherwise you will get an electric
shock.

8-12

8 APPENDIX

(8.6 Attaching Tap Connector)

Connect the tap connector of the tap-type transceiver and the coaxial cable according to the

procedure below.

(1) To fix the coaxial cable (D), insert the cable into the groove of the tap connector body (3, and
attach the cover @ from the upper part.

(2) Tighten the hexagon bolt ® by a nutdriver according to the predetermined torque, and connect
it to the external conductor of the coaxial cable (D.

Clamping torque for hexagon bolt ©: 3 to 4 [N-m]

(3) Tighten the backup probe B and signal probe @ slowly, in this order, by using nutdrivers
simultaneously from both sides according to the predetermined torque, and connect them to the
central conductor of the coaxial cable (D.

Clamping torque for signal probe @) and backup probe &: 2 to 3 [N-m]
(4) Set the attached cap (D on the backup probe &.
Connection of the tap connector and coaxial cable is completed with the above steps.
As the top ends and thread ridges of the signal probe @ and backup probe & are easily
deformed, they should be handled carefully.

® M6 bolt 30 ¢

ﬁ/ @ Cap

® Backup probe

@ Signal probe 2 Tap cover

@ Coaxial cable

Q@ Tap body

Figure 8-7 Tap Connector Assembly Drawing

8-13

8 APPENDIX

A\ CAUTION

® \When attaching the tap connector to the coaxial cable, do it according to the
order described above.
If the coaxial cable is attached after the probes @ and ® are attached, the
probes will be destroyed. To prevent this, attach the coaxial cable when
probes @ and & are completely removed.

® After tightening the probes @ and ®), do not tighten the bolt ® further.
Otherwise, the probes may be destroyed because excessive force is added to
them.

Connect the tap connector and the transceiver according to the procedure below.

(1) Attach the tap connector to the side of the transceiver (9, and the probe and ground
terminal of the tap connector are inserted into the mounting holes of the transceiver @
and are connected.

(2) Tighten the hexagon bolt with a nutdriver according to the predetermined torque, and the
transceiver (9 and the tap connector are fixed completely.
Clamping torque for hexagon bolt (0: 3 to 4 [N-m]

Connection of the tap connector and transceiver is completed with the above steps.

M6 bolt 14 ¢ Tap connector

Figure 8-8 Connection of Connector and Transceiver

8-14

8 APPENDIX

<8.7 Attaching Transceiver Cable

)

The maximum length of the transceiver cable is 50 m.

Attaching transceiver cable

To connect the transceiver cable to the transceiver body, slide the locking retainer of the cable

and attach the cable so that is completely locked at the locking post of the transceiver body.

The transceiver body is male, and the transceiver cable is female.

Connector-type transceiver

/ Coaxial cable

—H m

>

i

Transceiver Male

Female

Transceiver
cable

Coaxial cable

Tap-type transceiver

/

/

Transceiver

Male

Female

Transceiver
cable

(8.8 Attaching Terminators

Attaching terminators

Connect the terminators to both ends of the coaxial segment without fail.

Connector supplied

Terminator with transceiver

(P type)

Coaxial cable

Transceiver
(connector type)

. Coaxial connector
Terminator

(J type)

Coaxial connector

Coaxial cable

(connector type)

Terminator
(P type)

Transceiver

Terminator
(J type)

Coaxial connector

Transceiver
(TAP type)

8-15

Transceiver
(TAP type)

8 APPENDIX

(8.9 Attaching Repeater)

(1) Connection method

Transceiver

| p—1

;P“__]

To anotlher Male
transceiver

Note: Before attaching or detaching the
Male Male transceiver cable, turn off the power
to the repeater without fail.

Female Female

Repeater

(2) Reserving installation location and space
® The repeater should be installed near a workstation (server). It is necessary that
maintenance work can be easily done at this place. (Roof space or underground space of an
office is inappropriate.) Reserve sufficient space around and over the repeater. The
minimum space to be reserved is shown in the figure below. As AC power supply is
required for the repeater, prepare a grounded outlet.

200 Rating: 100 VAC * 10% When normal 0.07 kVA
T On rush: 10A

Note: Reserve the space
where the front panel
can be opened.

0 0 coooomooo

Plug with 2 ground poles
100 = —=100 15A125V
(JIS C8303)

100 Unit: mm

® Do not use the repeater in a place where there is much dust.
® There is an air inlet at the base and an air outlet on the top. Do not cover these parts.
® (Considering maintenance, a telephone should be installed near the repeater installation place.

8-16

8 APPENDIX

® Use independent power supply to prevent the power from being cut off erroneously. If the

power to the repeater is cut off, the transmission function stops.

(8.10 Grounding the System)

® Grounding the repeater
Use three-pole power supply for the repeater, or ground the repeater by a ground terminal.

® Grounding each station
Execute Class D grounding or higher for all devices connected to the LAN control processor.
If there is an ungrounded device in the system, an electric shock may occur between this
device and a grounded device. A data error (CRC error) may also be caused.

® Grounding the coaxial cable
For each segment, perform single-point grounding for the coaxial cable.
The above grounding is for the purpose of safety. Further, it prevents the occurrence of
electric noise due to incomplete contact with the earth.

For grounding, use ground terminals.

<8.11 Attaching Ground Terminal)

(1) Insert the insertion teeth into the body.

&
i\ Insertion teeth

(2) Attach the terminal to the coaxial cable, and tighten the M4 screws alternately. At this time,

Body

attach the crimp terminal to one of the screws.

Attach the terminal at any one position on the coaxial segment where it can be attached easily.

Spring washer

Shield washer __ = f Crimp terminal (Class D grounding at 5.5)

-n N
~—~ Coaxial cable

. Terminal body

Spring washer

Shield washer
M4 screw

8-17

8 APPENDIX

(3) After tightening the screws, cut the protruding portions of the insertion teeth.

Cut the protruding portion
of the insertion teeth.

|
dl

\ B[]
)__.

(8.12 Setting Single-port Transceiver)

(1) Setting the SQE switch of single-port transceiver
For the SQE switch of a single-port transceiver, the setting change shown below is required

depending on the connected device.

onnected device | ET.NET controller Multi-port Repeater
SQE switch transceiver
Setting ON OFF OFF

For the single transceivers HLT-200 and HLT-200TB, the SQE switch is contained in the case.
When changing the setting, open the case to do the work. (The switch is set to ON by turning
it to the “SQE” side of silk printing on the board.)

orr 1) on

| L[] | SQE

8-18

8 APPENDIX

(8.13 Setting and Display of Multi-port Transceiver)

(1) Setting operation mode
The multi-port transceiver can be used in two operation modes: network and local. Operation
mode can be set by operating the switch on the rear panel.
® [ocal mode
In local mode, the transceiver is disconnected from the coaxial cable and is used
independently.
Do not connect the transceiver cable to the relay port.
Set the mode switch to ‘L’ (local mode).
At this moment, set the SQE switch of the support port to ‘ON’.

v |

H-7612-64 Multi-port transceiver
H-7612-68 (Mode “L”

= | SQE ‘ON’
™~

Branching port

Transceiver cable length =5 m

ET. ET.
NET NET

® Network mode
In network mode, the transceiver is connected to the coaxial cable.

Set the mode switch to ‘N’ (network mode).
At this moment, set the SQE switch of the single-port transceiver connected to the relay port

to ‘OFF’.

Coaxial cable

1 i

Trans-| Single-port transceiver (HLT-200
ceiver| (SQE “OFF”) HLT-200TB

Transceiver cable length <15 m
Relay port

Multi-port transceiver

Mode “L”
SQE “ON”

AN Branching port

Transceiver cable length =5 m

NET

8-19

8 APPENDIX
|

(2) Switch setting
The multi-port transceiver is equipped with two switches; the functions of each switch are

mentioned in Table &-1.

Table 8-1 Switch Setting

Switch type Switch position Function Setting at shipment time
SQE switch Rear panel Setting SQE function to “ON”
ON/OFF
Operation mode switch | Rear panel Switching operation mode | ‘N’ (network mode)

(3) Setting SQE switch on repeater connection
When connecting a repeater to a multi-port transceiver, set the SQE switch of the corresponding
branching port of the multi-port transceiver to ‘OFF’.
(4) Power switch
Set the switch on the rear panel to ‘I’, and the power of the multi-port transceiver is turned
‘ON’.
(5) LED display
The “POWER” LED and the “LINK” LEDs for each branching port are placed on the front
panel of the cabinet.
“POWER” LED: Lights when the power switch is ‘ON’.
“LINK” LED: Lights when the information station is connected to the branching port of the
multi-port transceiver (when 12 VDC is supplied from the information station).

8-20

8 APPENDIX

(8.14 CPU Memory Map)

Address ysg LSB Address ysg LsB
/000000 e
0S-ROM ' /060000 System table
/010000 P
| SQET
| /061000
: Data register’]
System ! DWOOO to DWFFF
1
hardware I (4 k words)
area :
/063000
1
[o T000
: 3 to TIFF
1063400 S
: o U000
J060000———————————F -~~~ £ 0 LOTE
/063600 g
Sequence €000
RAM to CO7F
/063800
J080000F————————————F----- :
Free | Ladder
/0A0000 ! program
: area
PI/O !
Bit type .
| jorrrre| (28 k steps)
co00————————————————— b--ce---
Free
JOE0000
PI/O I
Word type ' /OF0000 © T000
JOFOoOO——————————----- ' (_:U 0 TFF
os | | 10F0400| g U000
I © to UO7F
! [$]
RAM ! g
| /oFoso0| 2 000
JOFFFFE b to CO7F
Extended memory
(1 MB)
/100000
Extended memory
for processing by
computer
/NFFFFE
Extended memory
(1 MB)
/200000
Extended memory
for processing by
computer
[2FFFFE

8-21

8 APPENDIX

(8.15 Memory Map of ET.NET Module

Main module
/840000

/840400

/840C00

/843000

/844000

/854000

/864080

/864880

/867880

/873880

Submodule
/8C0000

/8C0400

/8C0C00

/8C3000

/8C4000

/8D4000

/8E4080

/8E4880

/8E7880

/8F3880

Module information table

Error freeze table

Work table

TCP information table

TCP send buffer

TCP receive buffer

RAM (shared memory)

UDP information table

UDP send buffer

UDP receive buffer

8-22

8 APPENDIX

(8.16 Trouble Investigation Sheet

)

B Trouble Investigation Sheet

Your company name

Person in charge

Date and time of occurence

Contact address | Address
and numbers Phone
Fax
Model of defective module CPU model
OS Ver. Rev. Program name: Ver. Rev.
Support program | Program name: Ver. Rev.
Symptom of
defect

Connection load

Type

Model

Cabling status

System configuration and switch setting

Space for

correspondence

8-23

SUPPLEMENTARY

SUPPLEMENTARY

(Supplementary: Replacing or adding on the module)

® What you should get in preparation
(D Personal computer (with Hitachi’s S10 ET.NET System installed in it)
@ RS-232C cable
@ New or add-on ET.NET module (LQE020)
@ Copies of the parameter values for the module to be replaced. (These copies are prepared
for use in cases where the parameters are not accessible for some reason.)
® Replacement procedure
(D Write down, on a piece of paper, the current settings of the rotary switches that are, as shown
below, accessible at the front side of the ET.NET module to be replaced.
@ Write down also the current settings of three switches, labeled LADDER (toggle switch),
MODE (toggle switch), and PROTECT (toggle switch), respectively, that are, as shown
below, accessible at the front side of the CPU module.

—— Rotary switches

CPU 3B y
Power [© CPU module’s toggle
suppl T~ switches settings
PPY ET.
NET LADDER
RUN leﬁ) STOP
¥T—— RS-232C cable NORM @) SIMU
ON @ DO OFF
RESET
O

(@ Connect the personal computer and the CPU module together with the RS-232C cable.

@ Start Hitachi’s S10 ET.NET System and make a hand-written record of the currently used IP
address. (If the existing parameters are not accessible for some reason, use the copies of
their set values [item (4] that were obtained in preparation.)

® Set the CPU module’s LADDER switch in STOP position and turn off the power supply of
the controller unit.

® Remove the connecting cables from the ET.NET module to be replaced.

(@ Replace the existing ET.NET module with the new one and set the new ET.NET module’s
rotary switches in the same way as you wrote down in Step (.

Turn on the power supply of the controller unit. Then, set the same IP address as you
recorded in Step @, by using the S10 ET.NET System.

Z-2

SUPPLEMENTARY

(@ Check that the set IP address is identical to the one that was recorded in Step (@.

Turn off the power supply of the controller unit.

@ Remove the RS-232C cable from both the personal computer and CPU module, which were
connected together in Step 3.

@ Connect to the new ET.NET module the connecting cables that you removed in Step (©.

@ Set the CPU module’s LADDER, MODE, and PROTECT switches in the same way as you
wrote down in Step @).

Turn on the power supply of the controller unit and check that the new ET.NET module is
running normally.

® Add-on procedure

(D Write down, on a piece of paper, the current settings of three switches, labeled LADDER
(toggle switch) , MODE (toggle switch), and PROTECT (toggle switch), respectively, that
are accessible at the front side of the CPU module, the one that is installed in the controller
unit in which you are adding on a ET.NET module.

© Ensure that your application system has been shut down. Then, set the CPU module’s
LADDER switch in STOP position and turn off the power supply of the controller unit.

(@ Mount the add-on ET.NET module in place according to the instructions given under “1.2
Mounting Optional Modules.”

@ Set the add-on ET.NET module’s rotary switches in such a way that a new module No.
setting, which must be a sub-module No. setting, will not duplicate with the current rotary
switch settings of the existing main ET.NET module.

® Connect the personal computer and the CPU module together with the RS-232C cable.
Then, turn on the power supply of the controller unit and set parameters for the add-on
ET.NET module by using the S10 ET.NET System.

® Turn off the power supply of the controller unit and connect the connecting cables to the add-
on ET.NET module.

(@ Set the CPU module’s LADDER, MODE, and PROTECT switches in the same way as you
wrote down in Step (D.

Remove the RS-232C cable from both the personal computer and CPU module, which were
connected together in Step ®.

@ Turn on the power supply of the controller unit and check that the add-on ET.NET module is

running normally.

Z-3

	Cover
	Copyright
	SAFETY PRECAUTIONS
	WARRANTY AND SERVICING
	Revision record
	PREFACE
	CONTENTS
	FIGURES
	TABLE
	1 BEFORE USE
	1.1 CPU Mount Base
	1.2 Mounting Optional Modules
	1.3 Ground Wiring

	2 SPECIFICATIONS
	2.1 Usage
	2.2 Specifications
	2.2.1 System specifications
	2.2.2 Line specifications

	3 NAMES AND FUNCTIONSOF EACH PART ANDCABLING
	3.1 Names and Functions of Each Part
	3.2 Cabling

	4 USER GUIDE
	4.1 System Configuration of 10BASE-5
	4.2 10BASE-T System Configuration
	4.3 Example of System Configuration with S10mini
	4.4 System Definition Information
	4.4.1 Physical address
	4.4.2 IP address
	4.4.3 Subnetwork mask
	4.4.4 Route information

	4.5 Software Configuration of ET.NET
	4.6 ET.NET System Programs
	4.6.1 Socket handler
	4.6.2 Socket driver
	4.6.3 TCP program
	4.6.4 UDP program
	4.6.5 IP program
	4.6.6 Driver

	4.7 User-created Program
	4.7.1 User program

	4.8 Socket Handler
	4.8.1 Socket handler function list

	4.9 Examples of Socket Handler Issuance Procedure
	4.9.1 Example of using TCP/IP program
	4.9.2 Example of using UDP/IP program

	5 PROGRAM EXAMPLES
	5.1 Example of Programs for Communication between CPUs by SocketHandler
	5.1.1 System configuration
	5.1.2 Program structure
	5.1.3 Flowchart of program at CPU01
	5.1.4 Example of C language program at CPU01
	5.1.5 Flowchart of program at CPU02
	5.1.6 Example of C language program at CPU02#

	5.2 Example of Programs for Continuous Communication between CPUsby Socket Handler
	5.2.1 System configuration
	5.2.2 Program structure
	5.2.3 Flowchart of program at CPU01
	5.2.4 Example of C language program at CPU01
	5.2.5 Flowchart of program at CPU02
	5.2.6 Example of C language program at CPU02

	6 OPERATION
	6.1 Start-up Procedure

	7 MAINTENANCE
	7.1 Maintenance Inspection
	7.2 Troubleshooting
	7.2.1 Procedure
	7.2.2 Before suspecting a failure

	7.3 Errors and Actions To Be Taken
	7.3.1 CPU LED display messages
	7.3.2 Hardware errors
	7.3.3 Error codes from the socket handler
	7.3.4 Route information setting error table

	8 APPENDIX
	8.1 Network Components
	8.1.1 Problem of connection between LQE020 and Ethernet
	8.1.2 Component list

	8.2 Cabling of Coaxial Cable
	8.2.1 Laying cable segment

	8.3 Installation of Transceiver (Connector Type)
	8.4 Installation of Transceiver (TapType)
	8.5 Attaching Coaxial Connector
	8.6 Attaching Tap Connector
	8.7 Attaching Transceiver Cable
	8.8 Attaching Terminators
	8.9 Attaching Repeater
	8.10 Grounding the System
	8.11 Attaching Ground Terminal
	8.12 Setting Single-port Transceiver
	8.13 Setting and Display of Multi-port Transceiver
	8.14 CPU Memory Map
	8.15 Memory Map of ET.NET Module
	8.16 Trouble Investigation Sheet

	SUPPLEMENTARY
	Supplementary: Replacing or adding on the module

