

First Edition, July 2005, SVE-3-126(A) (out of print)
Second Edition, November 2012, SVE-3-126(B)

All Rights Reserved, Copyright © 2005, 2012, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Printed in Japan.

BI<IC> (FL-MW2007)

S-1

 WARNING

NOTICE

SAFETY PRECAUTIONS

 Read this manual thoroughly and follow all the safety precautions and instructions given in this
manual before operations such as system configuration and program creation.
 Keep this manual handy so that you can refer to it any time you want.
 If you have any question concerning any part of this manual, contact your nearest Hitachi branch
office or service engineer.
 Hitachi will not be responsible for any accident or failure resulting from your operation in any
manner not described in this manual.
 Hitachi will not be responsible for any accident or failure resulting from modification of software
provided by Hitachi.
 Hitachi will not be responsible for reliability of software not provided by Hitachi.
 Make it a rule to back up every file. Any trouble on the file unit, power failure during file access
or incorrect operation may destroy some of the files you have stored. To prevent data destruction
and loss, make file backup a routine task.
 Furnish protective circuits externally and make a system design in a way that ensures safety in
system operations and provides adequate safeguards to prevent personal injury and death and
serious property damage even if the product should become faulty or malfunction or if an
employed program is defective.
 If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it must be
positioned external to the programmable controller. If you do not observe this precaution,
equipment damage or accident may occur when this programmable controller becomes defective.
 Before changing the program, generating a forced output, or performing the RUN, STOP, or like
procedure during an operation, thoroughly verify the safety because the use of an incorrect
procedure may cause equipment damage or other accident.
 This manual contains information on potential hazards that is intended as a guide for safe use of
this product. The potential hazards listed in the manual are divided into four hazard levels of
danger, warning, caution, and notice, according to the level of their severity. The following are
definitions of the safety labels containing the corresponding signal words DANGER,
WARNING, CAUTION, and NOTICE.

: This safety label identifies precautions that, if not heeded, will result in

death or serious injury.

: Identifies precautions that, if not heeded, could result in death or serious

injury.

: Identifies precautions that, if not heeded, could result in minor or moderate

injury.

: This safety label without a safety alert symbol identifies precautions that,

if not heeded, could result in property damage or loss not related to
personal injury.

Failure to observe any of the CAUTION and NOTICE statements used in this manual
could also lead to a serious consequence, depending on the situation in which this product is used.
Therefore, be sure to observe all of those statements without fail.

 DANGER

 CAUTION

S-2

The following are definitions of the phrases “serious injury,” “minor or moderate injury,” and
“property damage or loss not related to personal injury” used in the above definitions of the safety
labels.

Serious injury: Is an injury that requires hospitalization for medical treatment, has aftereffects,
and/or requires long-term follow-up care. Examples of serious injuries are as follows: vision loss,
burn (caused by dry heat or extreme cold), electric-shock injury, broken bone, poisoning, etc.

Minor or moderate injury: Is an injury that does not require either hospitalization for medical
treatment or long-term follow-up care. Examples of minor or moderate injuries are as follows: burn,
electric-shock injury, etc.

Property damage or loss not related to personal injury: Is a damage to or loss of personal
property. Examples of property damages or losses not related to personal injury are as follows:
damage to this product or other equipment or their breakdown, loss of useful data, etc.

The safety precautions stated in this manual are based on the general rules of safety applicable to
this product. These safety precautions are a necessary complement to the various safety measures
included in this product. Although they have been planned carefully, the safety precautions posted
on this product and in the manual do not cover every possible hazard. Common sense and caution
must be used when operating this product. For safe operation and maintenance of this product,
establish your own safety rules and regulations according to your unique needs. A variety of
industry standards are available to establish such safety rules and regulations.

S-3

1. Hazard Warning Statements
The following are the hazard warning statements contained in this manual.

1.1 NOTICE Statement

(chapter 1, page 1-4)

NOTICE

 This product allows rewriting programs and internal-register values while the
PCs is running. However, you should notice that careless rewriting may lead
to a serious accident, such as breakdown of the equipment. If any of such
items needs to be rewritten, be sure to check the condition of the equipment
first. You may rewrite it only when you are sure that the equipment has no
problem.

 When loading task data into a CMU module, CPMS Debugger writes the data
to internal flash memory of the CMU. Note that writing different items of data
concurrently to the same address of internal flash memory of the CMU may
damage the data. Therefore, do not send data to the CMU module
concurrently from CPMS Debugger and another writing tool (e.g., HI-FLOW
system, RPDP, NX/Tools-S10V system).

(chapter 2, page 2-2)

NOTICE

Before installing the CPMS debugger, be sure to exit all the currently open
Windows® programs. Do not forget to exit anti-virus software and other
memory-resident programs. If you install the CPMS debugger without exiting
such programs, an error may occur during installation. If such an error occurs,
first uninstall the CPMS debugger as directed in “2.2 Uninstalling,” exit all the
Windows® programs, and then install the CPMS debugger again.

(chapter 2, page 2-4)

NOTICE

 If Windows® opens a window during the uninstall process to display the
question “Remove Shared File?”, click the No button to retain shared files.

 When you want to reinstall the CPMS Debugger System, be sure to perform
an uninstall and then perform an install.

This Page Intentionally Left Blank

This manual provides information on the following program products:

<Program products>

S-7895-07, S10V CPMS DEBUGGER SYSTEM, 01-03
S-7895-62, S10V CPMS DEBUGGER SYSTEM, 01-00

Revision record

Revision No.
Revision record

(revision details and reason for revision)
Month, Year Remarks

A First edition July 2005
B Windows® 7 (32-bit) operating system is newly

supported.
November 2012

In addition to the above changes, all the unclear descriptions and typographical errors found are also
corrected without prior notice.

i

PREFACE

Thank you for purchasing Hitachi’s S10V CPMS Debugger System.

This document describes how to operate the S10V CPMS Debugger System. It covers the
following versions of the ladder chart system:

P.P. model System name and version Supported OS
S-7895-07 S10V CPMS Debugger System for Windows®, 01-01 Windows® 2000/XP
S-7895-62 S10V CPMS Debugger System for Windows®, 01-00 Windows® 7 (32-bit)

<Related manuals>

• S10V SOFTWARE MANUAL CPMS GENERAL DESCRIPTION AND MACRO
SPECIFICATIONS (Manual number SVE-3-201)

• S10V SOFTWARE MANUAL OPERATION RPDP/S10V For Windows®
(Manual number SVE-3-133)

<Trademarks>

• Microsoft® Windows® operating system, Microsoft® Windows® 2000 operating system,
Microsoft® Windows® XP operating system, Microsoft® Windows® 7 (32-bit) operating
system are registered trademarks of Microsoft Corporation in the United States and/or other
countries.

• Ethernet® is a registered trademarks of Xerox Corp.

<Definitions of Terms>

PCs: An abbreviation of Programmable Controllers.
This is a general term for PLC such as the S10V, S10α and S10mini series.

<Note for storage capacity calculations>

 Memory capacities and requirements, file sizes and storage requirements, etc. must be
calculated according to the formula 2n. The following examples show the results of such
calculations by 2n (to the right of the equals signs).
1 KB (kilobyte) = 1024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes

 As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1000 bytes
1 MB (megabyte) = 10002 bytes
1 GB (gigabyte) = 10003 bytes

The CPMS Debugger system runs on a personal computer. This system registers,
initiates, and deletes the tasks that operate on programmable controllers (PCs),
monitors the bit status at each memory address, and displays the status of PCs.

ii

CONTENTS

1 BEFORE USE .. 1-1
1.1 System Overview ... 1-2
1.2 Required Hardware and Software .. 1-2
1.3 Precautions on Combined Use of CPMS Debugger and RPDP/S10V 1-3
1.4 Precautions on Using NX/HOST-S10V ... 1-3

2 SYSTEM INSTALLATION .. 2-1
2.1 Installing ... 2-2
2.2 Uninstalling .. 2-4
2.3 Starting the System... 2-5
2.4 Ending the System .. 2-7

3 COMMANDS .. 3-1
3.1 System of Commands .. 3-2
3.2 Task Loading and Register ... 3-3
3.3 Delete Task ... 3-6
3.4 Display of Task Status.. 3-7
3.5 Task Release ... 3-12
3.6 Task Queue ... 3-13
3.7 Task Abort .. 3-14
3.8 Task Timer Request ... 3-15
3.9 Task Suspend ... 3-19
3.10 Task Resume .. 3-20
3.11 Breakpoint .. 3-21
3.12 Error Log .. 3-29
3.13 Display Status of PCs ... 3-33
3.14 Set Time ... 3-35
3.15 Setup of ADT Status .. 3-36
3.16 ADT Monitor ... 3-39
3.17 Setup of DHP Status .. 3-40
3.18 Initialize the Stack .. 3-42
3.19 Display of Used Stack Size .. 3-44
3.20 Matrix Monitor ... 3-47
3.21 MCS ... 3-49
3.22 Change Connection PCs ... 3-51
3.23 Initialize the Task ... 3-52

iii

APPENDIXES ... A-1
Appendix A Notes on Using Program Names ... A-2
Appendix B Sizes of Stack Areas Used for Library Functions .. A-4
Appendix C Task Creation Procedures .. A-6
Appendix D Error Messages .. A-26

iv

FIGURES

Figure 2-1 [CPMS DEBUGGER] Window ... 2-5
Figure 3-1 [Loading and register of task] Window .. 3-3
Figure 3-2 [Open] Window .. 3-4
Figure 3-3 Error Message Box ... 3-5
Figure 3-4 [Delete task] Window ... 3-6
Figure 3-5 [Display of task status] Window .. 3-7
Figure 3-6 [Display of task status] (detail) Window .. 3-9
Figure 3-7 [Task Release] Window ... 3-12
Figure 3-8 [Task Queue] Window ... 3-13
Figure 3-9 [Task Abort] Window .. 3-14
Figure 3-10 [Task show timer] Window .. 3-15
Figure 3-11 [Task timer request] Window (1: Length-of-time basis) 3-17
Figure 3-12 [Task timer request] Window (2: Time-of-day basis) .. 3-17
Figure 3-13 [Task Suspend] Window .. 3-19
Figure 3-14 [Task Resume] Window ... 3-20
Figure 3-15 [Breakpoint] Window ... 3-21
Figure 3-16 [Breakpoint address] Window .. 3-22
Figure 3-17 [Floating decimal point register] Window ... 3-27
Figure 3-18 [Floating decimal point register] Window (FLOAT) ... 3-27
Figure 3-19 [Error log information] Window .. 3-29
Figure 3-20 [Error Log Detail] Window .. 3-31
Figure 3-21 [Save As] Window ... 3-32
Figure 3-22 [Display status of PCs] Window .. 3-33
Figure 3-23 [Time of day] Window ... 3-35
Figure 3-24 [Setup of ADT status] Window .. 3-36
Figure 3-25 [Display Status of ADT] Window .. 3-37
Figure 3-26 ADT-settable Ranges ... 3-38
Figure 3-27 [Generating of ADT is supervised] Window ... 3-39
Figure 3-28 ADT Generation Message .. 3-39
Figure 3-29 [Setup the logging mode of DHP] Window ... 3-40
Figure 3-30 [Display DHP trace] Window .. 3-41
Figure 3-31 [Initialize the stack] Window ... 3-42
Figure 3-32 Range of Stack Initialization .. 3-43
Figure 3-33 [Display of used stack size] Window ... 3-44
Figure 3-34 [Display of used stack size] (size display) Window ... 3-45
Figure 3-35 Sizes Displayed in the [Display of used stack size] (size display) Window 3-46

v

Figure 3-36 [Matrix monitor] Window .. 3-47
Figure 3-37 [Set I/O] Window ... 3-48
Figure 3-38 [MCS] Window .. 3-49
Figure 3-39 [Communication type] Window ... 3-51
Figure 3-40 [Initialize the task] Window ... 3-52
Figure 3-41 Default Environment Defined by CPMS Debugger ... 3-54
Figure C-1 Task Configuration .. A-17
Figure C-2 Map Configuration .. A-21
Figure C-3 Calling Relationship between Functions and Sizes of Stack to be Used A-23

vi

TABLES

Table C-1 Environment Variables to be Set ... A-9
Table C-2 Options to Control Handling of Floating-point Numbers A-10
Table C-3 Correspondence between Methods of Handling Floating-point Numbers and

Standard Libraries ... A-10
Table C-4 Library Contents .. A-11
Table C-5 Files Provided by S10V CPMS Debugger .. A-12
Table C-6 Optlink Specification Format .. A-16
Table C-7 Example of Calculating Stack Size ... A-23

1 BEFORE USE

1 BEFORE USE

1-2

This manual is intended for those who perform programming on Windows® personal computers.

1.1 System Overview

The S10V CPMS Debugger System for Windows® (hereinafter called “CPMS Debugger”)
enables the user to register, initiate, and monitor tasks designed for the S10V programmable
controllers through operations equivalent to those for general Windows® applications.

1.2 Required Hardware and Software

The following hardware and software are required for the use of the CPMS debugger:

 Personal computer (main unit) containing a Pentium 300 MHz or faster CPU, or a 1 GHz or
faster CPU (when Windows® 7 (32-bit version) is used)

 Display having a resolution of 800 × 600 dots (SVGA) or higher
 Microsoft® Windows® 2000 operating system, Microsoft® Windows® XP operating system
or Microsoft® Windows® 7 (32-bit) operating system

 At least 64 MB of RAM (when Windows® 2000 is used)
 At least 128 MB of RAM (when Windows® XP is used)
 At least 1 GB of RAM (when Windows® 7 (32-bit) is used)
 At least 10 MB of free hard disk space
 S10V series ladder processor unit (LPU) and computer mode unit (CMU)
 S10V series power supply and backboard
 Cable for connecting the personal computer to the CMU or ET.NET module (LQE720)
(10BASE-T or 100BASE-T twisted pair cross cable with RJ-45 modular connectors)

 RI/O stations, power supplies, backboards, cards, and wiring cables, as required

1 BEFORE USE

1-3

1.3 Precautions on Combined Use of CPMS Debugger and RPDP/S10V

When CPMS Debugger is combined with RPDP/S10V, CPMS Debugger must be used only to
reference the status of tasks created using RPDP/S10V or abort said tasks. To create and modify
programs, RPDP/S10V must be used.
A task registered by CPMS Debugger does not conform to the development environment of
RPDP/S10V. Therefore, if RPDP/S10V executes the svrpl command, any task registered by the
CPMS debugger will be invalidated.
Carefully note that RPDP/S10V cannot manage the tasks newly registered by CPMS Debugger.

1.4 Precautions on Using NX/HOST-S10V

When the conventional NX/HOST-S10 (S10mini series) is used, a user task created and registered
in a programmable controller (PCs) by CPMS Debugger is not deleted when a NX/HOST-S10
system file is sent to the PCs, unless the areas used to store the system file and user task overlap.
Conversely, when the NX/HOST-S10V (S10V series) is used, a user task created and registered
in a PCs by CPMS Debugger is deleted when a NX/HOST-S10V system file is sent to the PCs,
even if the areas used to store the system file and user task do not overlap.

1 BEFORE USE

1-4

NOTICE

 This product allows rewriting programs and internal-register values while the
PCs is running. However, you should notice that careless rewriting may lead
to a serious accident, such as breakdown of the equipment. If any of such
items needs to be rewritten, be sure to check the condition of the equipment
first. You may rewrite it only when you are sure that the equipment has no
problem.

 When loading task data into a CMU module, CPMS Debugger writes the data
to internal flash memory of the CMU. Note that writing different items of data
concurrently to the same address of internal flash memory of the CMU may
damage the data. Therefore, do not send data to the CMU module
concurrently from CPMS Debugger and another writing tool (e.g., HI-FLOW
system, RPDP, NX/Tools-S10V system).

Users of this product must have adequate knowledge of the Windows®
environment and user interface. This system conforms to the Windows®
standard. This manual is prepared for users who are familiar with the basic
Windows® operating procedures.

 If you use a personal computer with the suspend feature, disable the feature.
If the suspend feature comes into operation during execution of this system,
the system may malfunction.

 An inadequate free memory space available in RAM may cause an application
error. In the event of such an error, check the amount of free memory space
available. If it is found inadequate, add more RAM.

2 SYSTEM
INSTALLATION

2 SYSTEM INSTALLATION

2-2

2.1 Installing

To install the CPMS DEBUGGER, you must execute the setup program that is stored in the
CPMS DEBUGGER DISK1 folder on the CD.
Double-click “setup. exe” that is stored in the DISK1 folder on the S10V CPU link system CD.
Since no window opens upon completion of installation, attach a shortcut to the desktop as
needed.
Click the Start button and choose [(All) Programs] – [Hitachi S10V] – [S10V CPMS
DEBUGGER SYSTEM] – [S10V CPMS DEBUGGER SYSTEM] from the [Start] menu on the
Windows® screen. Click and hold the right mouse button on the [S10V CPMS DEBUGGER
SYSTEM] and move the pointer to the desktop. Then, choose [Copy Here] from the pop-up
menu.

NOTICE

Before installing the CPMS debugger, be sure to exit all the currently open
Windows® programs. Do not forget to exit anti-virus software and other
memory-resident programs. If you install the CPMS debugger without exiting
such programs, an error may occur during installation. If such an error occurs,
first uninstall the CPMS debugger as directed in “2.2 Uninstalling,” exit all the
Windows® programs, and then install the CPMS debugger again.

2 SYSTEM INSTALLATION

2-3

<Notes on installing in Windows® 7 (32-bit)>
Installing the CPMS Debugger System in Windows® 7 (32-bit) operating system requires prior
logging onto the operating system with an appropriate Administrator account, which is the
Administrator account first created in the initial condition of your personal computer. When
you have so logged on, you can then double-click “setup.exe” that is stored in the DISK 1 folder
on the CPMS Debugger System CD. When “setup.exe” is started, the dialog box as shown
below will appear. Click the Yes button to continue the execution of the setup program.

The CPMS Debugger System cannot be installed on a per-user basis. To install
the CPMS Debugger System successfully, the user must first log onto the
operating system with an appropriate Administrator account, which is the
Administrator account first created in the initial condition of your personal
computer.
The CPMS Debugger System may not be installed properly in any of the following
cases: 1) administrator permission is acquired by using User Account Control(*)
with a standard user account and 2) logon is made with an Administrator account
that has been created using User Account Control with a standard user account.
If you make a logon with a user account that is different from the one you have
used for the installation of the CPMS Debugger System, the installed program
may be missing from the program menu displayed. In this case, you should
perform the following series of steps: 1) make a logon again with the
Administrator account first created in the initial condition of your personal
computer; 2) uninstall the installed program; and 3) install the program again.
When you want to create a new account, be sure to make a logon with an
Administrator account. Do not use User Account Control at that time.

(*) User Account Control is a Microsoft Windows feature that temporarily grants

administrative rights to standard user accounts.

A message reporting a read-only file detected may be displayed during the reinstallation of the
CPMS Debugger System. In this case, click the Yes button to set off overwriting.

2 SYSTEM INSTALLATION

2-4

2.2 Uninstalling

The existing CPMS Debugger System needs to be uninstalled when, for instance, you want to
upgrade it. The procedure required for uninstalling it is as follows:
(1) Uninstalling from Windows® 2000

Click on Start button on your Windows desktop and choose [Settings] – [Control Panel].
When the Control Panel opens, double-click on [Add/Remove Programs]. Then, choose
“S10V CPMS DEBUGGER SYSTEM” in the [Change or Remove Programs] tab and click
the Change/Remove button. When the [Confirm File Deletion] dialog box appears,
click the Yes button.

(2) Uninstalling from Windows® XP

Click on Start button on your Windows desktop and choose ([Settings] –)[Control
Panel]. When the Control Panel opens, double-click on [Add/Remove Programs]. Then,
choose “S10V CPMS DEBUGGER SYSTEM” in the [Change or Remove Programs] tab and
click the Change/Remove button. When the [Confirm File Deletion] dialog box
appears, click the Yes button.

(3) Uninstalling from Windows® 7 (32-bit)

Click on Start button on your Windows desktop and choose [Control Panel]. When the
Control Panel opens, click [Programs and features]. Then, select “S10V CPMS
DEBUGGER SYSTEM” and click Uninstall/Change button. When the [Confirm File
Deletion] dialog box appears, click the Yes button.

NOTICE

 If Windows® opens a window during the uninstall process to display the
question “Remove Shared File?”, click the No button to retain shared files.

 When you want to reinstall the CPMS Debugger System, be sure to perform
an uninstall and then perform an install.

2 SYSTEM INSTALLATION

2-5

2.3 Starting the System

To start CPMS Debugger, click the Start button on the Windows® screen, select [(All)
Programs], select [Hitachi S10V], and then double-click [S10V CPMS DEBUGGER SYSTEM].
After CPMS Debugger starts up, the window below appears. To use a CPMS Debugger
function, click the button corresponding to the desired function.

Figure 2-1 [CPMS DEBUGGER] Window

(1) [Ethernet] box
This box shows the IP address of the connected programmable controller (PCs).

(2) Change connection PCs button

Clicking this button opens the [Communication type] window, which is used to specify the
type of communication between the personal computer and a PCs.
When the type of communication is set, the connection status of the relevant PCs becomes
“ONLINE”.

2 SYSTEM INSTALLATION

2-6

(3) Connection status indicators/buttons
These indicators/buttons indicate and switch the connection status of the currently connected
PCs. To switch the connection status, click the ONLINE or OFFLINE button.

(4) Help button
Clicking this button or pressing the [F1] key on the keyboard displays online help for CPMS
Debugger.

(5) Version information

Right-clicking on the icon at the upper-left corner or on the title bar of the [CPMS
DEBUGGER] window opens the [Version information] window as shown below. To close
this window, click the OK button.

(P.P. model: S-7895-07)

(P.P. model: S-7895-62)

<When connection status is “ONLINE”>

To change the status to “offline,” click the

 OFFLINE button.

<When connection status is “OFFLINE”>

To change the status to “online,” click the

 ONLINE button.

2 SYSTEM INSTALLATION

2-7

2.4 Ending the System

To exit CPMS Debugger, click the × button at the upper-right corner or the Close button
of the [CPMS DEBUGGER] window (shown in Figure 2-1).

This Page Intentionally Left Blank

3 COMMANDS

3 COMMANDS

3-2

3.1 System of Commands

CPMS Debugger has a system of commands as shown below.
Sections 3.2 and later summarize the commands. For details, see online help.

Commands Loading and register of task
 Delete task
 Display of task status
 Task Release
 Task Queue
 Task Abort
 Task Timer Request
 Task Suspend
 Task Resume
 Break point
 Error Log
 Display Status of PCs
 Set time
 Setup of ADT status
 ADT monitor
 Setup of DHP status
 Initialize the stack
 Display of used stack size
 Matrix monitor
 MCS
 Change connection PCs
 Initialize the task

3 COMMANDS

3-3

3.2 Task Loading and Register

Function: The “Loading and register of task” command opens the window to load and register a
user-created task into the currently connected programmable controller (PCs).

Procedure: Click the Loading and register of task button in the [CPMS DEBUGGER]
window.

Figure 3-1 [Loading and register of task] Window

(1) [Absolute Files] box
This box shows the task file to be loaded into the PCs. To specify the task file, click the
 Refer button.

3 COMMANDS

3-4

(2) Refer button
Clicking this button opens the window as shown below. Specify the task file to be loaded
into the PCs in this window.

Figure 3-2 [Open] Window

(3) [Task number] box
This box is used to specify the task number of the task to be registered. For a user task,
specify a task number from 1 to 224. For a system task, specify a task number from 225 to
229.

(4) [Level] box

This box is used to specify the initial execution level of the task to be registered. For a user
task, specify a level from 4 to 27. For a system task, specify a level from 0 to 31.

(5) [text address] box

This box shows the start address of the area in which to load the text section of the specified
task file.

(6) [text size] box

This box shows the text section size (in bytes) of the specified task file.

(7) [data address] box
This box shows the start address of the area in which to load the data section of the specified
task file.

(8) [data size] box

This box shows the data section size (in bytes) of the specified task file.

3 COMMANDS

3-5

(9) [bss address] box
This box shows the start address of the bss section to be used by the specified task file.

(10) [bss size] box

This box shows the size of the bss section (in bytes) to be used by the specified task file.

(11) [stack address] box
This box shows the start address of the stack section to be used by the specified task file.

(12) [stack size] box

This box shows the size of the stack section (in bytes) to be used by the specified task file.
For the stack size, specify a multiple of 0x1000 from 0x00001000 to 0x00800000. If the
specified value is not a multiple of 0x1000, the value will be rounded to the nearest multiple
of 0x1000.

(13) OK button

Clicking this button loads and registers the task according to user specifications. When
loading and registration have been successfully carried out, the [CPMS DEBUGGER]
window will return.

(14) Cancel button
Clicking this button cancels task loading and registration, and returns to the [CPMS
DEBUGGER] window.

<Notes>

CPMS Debugger only supports executable and linking format (ELF) task files. Note that
specifying a non-ELF task file will display the following error message:

Figure 3-3 Error Message Box

The start address of the task file to be loaded must always be aligned on a page boundary. If
the start address (of the text section) of the task file to be loaded is not aligned on a page
boundary, the task file cannot be loaded, and the OK button is shaded.

3 COMMANDS

3-6

3.3 Delete Task

Function: The “Delete task” command opens the window to delete a task.
Procedure: Click the Delete task button in the [CPMS DEBUGGER] window.

Figure 3-4 [Delete task] Window

(1) [Task number] box
This box is used to specify the task number of the task to be deleted.

(2) OK button

Clicking this button deletes the task of the specified task number. After the task is deleted,
the [CPMS DEBUGGER] window appears.

(3) Cancel button

Clicking this button cancels task deletion, and returns to the [CPMS DEBUGGER] window.

3 COMMANDS

3-7

3.4 Display of Task Status

<[Display of task status] window>

Function: The “Display of task status” command opens the window to display the status of tasks.
Procedure: Click the Display of task status button in the [CPMS DEBUGGER] window.

Figure 3-5 [Display of task status] Window

3 COMMANDS

3-8

(1) [List of task registration] box
This box lists information about currently registered tasks.
The information listed is as follows:

No. Item Description

1 tn Task number
2 task state Task state (*)
3 level Execution level (initial execution level)
4 texttop First address of task
5 lastaddr End address of task

(*) Task states
No. Task state Description

1 DORMANT Task initiation is suspended.
2 IDLE The task is awaiting initiation.
3 READY The task is being executed or awaiting

execution.
4 WAIT The task is awaiting an event.

5 SUSPENDED Task execution is suspended.

(2) Close button

Clicking this button closes the [Display of task status] window, and returns to the [CPMS
DEBUGGER] window.

(3) Refresh button

Clicking this button updates the information shown in the [List of task registration] box.

(4) Display detail button
Clicking this button opens the [Display of task status] (detail) window, which displays
detailed information about the task with the task number selected in the [List of task
registration] box.

(5) Sort button

Clicking this button sorts the task information shown in the [List of task registration] box in
order of the start addresses of tasks. The sorting order alternately switches between
ascending and descending order each time this button is clicked.

3 COMMANDS

3-9

<[Display of task status] (detail) window>
Function: The [Display of task status] (detail) window displays the detailed status of a task.
Procedure: Click the Display detail button in the [Display of task status] window.

Figure 3-6 [Display of task status] (detail) Window

(1) [Task number] box
This box shows the task number (in decimal notation) of the task for which status
information is currently displayed in this window.
To display the status information about a different task, enter the task number of that task in
this box, and then press the [Enter] key on the keyboard or click the Refresh button.
The range of task numbers that can be displayed or entered in this box is 1 to 229.

(2) Next task button

Clicking this button displays the latest detailed information about the registered task that
follows (in order of registration) the specified task.
Unregistered tasks are skipped.

3 COMMANDS

3-10

(3) Previous task button
Clicking this button displays the latest detailed information about the registered task that
precedes (in order of registration) the specified task.
Unregistered tasks are skipped.

(4) [Initiation factor] field
This field shows a value that indicates the initiation factor of the specified task.
If the specified task is not registered, this field shows “/00000000”.

(5) [Level] field

This field shows the execution level of the specified task (The parenthesized value is the
default execution level.)
If the specified task is not registered, this field shows “0 (0)”.

(6) [TCB top] field

This field shows the physical start address of the TCB information of the specified task.

(7) [Task top] field
This field shows the start address of the specified task.
If the specified task is not registered, this field shows “/00000000”.

(8) [Task state] field

This field shows the state of the specified task.
One of the following states is shown:

No. State Description

1 DORMANT Task initiation is suspended.
2 IDLE The task is awaiting initiation.
3 READY The task is being executed or awaiting

execution.

4 WAIT The task is awaiting an event.
5 SUSPENDED Task execution is suspended.
6 NON-EXISTENT The task is not registered.

3 COMMANDS

3-11

(9) [Details of task state] group box
The items in this group box indicate detailed status information (status bit information) about
the specified task. The status bit information is denoted by the ON/OFF state of the check
box for each item (i.e., parameter).
One or more parameters may be set to ON.

(10) [Address information] group box

The fields in this group box show the addresses and sizes of areas allocated to the specified
task. If the specified task is not registered, the [Address] and [Size] fields show
“/00000000”.

(11) Close button

Clicking this button closes the [Display of task status] (detail) window, and returns to the
[CPMS DEBUGGER] window.

(12) Refresh button

Clicking this button updates the detailed status information displayed for the task specified
by the task number entered in the [Task number] box.

3 COMMANDS

3-12

3.5 Task Release

Function: The “Task Release” command opens the window to release a task (or tasks) from the
Dormant state (initiation-suspended state).

Procedure: Click the Task Release button in the [CPMS DEBUGGER] window.

Figure 3-7 [Task Release] Window

(1) [Task number] box
This box is used to enter the task number of the task to be released from the Dormant state.
To enable a range specification of task numbers, select the [Range selection] check box.

(2) [Range selection] check box

Selecting this check box enables a range specification of task numbers. Even if an invalid
range is specified, no error message will appear. To confirm the result of command
execution, open the [Display of task status] window, and confirm that “READY” is displayed
as the task state for each task number in the specified range of task numbers.

(3) OK button

Clicking this button releases the specified task from the Dormant state. When the [Range
selection] check box is selected and a range of task numbers specified, clicking this button
releases the tasks with task numbers in the specified range from the Dormant state.
After the tasks are released, the [CPMS DEBUGGER] window appears.

(4) Cancel button

Clicking this button cancels the releasing of tasks from the Dormant state, and returns to the
[CPMS DEBUGGER] window.

3 COMMANDS

3-13

3.6 Task Queue

Function: The “Task Queue” command opens the window to request initiation of a task.
Procedure: Click the Task Queue button in the [CPMS DEBUGGER] window.

Figure 3-8 [Task Queue] Window

(1) [Task number] box
This box is used to enter the task number of the task requested to be initiated.

(2) [Initiation factor] box

This box is used to enter the value that indicates the initiation factor of the task requested to
be initiated.

(3) OK button

Clicking this button requests initiation of the task with the specified task number. After
initiation is requested, the [CPMS DEBUGGER] window appears.

(4) Cancel button

Clicking this button cancels the request for task initiation, and returns to the [CPMS
DEBUGGER] window.

3 COMMANDS

3-14

3.7 Task Abort

Function: The “Task Abort” command opens the window to suspend initiation of a task (or tasks).
Procedure: Click the Task Abort button in the [CPMS DEBUGGER] window.

Figure 3-9 [Task Abort] Window

(1) [Task number] box
This box is used to enter the task number of the task for which initiation is to be suspended.
To enable a range specification of task numbers, select the [Range selection] check box.

(2) [Range selection] check box

Selecting this check box enables a range specification of task numbers. Even if an invalid
range is specified, no error message will appear. To confirm the result of command
execution, open the [Display of task status] window, and confirm that “DORMANT” is
displayed as the task state for each task number in the specified range of task numbers.

(3) OK button

Clicking this button suspends initiation of the task with the specified task number. When
the [Range selection] check box is selected and a range of task numbers specified, clicking
this button suspends initiation of the tasks with the task numbers in the specified range.
After task initiation is suspended, the [CPMS DEBUGGER] window appears.

(4) Cancel button

Clicking this button cancels the suspension of task initiation, and returns to the [CPMS
DEBUGGER] window.

3 COMMANDS

3-15

3.8 Task Timer Request

Function: The “Task Timer Request” command opens the window to display the current settings
of cyclic task initiation and enables the user to make new settings.

Procedure: Click the Task Timer Request button in the [CPMS DEBUGGER] window.

Figure 3-10 [Task show timer] Window

(1) [Task show timer] box
This box lists the current settings of cyclic task initiation.
The items of information displayed in the list are the same as those displayed by the sht
command of RPDP/S10V.
The items of information listed are as follows:

No. Item Description

1 ID Timer type (*)
2 TN Task number
3 FACT Initiation factor
4 TIME Initiation time

(year/month/day hour:minute:second. millisecond)
5 CYT Cycle time (in milliseconds)

3 COMMANDS

3-16

(*) Timer type
ID Description

1 Initiation based on length of time
(timer)

2 Initiation based on time of day (timer)
3 Cyclic initiation based on length-of-time

specification (timer)
4 Cyclic initiation based on time-of-day

specification (timer)

(2) Close button

Clicking this button closes the [Task show timer] window, and returns to the [CPMS
DEBUGGER] window.

(3) Refresh button

Clicking this button updates the information shown in the [Task show timer] box.

(4) Task timer request button
Clicking this button opens the [Task timer request] window, which is used for setting cyclic
task initiation.

(5) Task cancel timer button

Clicking this button cancels the cyclic initiation setting for the task selected in the [Task
show timer] box.
The content of this processing is the same as the processing performed by the ct command of
RPDP/S10V.
<Note> Canceling the cyclic initiation setting for a specific task having initiation factor “0”

also cancels the cyclic initiation setting for other tasks with the same task number as
that of the specific task.

(6) Save button

Clicking this button saves the information displayed in the [Task show timer] box as a text-
format file.

3 COMMANDS

3-17

<[Task timer request] window>
Function: The [Task timer request] window is used to make cyclic initiation settings for a task.
Procedure: Click the Task timer request button in the [Task show timer] window.

Figure 3-11 [Task timer request] Window (1: Length-of-time basis)

Figure 3-12 [Task timer request] Window (2: Time-of-day basis)

(1) [Task number] box
This box is used to enter the task number of a task to be initiated cyclically.

(2) [Initial start from current time] and [Initial start from 00:00] boxes

These boxes are used to specify the length of time to initially start the timer event and the
time of day to initially start the timer event, respectively.
In the [Initial start from current time] box, the user can specify a relative length of time from
the current time to the start time from 1 to 86400000.
In the [Initial start from 00:00] box, he/she can specify a time of day in the range 00:00:0.000
to 23:59:59.999 as the initial start time of the timer event.

3 COMMANDS

3-18

(3) [Period hours] box
This box is used to specify a cycle time when a timer event is to be generated cyclically for
the specified task.
The cycle timer can be specified from 1 to 86400000 (in units of ms).

(4) [Initiation factor] box

This box is used to specify the initiation factor of the specified task.

(5) OK button
Clicking this button sets the specified contents of cyclic initiation for the specified task.
After this setting is made, the [Task show timer] window appears.

(6) Cancel button

Clicking this button cancels the new setting of cyclic task initiation, and returns to the [Task
show timer] window.

3 COMMANDS

3-19

3.9 Task Suspend

Function: The “Task Suspend” command opens the window to suspend execution of a task (or
tasks).

Procedure: Click the Task Suspend button in the [CPMS DEBUGGER] window.

Figure 3-13 [Task Suspend] Window

(1) [Task number] box
This box is used to enter the task number of the task for which execution is to be suspended.
To enable a range specification of task numbers, select the [Range selection] check box.

(2) [Range selection] check box

Selecting this check box enables a range specification of task numbers. Even if an invalid
range is specified, no error message will appear. To confirm the result of command
execution, open the [Display of task status] (detail) window specifying each task number in
the specified range, and confirm that the [waiting for resume macro] check box is selected in
the [Details of task state] group box.

(3) OK button

Clicking this button suspends execution of the task with the specified task number. When
the [Range selection] check box is selected and a range of task numbers specified, clicking
this button suspends execution of the tasks with task numbers in the specified range.
After task execution is suspended, the [CPMS DEBUGGER] window appears.

(4) Cancel button

Clicking this button cancels the suspension of task execution, and returns to the [CPMS
DEBUGGER] window.

3 COMMANDS

3-20

3.10 Task Resume

Function: The “Task Resume” command opens the window to release a task (or tasks) from the
Suspended state (execution-suspended state).

Procedure: Click the Task Resume button in the [CPMS DEBUGGER] window.

Figure 3-14 [Task Resume] Window

(1) [Task number] box
This box is used to enter the task number of the task to be released from the Suspended state.
To enable a range specification of task numbers, select the [Range selection] check box.

(2) [Range selection] check box

Selecting this check box enables a range specification of task numbers. Even if an invalid
range is specified, no error message will appear. To confirm the result of command
execution, open the [Display of task status] (detail) window specifying each task number in
the specified range, and confirm that the [waiting for resume macro] check box is not
selected in the [Details of task state] group box.

(3) OK button

Clicking this button releases the task with the specified task number from the Suspended
state. When the [Range selection] check box is selected and a range of task numbers
specified, clicking this button releases the tasks with the task numbers in the specified range
from the Suspended state.
After the tasks are released, the [CPMS DEBUGGER] window appears.

(4) Cancel button

Clicking this button cancels the releasing of tasks from the Suspended state, and returns to
the [CPMS DEBUGGER] window.

3 COMMANDS

3-21

3.11 Breakpoint

<[Breakpoint] window>

Function: The “Breakpoint” command opens the window to set or delete a breakpoint (or
breakpoints).

Procedure: Click the Breakpoint button in the [CPMS DEBUGGER] window.

Figure 3-15 [Breakpoint] Window

(1) [Breakpoint] box
This box shows the current break status of tasks. Up to five breakpoints can be registered.
The items of information shown in this box are as follows:

No. Item Description

1 TN Task number

2 Address Breakpoint address (relative address in program)
3 Break Break-occurrence status

(2) Close button

Clicking this button closes the [Breakpoint] window, and returns to the [CPMS
DEBUGGER] window.

(3) Delete all button

Clicking this button deletes all currently set breakpoints other than those in the task(s) in the
break state.

(4) Delete button

Clicking this button deletes the breakpoint selected in the [Breakpoint] box.

3 COMMANDS

3-22

(5) Set button
Clicking this button opens the [Breakpoint address] window, which is used for breakpoint
setting.

(6) Display information button

Clicking this button opens the [Contents of register] window, which is used for displaying
and setting register contents.
This button is only effective when the program in the CPU of a connected programmable
controller (PCs) is in the break state.

(7) Rerun button

Clicking this button restarts the task in the break state.
This button is only effective when the program in the CPU of a connected PCs is in the break
state.

<[Breakpoint address] window>

Figure 3-16 [Breakpoint address] Window

(1) [Task number] box
This box is used to enter the task number of the task for which a breakpoint is to be set.

(2) [Breakpoint address] box

This box is used to specify the breakpoint address (relative address in the relevant program)
to be set.

(3) OK button

Clicking this button sets a breakpoint at the specified address.
After the breakpoint is set, the [Breakpoint] window appears.

(4) Cancel button

Clicking this button cancels breakpoint setting, and returns to the [Breakpoint] window.

3 COMMANDS

3-23

<Breakpoint setting procedure>
The following describes a sample procedure for setting a breakpoint at a point (A) in a generated
task program (task1):

<task1.c>

Execute the shc command with the “-listfile and -show=source,object” options specified to
assemble the assembler source in which C-language source files are inserted. To set a
breakpoint in source program “task1.c”, reference the “task1.1st” file.
In the “task1.c” file, the C-language source used to set the breakpoint is indicated by (1), and
assembler instruction (2) is associated with the C-language source. The offset of assembler
instruction (2) in the C-language source (task1.c) is 0x0000000A.

(A)

int b1;
int d1 = 11;
static int b2 ;
static int d2 = 101 ;

main()
{
 unsigned short *fw010;
 unsigned short *dw000;

 static int b3 ;
 static int d3 = 1001 ;
 int s1;
 int s2 = 21 ;

 fw010 = (unsigned short *)0xE2020;
 dw000 = (unsigned short *)0x61000;

 *fw010 = *fw010 + *dw000;
 exit(0);

}

3 COMMANDS

3-24

<prog1.lst>

************ OBJECT LISTING ************

FILE NAME: task1.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

 task1.c 1 int b1;
 task1.c 2 int d1 = 11;
 task1.c 3 static int b2 ;
 task1.c 4 static int d2 = 101 ;
 task1.c 5
 task1.c 6 main()
P 00000000 _main: ; function: main
 ; frame size=0
 task1.c 7 {
 task1.c 8 unsigned short *fw010;
 task1.c 9 unsigned short *dw000;
 task1.c 10
 task1.c 11 static int b3 ;
 task1.c 12 static int d3 = 1001 ;
 task1.c 13 int s1;
 task1.c 14 int s2 = 21 ;
 task1.c 15
 task1.c 16 fw010 = (unsigned short *)0xE2020;
 00000000 D504 MOV.L L11+2,R5 ; H'000E2020
 00000002 E400 MOV #0,R4 ; H'00000000
 task1.c 17 dw000 = (unsigned short *)0x61000;
 task1.c 18
 task1.c 19 *fw010 = *fw010 + *dw000; (1)
 00000004 D204 MOV.L L11+6,R2 ; H'00061000
 00000006 6621 MOV.W @R2,R6
 00000008 6251 MOV.W @R5,R2
 0000000A 362C ADD R2,R6 (2)
 task1.c 20 exit(0);
 0000000C D203 MOV.L L11+10,R2 ; _exit
 0000000E 422B JMP @R2
 00000010 2561 MOV.W R6,@R5
 00000012 L11:
 00000012 00000002 .RES.W 1
 00000014 000E2020 .DATA.L H'000E2020
 00000018 00061000 .DATA.L H'00061000
 0000001C <00000000> .DATA.L _exit
 task1.c 21
 task1.c 22 }

3 COMMANDS

3-25

Execute the optlink command with the -list option specified to generate an execution file with a
mapping file.
The information on SECTION “P” in the mapping file indicates that task1.ocj begins at address
0x30000000.
Because the relative address (in the source program) of the breakpoint to be set is 0x0000000A,
the address of the breakpoint to be set is 0x3000000A (0x30000000 + 0x0000000A).
The relative address in the program (0x0000000A) can be obtained by subtracting the start
address of the program from the address of the breakpoint to be set (0x3000000A - 0x30000000).

<prog.map>

*** Mapping List ***

SECTION START END SIZE ALIGN

P
 30000000 3000006f 70 4

3 COMMANDS

3-26

<[Display of register] window>
Function: The [Display of register] window is used to display and set the contents of registers.
Procedure: Click the Display information button in the [Breakpoint] window.

(1) Contents of a register

These boxes show the contents of the registers described below. The user can change the
value of a register by entering a new value (in hexadecimal notation) in the corresponding
box and pressing the [Enter] key on the keyboard or clicking the OK button.

No. Item Description
1 SR Status register
2 PC Program register
3 GBR Global base register
4 PR Procedure register
5 MACH System register (MAC register high)
6 MACL System register (MAC register low)
7 FPUL Floating-point communication register
8 FPSCR Floating-point status/control register
9 R0 to R15 General-purpose registers (R15 is used as a stack

pointer.)

(2) Floating-point registers
Clicking the Display register button opens the [Floating decimal point register] window,
which is used for displaying and setting the contents of the floating-point registers listed
below.

No. Item Description

1 FR Single-precision floating-point register
2 XF Extended single-precision floating-point register
3 DR Double-precision floating-point register
4 XF Extended double-precision floating-point register

(3) OK button

Clicking this button changes the current contents of registers for the task in the break state to
those specified by the user as the new values of general-purpose and other registers.
After the register contents are changed, the [Breakpoint] window appears.

(4) Cancel button

Clicking this button cancels the changes made to register contents, and returns to the
[Breakpoint] window.

3 COMMANDS

3-27

<[Floating decimal point register] window>
Function: The [Floating decimal point register] window is used to display and set the contents of

floating-point registers.
Procedure: Click the Display register button in the [Display of register] window.

Figure 3-17 [Floating decimal point register] Window

(1) [HEX/FLOAT] box
The radio buttons in this box are used to switch the numeration system of displayed values
between hexadecimal numerals (HEX) and real numbers (FLOAT).
For example, selecting the [FLOAT] radio button in the window shown in Figure 3-17
switches the numeral display boxes to those of the window shown in Figure 3-18.

<Example of window displaying the contents of floating-point registers (FRs)>

Figure 3-18 [Floating decimal point register] Window (FLOAT)

3 COMMANDS

3-28

(2) [Register] column
This column indicates the 0 to 15 registers specified in the [Display of register] window.

(3) [Contents of register] boxes

These boxes show the contents of the indicated registers. The numeration system and
setting format can be switched between HEX and FLOAT.

(4) OK button

Clicking this button changes the current contents of registers for the task in the break state to
those specified by the user as the new values of floating-point registers.
After the register contents are changed, the [Display of register] window appears.

(5) Cancel button

Clicking this button cancels the content changes made to the floating-point registers, and
returns to the [Display of register] window.

3 COMMANDS

3-29

3.12 Error Log

Function: The “Error Log” command opens the window to display a list of error log information.
Procedure: Click the Error Log button in the [CPMS DEBUGGER] window.

Figure 3-19 [Error log information] Window

(1) [Error log] box
This box lists the current error log information.
The items of information listed are as follows:

No. Item Description

1 Module Name of option module on which error log
information is found

2 Mount Mounting status of module
3 Error code Error code
4 Contents Content of error
5 Data Date of error occurrence
6 Time Time of error occurrence

(2) Close button

Clicking this button closes the [Error log information] window, and returns to the [CPMS
DEBUGGER] window.

3 COMMANDS

3-30

(3) Refresh button
Clicking this button updates the error log information shown in the window.

(4) Sorting button

Clicking this button sorts the error log information in order of the time of error occurrence.
The sorting order alternately switches between ascending and descending order each time
this button is clicked.

(5) Error Log Delete button

Clicking this button deletes the error log information on the module specified in the [Error
log information] window.

(6) Error Log All Delete button

Clicking this button deletes all error log information on the LPUs, CMUs, and option
modules.

(7) Error Log Save button

Clicking this button enables the user to save error log information on the LPUs, CMUs, and
option modules as a text file. When this button is clicked, the [Save As] window appears to
allow the user to specify the file in which to save the information.

(8) Error Log Detail button

Clicking this button opens the [Error Log Detail] window, which displays details of the error
log specified in the [Error log] box. Detail display is only available for CMU error logs.

3 COMMANDS

3-31

<[Error Log Detail] window>
Function: The [Error Log Detail] window displays details of a CMU error log.
Procedure: Click the Error Log Detail button in the [Error log information] window.

Figure 3-20 [Error Log Detail] Window

(1) [Error Log Detail] box
This box shows details of the error log specified in the [Error log information] window.
The details of the error log shown in this box are the same as those displayed by the svelog
command of RPDP/S10V.

(2) Close button

Clicking this button closes the [Error Log Detail] window, and returns to the [Error log
information] window.

(3) Next Error Log button

Clicking this button displays the CMU error log following the one that is currently displayed.

(4) Previous Error Log button
Clicking this button displays the CMU error log preceding the one that is currently displayed.

(5) Save button

Clicking this button saves the details of the error log currently displayed in the [Error Log
Detail] window as a text file. “DEBUGGER” is always recorded as the site name at the top
of the text file.

3 COMMANDS

3-32

<[Save As] window>
Function: The [Save As] window is used to save error log information as a text file.

Figure 3-21 [Save As] Window

(1) [Save in] box
This box is used to select the folder and file to save error log information through operation
of the combo and input boxes.

(2) [File name] box

This box is used to display a selected save-destination file or enter the name of the file to be
saved. This box shows “ErrLog.txt” as the default file name.

(3) [Save as type] combo box

This combo box is used to select the type of file to be saved. “TextFile (*.txt)” or “AllFiles
(*.*)” can be selected.

(4) Save button

Clicking this button saves error log information in the specified file, and returns to the
previously displayed window.
“DEBUGGER” is always recorded as the site name at the top of the saved file.

(5) Cancel button

Clicking this button cancels the saving of information to the specified file, and returns to the
previously displayed window.

3 COMMANDS

3-33

3.13 Display Status of PCs

Function: The “Display Status of PCs” command opens the window to display the status of
programmable controllers (PCs).

Procedure: Click the Display Status of PCs button in the [CPMS DEBUGGER] window.

Figure 3-22 [Display status of PCs] Window

(1) [LPU] and [CMU] boxes
These boxes show the status of currently connected LPUs and CMUs.
The items of status information shown in the boxes are as follows:

No. Item Status Description

1 LPU/CMU MODE
RUN The LPU or CMU is operating.
STOP The LPU or CMU is stopped.

2 PROTECT MODE
ON The LPU or CMU is in protection mode.
OFF The LPU or CMU is not in protection mode.

3 LADDER MODE
NORM The LPU is operating normally.
SIMU The LPU is running in simulation mode.

4 ALARM LED
ON The ALARM indicator is on.
OFF The ALARM indicator is off.

5 USER ERR LED
ON The USER indicator is on.

OFF The USER indicator is off.

6 ERR LED
ON The ERR indicator is on.
OFF The ERR indicator is off.

3 COMMANDS

3-34

(2) Close button
Clicking this button closes the [Display status of PCs] window, and returns to the [CPMS
DEBUGGER] window.

(3) Refresh button

Clicking this button updates the PCs status information shown in the window.

(4) Start Monitoring and Stop Monitoring buttons
These buttons are used to turn system status monitoring on and off, respectively.

3 COMMANDS

3-35

3.14 Set Time

Function: The “Set time” command opens the window to display and update the current time set
on the CPU of a programmable controller (PCs).

Procedure: Click the Set time button in the [CPMS DEBUGGER] window.

Figure 3-23 [Time of day] Window

(1) Time boxes
These boxes indicate the time set on the currently connected CPU (PCs).

(2) Time renewal button

Clicking this button changes the time set on the CPU (PCs) to the time specified in the time
boxes.

(3) Get PC’s time button

Clicking this button updates the time indicated by the time boxes based on the current time
set on the personal computer.
To enable time update, click the Time renewal button.

(4) Cancel button

Clicking this button cancels time setting, and returns to the [CPMS DEBUGGER] window.

3 COMMANDS

3-36

3.15 Setup of ADT Status

<[Setup of ADT status] window>

Function: The “Setup of ADT status” command opens the window to set an address detection trap
(ADT).

Procedure: Click the Setup of ADT status button in the [CPMS DEBUGGER] window.

Figure 3-24 [Setup of ADT status] Window

(1) [Address] box
This box is used to specify the logical address (in bytes) where an ADT is to be set.

(2) [Mask] group box

The radio buttons in this box are used to select a mask value to mask the specified logical
address.

(3) [Mode] group box

The radio buttons in this box are used to select a mode to be set for the ADT.

(4) Close button
Clicking this button closes the [Setup of ADT status] window, and returns to the [CPMS
DEBUGGER] window.

(5) ADT set button

Clicking this button sets the specified ADT.
The set ADT applies to the byte, word, and long word accesses made to the logical address
specified in the [Address] box. After the ADT is set, the [Display Status of ADT] window
appears, and then the [Setup of ADT status] window reappears.

3 COMMANDS

3-37

(6) ADT reset button
Clicking this button clears the set ADT.

(7) Display ADT button

Clicking this button opens the [Display Status of ADT] window, which displays the ADT
setting content.

<[Display Status of ADT] window>

Function: The [Display Status of ADT] window displays the ADT setting content.

Figure 3-25 [Display Status of ADT] Window

(1) [address] field
This field shows the range of addresses where the ADT is set.

(2) [mode] field

This field shows one of the following modes set for the ADT:
read: Read trap
write: Write trap
access: Read/write trap

(3) Close button

Clicking this button closes the [Display Status of ADT] window, and returns to the [Setup of
ADT status] window.

3 COMMANDS

3-38

<Notes>
 The ADT can only be set at one position.
 The set ADT is not deleted when the CPU is restarted.
 The ADT can only detect access made via the MMU of the processor. Therefore, the ADT
cannot detect access made using a physical address by a memory access subcommand of
CPMS Debugger.

 The ADT can be set in the shaded ranges shown in Figure 3-26. The ADT cannot be set in an
unmapped area.

Figure 3-26 ADT-settable Ranges

sp
ac

e

0x
50

00
 0

00
0

0x
77

00
 0

00
0

0x
0c

00
 0

00
0

0x
18

00
 0

00
0

0x
00

01
 0

00
0

0x
03

00
 0

00
0

0x
30

00
 0

00
0

0x
40

00
 0

00
0

0x
60

00
 0

00
0

0x
70

00
 0

00
0

0x
80

00
 0

00
0

R
es

er
ve

User space
Kernel
space

AREA AREA
AREA

SAREA SAREA

0x
01

00
 0

00
0

0x
03

40
 0

00
0

0x
01

10
 0

00
0

0x
77

10
 0

00
0

0x
7C

00
 0

00
0

0x
7C

10
 0

00
0

0x
1c

00
 0

00
0

0x
20

00
 0

00
0

0x
28

00
 0

00
0

R
es

er
ve

S
10

 s
pa

ce

U
se

r b
uf

fe
r

ar
ea

 fo
r N

X

H
I-F

LO
W

R
es

er
ve

R

70
0

sy
st

em

bu
s

sp
ac

e

P
C

I s
pa

ce

R
es

er
ve

 M
A
P

C
P

M
S

sp

ac
e Task GLBR GLBW IRSUB

R
es

er
ve

R
es

er
ve

R
es

er
ve

R

O
M

 ta
sk

In
te

rn
al

 s
ha

re
d

m
em

or
y

AREA
SAREA SAREA AREA AREA

3 COMMANDS

3-39

3.16 ADT Monitor

Function: The “ADT monitor” command opens the window to monitor ADT generation.
Procedure: Click the ADT monitor button in the [CPMS DEBUGGER] window.

Figure 3-27 [Generating of ADT is supervised] Window

(1) [Surveillance cycle] box
This box is used to specify the cycle of ADT generation monitoring from 1 to 60 seconds.

(2) Close button

Clicking this button closes the [Generating of ADT is supervised] window, and returns to the
[CPMS DEBUGGER] window.

(3) Start Surveillance button

Clicking this button starts the monitoring of ADT generation in the cycle specified in the
[Surveillance cycle] box.
When the generation of ADT is detected, the message shown below appears and monitoring
operation ends.

Figure 3-28 ADT Generation Message

3 COMMANDS

3-40

3.17 Setup of DHP Status

<[Setup the logging mode of DHP] window>

Function: The “Setup of DHP status” command opens the window to set the DHP logging mode.
Procedure: Click the Setup of DHP status button in the [CPMS DEBUGGER] window.

Figure 3-29 [Setup the logging mode of DHP] Window

(1) [Logging mode] field
This field shows the current DHP logging mode.

(2) Restart DHP logging button

Clicking this button sets the DHP logging mode to enable mode.
When mode setting ends normally, the mode indication in the [Logging mode] field is
updated.

(3) Stop DHP logging button

Clicking this button sets the DHP logging mode to disable mode.
When mode setting ends normally, the mode indication in the [Logging mode] field is
updated.

(4) Display DHP trace button

Clicking this button opens the [Display DHP trace] window, which displays DHP trace
information.

(5) Close button

Clicking this button closes the [Setup the logging mode of DHP] window, and returns to the
[CPMS DEBUGGER] window.

3 COMMANDS

3-41

<[Display DHP trace] window>
Function: The [Display DHP trace] window displays DHP trace information.
Procedure: Click the Display DHP trace button in the [Setup the logging mode of DHP]

window.

Figure 3-30 [Display DHP trace] Window

(1) [DHP trace list] box
This box shows a list of current DHP trace information.
The items of information listed are the same as those displayed by the svdhp command of
RPDP/S10V.
The items of information listed areas follows:

No. Item Description

1 DHP DHP trace number in the list
2 TIME Trace time

tt.tttttt
Seconds Microseconds

3 EVENT Trace point type
4 TN Task number
5 LV Priority level
6 DATA1 to DATA5 Trace data (hexadecimal)

(2) Close button

Clicking this button closes the [Display DHP trace] window, and returns to the [Setup the
logging mode of DHP] window.

(3) Save button

Clicking this button saves the information displayed in the [DHP trace list] box as a text-
format file.

3 COMMANDS

3-42

3.18 Initialize the Stack

Function: The “Initialize the stack” command opens the window to initialize the stack for a task
(or tasks) using a fixed pattern of data.

Procedure: Click the Initialize the stack button in the [CPMS DEBUGGER] window.

Figure 3-31 [Initialize the stack] Window

(1) [Task number] box
This box is used to specify the task number (from 1 to 229) of the task whose used stack size
is to be displayed.

(2) [Initialization data] box

This box is used to enter a fixed pattern of data (ranging from 0x0 to 0xF) to initialize a
stack.

(3) OK button

Clicking this button initializes the stack for a specified task.

(4) Cancel button
Clicking this button cancels stack initialization, and returns to the [CPMS DEBUGGER]
window.

(5) [Range selection] check box

Selecting this check box enables a range specification of task numbers.

3 COMMANDS

3-43

<Notes>
 The task subject to stack initialization must be set to the Dormant state before stack
initialization.

 When a range of task numbers is specified, CPMS Debugger checks the tasks in the specified
range of task numbers to find any task in other than the Dormant state. If a task in other than
the Dormant state is found, processing ends abnormally with error message “Task number **
is not dormant” displayed. If processing ends abnormally, stack initialization is also not
performed for tasks in the Dormant state. (**: task number)

 Stack initialization is executed in the area from the start address of the page (containing the
stack for the specified task) to the last address of the stack. (See Figure 3-32.)

Figure 3-32 Range of Stack Initialization

TASK

Task space

BSSSTACK

Area to be initialized

Page boundary Page boundary

3 COMMANDS

3-44

3.19 Display of Used Stack Size

Function: The “Display of used stack size” command opens the window to display the size of the
stack used by a stack (or stacks).

Procedure: Click the Display of used stack size button in the [CPMS DEBUGGER] window.

Figure 3-33 [Display of used stack size] Window

(1) [Task number] box
This box is used to specify the task number (from 1 to 229) of the task whose used stack size
is to be displayed.

(2) [Check pattern] box

This box is used to enter a check pattern of data (ranging from 0x0 to 0xF) to calculate the
used stack size.

(3) [Range selection] check box

Selecting this check box enables a range specification of task numbers. Even if an invalid
range is specified, no error message will appear.

(4) Cancel button

Clicking this button cancels the display of used stack size, and returns to the [CPMS
DEBUGGER] window.

3 COMMANDS

3-45

(5) OK button
Clicking this button opens the [Display of used stack size] (size display) window.

Figure 3-34 [Display of used stack size] (size display) Window

<Display items>

No. Item Description

1 tn Task number
2 total Total stack size

3 use Used stack size
4 rest Unused stack size

(1) Close button

Clicking this button closes the [Display of used stack size] window, and returns to the
[CPMS DEBUGGER] window.

3 COMMANDS

3-46

<Notes>
 The same data pattern as the initialization pattern specified in the [Initialize the stack] window
must be specified as the check pattern.

 Calculating the used stack size is based on detection of a data pattern different from the
specified check pattern in the stack page area used by the specified task. Therefore, if the
stack page area begins with the same pattern as the specified check pattern, the used stack size
cannot be calculated and displayed correctly.

 Figure 3-35 shows the correspondence of sizes displayed in the [Display of used stack size]
(size display) window to sizes in the task-operating space.

Figure 3-35 Sizes Displayed in the [Display of used stack size] (size display) Window

TASK

STACK BSSSpecified check
patterns

(a) Total stack size
(b) Used stack size
(c) Unused stack size

Page boundary

Position where data pattern
different from specified check
pattern is detected

Task space

Page boundary

(c) (b)
(a)

3 COMMANDS

3-47

3.20 Matrix Monitor

Function: The “Matrix monitor” command opens the [Matrix monitor] window.
Procedure: Click the Matrix monitor button in the [CPMS DEBUGGER] window.

Figure 3-36 [Matrix monitor] Window

(1) Start monitoring button
Clicking this button starts the monitoring of set PI/O values.

3 COMMANDS

3-48

(2) Set I/O button
Clicking this button opens the window to set a value of PI/O as shown in Figure 3-37. In
this window, specify the bit status to set a PI/O value, and then click the OK button.

Figure 3-37 [Set I/O] Window

(3) Close button
Clicking this button closes the [Set I/O] window, and returns to the [CPMS DEBUGGER]
window.

3 COMMANDS

3-49

3.21 MCS

Function: The “MCS” command opens the [MCS] window.
Procedure: Click the MCS button in the [CPMS DEBUGGER] window.

Figure 3-38 [MCS] Window

(1) [Top Address] box
This box is used to specify the top address of the memory area of which the contents are to
be displayed. To select a specification method, select the [Specify address] radio button or
[Specify Symbol] radio button in the [Method to specify] group box.

(2) Read button

Clicking this button reads data from the displayed addresses of memory on the connected
programmable controller (PCs).

(3) Write button

Clicking this button writes the displayed memory data to the displayed addresses of memory
on the connected PCs.

3 COMMANDS

3-50

(4) Start button
Clicking this button starts the monitoring of data at the displayed addresses.

(5) Stop button

Clicking this button stops the monitoring of data at the displayed addresses.

(6) Close button
Clicking this button closes the [MCS] window, and returns to the [CPMS DEBUGGER]
window.

(7) Data save button
Clicking this button saves the data displayed in the [MCS] box as a text-format file.

(8) [DEC] and [HEX] radio buttons

These radio buttons are used to switch the display format in the [Memory contents] boxes
between decimal and hexadecimal notation.

(9) [WORD], [LONG], and [FLOAT] radio buttons

These radio buttons are used to select the display format in the [Memory contents] boxes
from among word, long word, and floating point.

(10) [SIGNED] and [UNSIGNED] radio buttons

These radio buttons are used to switch the display format in the [Memory contents] boxes
between signed and unsigned.

3 COMMANDS

3-51

3.22 Change Connection PCs

Function: The “Change connection PCs” command opens the window to set the type of
communication (*) between a programmable controller (PCs) and the personal
computer.

Procedure: Click the Change connection PCs button in the [CPMS DEBUGGER] window.

Figure 3-39 [Communication type] Window

(1) [IP address] box
This box is used to enter the IP address of the PCs to be connected.

(2) OK button

Clicking this button connects the personal computer to the PCs at the specified IP address.
After this connection is made, the [CPMS DEBUGGER] window appears.

(3) Cancel button

Clicking this button cancels the changed type of communication, and returns to the [CPMS
DEBUGGER] window.

(*) Communication type

Only the Ethernet that connects the personal computer and the CMUs of PCs is supported for
communication between CPMS Debugger (on the personal computer) and each PCs.
The S10V BASE SYSTEM must be used to set the IP address of each CMU.

3 COMMANDS

3-52

3.23 Initialize the Task

Function: The “Initialize the task” command opens the window to initialize the task environment
(*).

Procedure: Click the Initialize the task button in the [CPMS DEBUGGER] window.

Figure 3-40 [Initialize the task] Window

<Confirmation message 1>

Clicking the Cancel button in the confirmation message 1 window cancels the processing, and
returns to the [CPMS DEBUGGER] window.
When the OK button is clicked in the same window, the “confirmation message 2” window
appears.

3 COMMANDS

3-53

<Confirmation message 2>
Clicking the Cancel button in the confirmation message 2 window cancels the processing, and
returns to the [CPMS DEBUGGER] window.
Clicking the OK button in the same window aborts all tasks and then initializes the task
environment.
After the task environment is initialized, the message window shown below appears, followed by
the [CPMS DEBUGGER] window.

3 COMMANDS

3-54

(*) Task environment
Initializing the task environment resets the task environment on the connected programmable
controller (PCs) to the default environment defined by CPMS Debugger.
The following shows the default environment (area definition map) defined in CPMS
Debugger:

Figure 3-41 Default Environment Defined by CPMS Debugger

0x2000 0000

$TASK (4096 KB)

0x200c 6000

$MAP (always 792 KB)

$GLBRW (10240 KB)

0x4000 0000

0x5000 0000

0x4008 0000

0x50a0 0000

0x6000 0000

0x6008 0000

0x3000 0000

0x3040 0000

Unused

Unused

Unused

Reserve

Unused

Reserve

Unused

$MAP: Area that stores management

information on PCs memory.

$TASK: Area that stores a task (program).

$GLBRW: Read/write area that stores global

data.

APPENDIXES

APPENDIXES

A-2

Appendix A Notes on Using Program Names

The user must be careful when using a subroutine program that has the same name as that of a
subroutine prepared by the system. All subroutines prepared by the system are contained in
library files. Each subroutine can be easily linked by using the optlnk command with the library
option specified. However, when using the optlnk command to link a subroutine program with
the same name as a subroutine prepared (in a library file) by the system, be sure to specify the
object file defining the subroutine program as an argument of the optlnk command. Otherwise,
the subroutine prepared by the system (and not the subroutine program) will be called from the
library file incorrectly.
The library files prepared by the system and the subroutine names defined in the files are listed
below. Refer to the subroutine names to avoid using duplicate names for the user’s own
subroutine programs during programming.
If a subroutine program with the same name as a subroutine prepared (in a library file) by the
system must be used, specify the optlnk command to link the object file of said subroutine
program before the optlnk command that links any of the subroutines in the library file. In this
way, the incorrect calling of a subroutine with the same name can be avoided.
Listed below are the library files and subroutines prepared by the system.
Do not use a program name beginning with an underbar (_), which is the prefix indicating a
reserved name in the system.
The configuration of libraries is as follows:

Library name Contents Remarks

libsh4nbmzz.lib C-language subroutines
Denormalized numbers:
Treated as denormalized numbers
Value-rounding method: Discarding

For details, refer to the manual for the
shc compiler.

libsh4nbmdn.lib C-language subroutines
Denormalized numbers: Treated as 0
Value-rounding method: Discarding

libcpms.lib CPMS macro linkage subroutines For details, refer to “CPMS GENERAL
DESCRIPTION AND MACRO
SPECIFICATIONS
(Manual number SVE-3-201).”

APPENDIXES

A-3

<libsh4nbmzz.lib>

<libsh4nbmdn.lib>

atof memcpy strlen fpcheck fmod tan

fpgetmask memset strncat fpchecko log tanh

fpgetround modf strncmp acos log10

fpgetsticky sscanf strncpy asin matherr

fpsetmask sprintf strpbrk atan pow

fpsetround strcat strrchr atan2 cos

fpsetsticky strchr strspn ceil sin

frexp strcmp strtod exp cosh

ldexp strcpy strtol fabs sinh

memchr strcspn vsprintf floor sqrt

<libcpms.lib>

abort dhpread printf stime elset

arsum exit prsrv susp geterrno

asusp free queue timer gettimebase

chap gfact read usrdhpset gtkmem

chml cpms_ginfo resume_env usrelset getsysinfo

close gtime rleas wait gettaskinfo

cpms_copy ioctl rserv write usrdhp

ctime open rsum chkbmem usrel

delay pfree save_env chktaer wrtmem

dhpctl post sfact dhpset

<libsysctl.lib>

cardoff cardstat dsuctl ptnwrite sysRegWrite

slotewrite dcmctl dsustat regLRread sysdo

cardon dcmrb ledctl hdutl wdtset

sloteclear dcmstat pioctl sysRegRead

APPENDIXES

A-4

Appendix B Sizes of Stack Areas Used for Library Functions

The table below lists the sizes of stack areas that are used for library functions.

 (1/2)
Library Function name Stack size

C-language standard
libraries

(libsh4nbmdn.lib
libsh4nbmzz.lib)

atof 408
freexp 8
ldexp 20
memchr 0
memset 12
modf 40
sscanf 528
sprintf 752
strcat 0
strchr 0
strcmp 20
strcpy 24
strcspn 4
strlen 0
strncat 4
strncmp 4
strncpy 0
strpbrk 4
strchr 12
strspn 4
strtod 408
strtol 68
vsprintf 752
acos 196
asin 184
atan 156
atan2 176
ceil 28
exp 92
fabs 0
floor 28
fmod 40

APPENDIXES

A-5

 (2/2)

Library Function name Stack size

C-language standard
libraries

(libsh4nbmdn.lib
libsh4nbmzz.lib)

log 60

log10 72

pow 132

cos 84

sin 84

cosh 112

sinh 144

sqrt 8

tan 132

tanh 156

libcrs.lib

fpgetmask 0

fpgetround 0

fpgetsticky 0

fpsetmask 0

fpsetround 0

fpsetsticky 0

fpcheck 0

fpchecko 0

libfirad.lib
irglbad 0

irsubad 0

libcpms.lib memcpy (*) 28

(*) When a linked program calls the memcpy() function, the program does not
call the memcpy() function stored in the C-language standard library, but
calls the memcpy() function stored in the CPMS library.

APPENDIXES

A-6

Appendix C Task Creation Procedures

<Standard procedure using RPDP/S10V>
(1) Required software

If the operating system used is either Windows® 2000 or Windows® XP, the following are
required:
SH compiler (SuperH RISC engine C/C++ Compiler Ver. 7)
RPDP/S10V (Type: S-7895-10)
If it is Windows® 7 (32-bit), the following are required:
SH compiler (SuperH RISC engine C/C++ Compiler Ver. 9)
RPDP/S10V (Type: S-7895-63)

(2) Program development procedure

Follow the RPDP/S10V operation procedure to create the desired task.

Yes

Task

Site construction (Perform operation
with administrator authority.)

Application development

No

No

Yes

svgen, svconf (System generation)
The operation below is required for
each site.

Text editor :
Generate the source file

shc : Compile the source

svdtask : Delete the task

svdload : Delete the program

svload : Register the program

Is program contained in split area?

svdla : Release the split area

svdfa : Allocate a split area

svctask : Register the task

svrpl : Start the PCs

svdebug : Perform debugging

Is stack sufficient?

APPENDIXES

A-7

<Nonstandard procedure not using RPDP/S10V>
(1) Required software

If the operating system used is either Windows® 2000 or Windows® XP, the following are
required:
SH compiler (SuperH RISC engine C/C++ Compiler Ver. 7)
S10V CPMS Debugger (Type: S-7895-07)
If it is Windows® 7 (32-bit), the following are required:
SH compiler (SuperH RISC engine C/C++ Compiler Ver. 9)
S10V CPMS Debugger (Type: S-7895-62)

(2) Program development procedure

Follow the operation procedure below to create the desired task.

· · · See Item (a), “Setting environment variables.”

· · · See Item (b), “Checking standard libraries.”

· · · See Item (c), “Compiling the source.”

· · · See Item (d), “Linking files.”

Set environment variables

Check standard libraries

Compile the source

Link files

Load the task

Register the task · · · See Section 3.2, “task Loading and Register.”

· · · See Section 3.2, “Task Loading and Register.”

Initialize the task
environment

· · · See Section 3.23, “Initialize the Task.”

APPENDIXES

A-8

(a) Setting environment variables
The following shows a typical setting of the execution environment for the shc Compiler
Package:

Example of shc Compiler Package execution environment setting for S-7895-07P:

SHCPU=SH4
SHC_INC=C:\Hew2\Tools\Hitachi\Sh\7_1_1\include;C:\users\subsys\include;
 C:\Hitachi\S10V\Debug\include;C:\Hitachi\S10V\Debug\include\cpms
SHC_LIB=C:\Hew2\Tools\Hitachi\Sh\7_1_1\BIN ①
SHC_TMP=C:\Hitachi\S10V\Debug\tmp
HLNK_DIR=C:\Hitachi\S10V\Debug\lib;C:\users\subsys\lib ②
HLNK_TMP=C:\Hitachi\S10V\Debug\tmp
PATH=%PATH%;C:\Hew2\Tools\Hitachi\Sh\7_1_1\BIN ③

① This environment variable specifies “C:\Hew2\Tools\Hitachi\Sh\7_1_1\bin” as the directory to store the shc
Compiler when the shc Compiler Package (Ver. 7.1.01) is installed with default settings.

② This environment variable specifies “C:\Hitachi\S10V\Debug\lib” as the directory to store the standard libraries
and “C:\users\subsys\lib” as the directory to store user’s original libraries.

③ This environment variable specifies “C:\Hew2\Tools\Hitachi\Sh\7_1_1\bin” as the directory to store the shc
Compiler.

Example of shc Compiler Package execution environment setting for S-7895-62P:

SHCPU=SH4
SHC_INC=C:\Program Files\Renesas\Hew\Tools\Renesas\Sh\9_4_0\include; ⑦
 C:\users\subsys\include;C:\Hitachi\S10V\Debug\include;
 C:\Hitachi\S10V\Debug\include\cpms
SHC_LIB=C:\Program Files\Renesas\Hew\Tools\Renesas\Sh\9_4_0\BIN ④ ⑦
SHC_TMP=C:\Hitachi\S10V\Debug\tmp ⑦
HLNK_DIR=C:\Hitachi\S10V\Debug\lib;C:\users\subsys\lib ⑤
HLNK_TMP=C:\Hitachi\S10V\Debug\tmp
PATH=%PATH%;C:\ProgramFiles\Renesas\Hew\Tools\Renesas\Sh\9_4_0\BIN ⑥ ⑦

④ This environment variable specifies “C:\Program Files\Renesas\Hew\Tools\Renesas\Sh\9_4_0\bin” as the

directory to store the shc Compiler when the shc Compiler Package (Ver. 9) is installed with default settings.
⑤ This environment variable specifies “C:\Hitachi\S10V\Debug\lib” as the directory to store the standard libraries

and “C:\users\subsys\lib” as the directory to store the user’s original libraries.
⑥ This environment variable specifies “C:\Program Files\Renesas\Hew\Tools\Renesas\Sh\9_4_0\bin” as the

directory to store the shc Compiler.
⑦ Starting “C:\Program Files\Renesas\Hew\Tools\Renesas\Sh\9_4_0\shv9400env.bat” will set all of the

environment variables SHC_INC, SHC_LIB, SHC_TMP, and PATH -- of these variables, SHC_TMP will be set
to the value specified by the environment variable TEMP.

APPENDIXES

A-9

Table C-1 Environment Variables to be Set

No. Environment
variable Content of setting

1 path Use the path environment variable to add the directories to store the execution files of the
installed compiler package.
It is necessary to set the paths to such execution files as the compiler (shc), assembler
(asmsh), and optimization linkage editor (optlnk). Therefore, specification of the path
environment variable must not be omitted.
Specification format:
path= <name-of-execution-file-path> [;<name of existing path> ;...]

2 SHC_LIB Use the SHC_LIB environment variable to specify the directories to store the compiler load
modules and system include files. Specification of the SHC_LIB environment variable
must not be omitted.
Specification format:
set SHC_LIB= <name-of-execution-file-path>

3 SHCPU Use the SHCPU environment variable to specify the target CPU type.
For this system, specify “SH4” in the SHCPU environment variable.
Note that “SH1” is assumed to be the CPU type if the SHCPU environment variable is
omitted.
The CPU type can also be specified using the -cpu option.
Specification format:
set SHCPU= <CPU>

4 SHC_INC Use the SHC_INC environment variable to specify the directory to store the include files of
the compiler. To find a system include file, directories are searched in order of the
directory specified by the include option, the directory specified in the SHC_INC
environment variable, and the system directory (SHC_LIB).
To find a user include file, directories are searched in order of the current directory, the
directory specified by the include option, and the directory specified in the SHC_INC
environment variable.
Specification format:
set SHC_INC= <include-path-name> [;<include-path-name> ;...]

5 HLNK_DIR Use the HLNK_DIR environment variable to specify the directory to store the input files of
the optimization linkage editor.
To find a file specified by the Input or library option, directories are searched in order of the
current directory and the directory specified in the HLNK_DIR environment variable.
The library search path for the loader complies with the specification in the HLNK_DIR
environment variable.
Specification format:
set HLNK_DIR= <include-path-name> [;<include-path-name> ;...]

6 SHC_TMP Use the SHC_TMP environment variable to specify the directory where the compiler
generates temporary files.
set SHC_TMP= <directory>

7 HLNK_TMP Use the HLNK_TMP environment variable to specify the directory where the linkage editor
generates temporary files.
set HLNK_TMP= <directory>

APPENDIXES

A-10

(b) Checking standard libraries
Note the following when using the shc compiler for compilation:

 andling of floating-point numbers
The shc compiler allows the user to control the denormalizing and rounding of floating-
point numbers through the specification of compile options.
Note that the conditions for supporting the settings of compile options vary depending
on the type of standard library. The tables below list the options to control the
methods of handling and rounding denormalized numbers and the standard libraries
corresponding to individual option settings.
Specify the library to be used when files are linked. For how to specify the library,
see Item (d), “Linking files.”

Table C-2 Options to Control Handling of Floating-point Numbers

 Specification Option Default

Handling of
denormalized
numbers

Treating a denormalized number as 0 -denormalization=off Treating as 0

Treating a denormalized number as a
denormalized number (*)

-denormalization=on

Method of rounding
result values

Discarding fractions below significant digits -round=zero Discarding

Rounding off fractions below significant digits round=nearest

(*) When the program created is executed, each denormalized number is treated as 0 because the SH4 (SH7751), the
S10V series CPU, does not support denormalized numbers.

Table C-3 Correspondence between Methods of Handling Floating-point Numbers and

Standard Libraries

 -denormalization -round Standard library

Option specifications

off zero libsh4nbmzz.lib

on zero Not supported

off nearest Not supported

on nearest libsh4nbmdn.lib

APPENDIXES

A-11

Table C-4 Library Contents

Library name Library contents Remarks

libsh4nbmzz.lib C-language subroutines
Denormalized numbers:
Treated as denormalized numbers
Value-rounding method: Discarding

For details, refer to the manual for
the shc compiler.

libsh4nbmdn.lib C-language subroutines
Denormalized numbers: Treated as 0
Value-rounding method: Discarding

libcpms.lib CPMS macro linkage subroutines For details, refer to “CPMS
GENERAL DESCRIPTION AND
MACRO SPECIFICATIONS
(Manual number SVE-3-201).”

APPENDIXES

A-12

The table below lists the files provided by RPDP/S10V and the S10V CPMS Debugger System.

Table C-5 Files Provided by S10V CPMS Debugger

(1/2)

File name
Directory storing files at installation of
S10V CPMS Debugger (default) (*1)

Content

libcpms.lib C:\HITACHI\S10V\DEBUG\LIB CPMS macro linkage subroutines

libcrs.lib C:\HITACHI\S10V\DEBUG\LIB Subroutines to control IEEE floating-point
processing environment

libsh4nbmdn.lib C:\HITACHI\S10V\DEBUG\LIB C-language subroutines for SH compiler

libsh4nbmzz.lib C:\HITACHI\S10V\DEBUG\LIB C-language subroutines for SH compiler

libsysctl.lib C:\HITACHI\S10V\DEBUG\LIB Subroutines to manage CPMS macro system
(*2)

cpms_dhp.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for DHP

cpms_elog.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for user error log

cpms_errno.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for error number definitions

cpms_macro.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file to use CPMS macros

cpms_table.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for task execution environment
table

cpms_types.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for type declarations to use
macros

cpms_ulsub.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for built-in subroutines

ieeefp.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for floating-point registers

sdio.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for SDIO driver

stdio.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for standard I/O

stdlib.h C:\HITACHI\S10V\DEBUG\INCLUDE Include file for standard libraries

cpms_adbbf.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for ADB table

cpms_cardctl.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS (Unused)

cpms_dcm.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS (Unused)

cpms_log.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for error log numbers

cpms_oscb.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for OSCB table

cpms_pucomt.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS (Unused)

cpms_rserv.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for shared resource

cpms_syscb.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for SYSCB table

(*1) It is assumed that S10V CPMS Debugger is installed using drive C.
(*2) The subroutines include wdtsert and TimebaseToSecs.

APPENDIXES

A-13

Table C-5 Files provided by S10V CPMS Debugger

(2/2)

File name
Directory storing files at installation of
S10V CPMS Debugger (default) (*1)

Content

cpms_taskenv.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for task execution environment
data table

cpms_tcb.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for TCB table

cpms_timer.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file related to timer

cpms_ucb.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for UCB table

cpms_ulsubln.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file to link built-in subroutines

cpms_usr_param.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for parameter definitions

dhpinfo.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for DHP information

errno.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for error number definitions

macro_base_p.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file to use CPMS macros

macro_id.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for CPMS macro number
definitions

macro_rpdp_p.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for RPDP

R700_parameter.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for table address definitions

R700_usr_param.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for system definitions

sysctl.h C:\HITACHI\S10V\DEBUG\INCLUDE\CPMS Include file for system control

(*1) It is assumed that S10V CPMS Debugger is installed using drive C.

APPENDIXES

A-14

(c) Compiling the source
CPMS Debugger is designed on the premise that the Hitachi’s Microcomputer
Development Environment System “SuperH RISC engine C/C++ Compiler Package Ver.7
or later” (hereinafter called the shc compiler) is used as the compiler or assembler.

Details of C compiler options
The following describes the compiling method using the shc compiler and some
precautions on compilation:
For detailed shc compiler specifications, refer to the manual for the shc compiler.

 Command format
shc [Δ<option>...][Δ<file-name>[Δ<option>...]...]
(Example) shcΔtest1.c Δtest2.c [Enter]

 Setting environment variables
When using the shc compiler, set proper values in the environment variables listed in
Table C-1.

 Generating and saving a compile list (shc)
Before compilation, generate and save a compile list that is required to calculate the
size of the stack to be used by the task. To generate a compile list, specify the -listfile
option as described below.
Specify the -listfile option at a position before the C-language source file to be
compiled.
Note that specifying the -listfile option after the link with C-language source file will
generate a compile list only for the last file.

 Specification of compile list generation

-listfile [= < list-file-name >] -show=source, object

If no list file name is specified in the -listfile option, the name of the compile list will
combine the source file name and extension “lst”.

(Example)
◆ shc Δ-listfile Δtest1.c Δtest2.c [Enter]

The listfile option is valid for both test1.c and test2.c.
◆ shc Δtest1.c Δtest2.c Δ-listfile [Enter]

The listfile option is valid only for test2.c.

Press the [Enter] key.

APPENDIXES

A-15

(d) Linking files
Link compiled object files as described below to generate the files (absolute modules)
having the format that enables the files to be sent to programmable controllers.
Use the optlnk command to link files. The following describes how to start the linker:
Enter the command below using the MS-DOS command prompt.

 Command format
optlnk -noprelink -form=absolute -start=P,D,C/address-1,S/address-2,B/address-3

-output=file name of absolute module to be generated -library=libcpms.lib
-library=libsh4nbmdn.lib (-list=mapping-file -show=symbol) (-stack)
user-object,library

(Example)
c:\tmp>optlnk -noprelink -form=absolute -start=P,D,C/30004000,S/30005000,

B/30006000
-output=task1.elf -library=libcpms.lib -library=libsh4nbmdn.lib -list=task1.map
-stack task1.obj

address-1: 30004000
address-2: 30005000
address-3: 30006000
file name of absolute module to be generated: task1.elf
mapping-file: task1.map
user-object: task1.obj

APPENDIXES

A-16

Table C-6 Optlink Specification Format

No. Item Specification format Function

1 Library file library=file-name Specifies the library.

2 Suppression of pre-linker
activation

noprelink Suppresses pre-linker activation to increase processing
speed. Pre-linking can be omitted when not using the
C++ template and run-time type check functions.

3 Output format form=absolute Specifies the format of the linker output file that is
applied to load module generation. This parameter is
required.

4 Output file output=file-name Specifies the linker output file that is used to generate a
load module.

5 List file list=file-name Outputs a list file that is used to generate a mapping file.

6 List content show=symbol Outputs a list file that is used to generate a mapping file.

7 Section start address start=section/
address[,...]

Allocates the specified section to the specified address.
This parameter is used for program allocation. This
parameter is required due to the map configuration
described later. The user must determine addresses 1
and 2 in consideration of their usage for program or
stack size.

8 Stack information file stack Outputs the information file on used stack size.

APPENDIXES

A-17

Figure C-1 Task Configuration

The $TASK area stores tasks (programs).
The $GLBRW area is a read/write area used to store global data.
The text area stores the procedures of the program.
The data area stores the initial data of the program.
The stack area is a dynamic work area used by the task.
The bss area is a static work area used by the program.
The os work area is a dynamic work area used by the os. This area is automatically allocated as
a page that follows the bss area when the task is registered.
The text area must be aligned on a page boundary (4 KB boundary). The data, bss, and stack
areas must each be aligned on an 8-byte boundary.
The stack area must be aligned on a page boundary.
Addresses 1, 2, and 3 must be specified by the user.

Automatically allocated
when task is registered

$TASK

D and C sections

8-byte boundary8-byte boundary

Page boundary
(4 KB boundary)

Bus memory
space, etc.

$TASK

Logical space managed by CPMS

$GLBRW

P section
B sections

Task
1

Task
2

・・・
Task

N

text data stack bss
os work area

(4 KB)
Unused

Address 1
Address 1

Address 2

Page boundary
(4 KB boundary)

Page boundary (4 KB boundary)

Unused

Address 3

APPENDIXES

A-18

Follow the procedure below to obtain addresses 1 and 2.

<Procedure 1> (Specifying address 1)
Arbitrarily specify the start address (address 1) of the text area. Address 1 must be on a page
boundary (4 KB boundary) and outside any range of addresses used by other tasks. Address 1
must be specified in the optlnk command that is executed for linking files as described in Item
(d), “Linking files.”

<Procedure 2> (Generating a list file)

Specify the -list option in the shc command to generate a list file at compilation.
F:\tmp>shc task1.c-list

<Procedure 3> (Confirming sizes of sections)

Check the value of “frame size” in the generated list file (file name: task1.lst) to confirm the
stack size, and confirm the sizes of sections listed under “SECTION SIZE INFORMATION” in
the generated list file.
A detailed method of calculating stack size is described later.

<Procedure 1>

<Procedure 2>

<Procedure 3>

<Procedure 4>

<Procedure 5>

<Procedure 6>

Specify address 1

Generate a list file

Confirm sizes of sections

Calculate total size of
sections

Specify addresses 2 and 3

Confirm total size of task

(Example)
(Source file) File name: task1.c

int b1;
int d1 = 10;
static int b2 ;
static int d2 = 100 ;
main()
{
 static int b3 ;
 static int d3 = 1000 ;

int s1;
int s2 = 20 ;
exit(0);

} Be sure to add exit(0);
on the last line.

APPENDIXES

A-19

(Generated list file) File name: task1.lst

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

P 00000000 _main: ; function: main
 ; frame size=0
 00000000 D201 MOV.L L11+2,R2 ; _exit
 00000002 422B JMP @R2
～～～
******* SECTION SIZE INFORMATION *******

PROGRAM SECTION (P): 0000000C Byte(s)
CONSTANT SECTION (C): 00000000 Byte(s)
DATA SECTION (D): 0000000C Byte(s)
BSS SECTION (B): 0000000C Byte(s)

Stack size

APPENDIXES

A-20

<Procedure 4> (Calculating total size of sections)
Calculate the sum of the sizes of program section (P), constant section (C), and data section (D).
In the example below, the total size is 24 bytes. This total size indicates that the text and data
areas can be contained on one page (4 KB).

<Size of each section>
PROGRAM SECTION (P): 0000000C Byte(s)
CONSTANT SECTION (C): 00000000 Byte(s)
DATA SECTION (D): 0000000C Byte(s)

(P) (C) (D)
0xC + 0x0 + 0xC = 0x18 bytes (decimal 24 bytes)

<Procedure 5> (Specifying addresses 2 and 3)

Specify the start address (address 2) of the stack area and the start address (address 3) of the bss
area.
The stack and bss areas must be allocated on a page other than that containing the text and data
areas.
Although the stack size obtained in procedure 3 is 0, allocate a one-page (4 KB) area to the stack
for future use.
Accordingly, the start address of the stack area must follow the page of the text and data areas
(in other words, the start address must be at the top of the second page).

The start address of the bss area must follow the page of the stack area (or be at the top of the
third page).
Since the size of the bss area was confirmed to be 12 bytes in procedure 3, the bss area can be
contained on the third page.

Addresses 2 and 3 must be specified in the optlnk command that is executed for linking files as
described in Item (d), “Linking files.”

<Procedure 6> (Confirming total size of task)

The os work area must be aligned on a page boundary (4 KB boundary), and always have a size
of 4 KB. Therefore, the os work area is allocated on the fourth page, and the total size of the
task amounts to 16 KB.
A new task can be allocated in the area that follows the end address of the os work area.

APPENDIXES

A-21

Figure C-2 Map Configuration

0x30004000 (address 1)

0x30004004 0x30004010

0x3000 5000 (address 2) 0x30006000 (address 3)

0x3000 600C

0x3000 7000

0x30008000

data
(4 bytes)

Page boundary (4 KB)
(First page)

text
(4 bytes)

stack
(4 KB)

bss
(12 bytes)

os work area
(4 KB)

Page boundary (4 KB)
(Second page)

Page boundary (4 KB)
(Third page)

Page boundary (4 KB)
(Fourth page)

APPENDIXES

A-22

<Method of calculating stack size>
To calculate the size of the stack area to be used, calculate the size of the stack area to be used
by each function, each component of the program, and then calculate the total size of the stack
to be used based on the calling relationship between functions.

(1) Calculating stack area to be used by each function

The size of the stack area to be used by each function can be determined from the value of
“frame size” in the object list output by the compiler.
An actual example is given below.

 Source code

extern int h(char , int *, double);
int h(char a, register int *b, double c)
{
 char *d;

 d = &a;
 h(*d,b,c);
 {
 register int i;

 i = *d;
 return i;
 }
}

APPENDIXES

A-23

 Object list

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

P 00000000 _h: ; function: h
 ; frame size=12
 00000000 2FE6 MOV.L R14,@-R15
 00000002 4F22 STS.L PR,@-R15

In this example, the size of the stack area to be used by the h function is 12 bytes, which is
indicated as the value of “frame size” in the “COMMENT” column.

(2) Calculating total stack size based on calling relationship

Calculate the total size of the stack area to be used based on the calling relationship between
functions.
Figure C-3 shows an example of calculating the size of stack area to be used based on the
calling relationship between functions.

Function
name

Size of stack to
be used
(in bytes)

main 24

f 32

g 24

Figure C-3 Calling Relationship between Functions and Sizes of Stack to be Used

When the g function is called via the f function as shown in the example above, the size of
the stack area is as shown in Table C-7.

Table C-7 Example of Calculating Stack Size

Calling route Stack size (in bytes)

main(24) → f(32) → g(24) 80
main(24) → g(24) 48

main()

f()
g()

APPENDIXES

A-24

As shown in the example, the size of the stack area to be used must be calculated when calling the
function at the deepest level of calling, and then a stack area that has at least the maximum size
calculated must be allocated.
When standard library functions are to be used, the size of the stack area to be used by the library
functions must also be considered. For the sizes of stack areas used by standard library
functions, see Appendix B, “Sizes of Stack Areas Used for Library Functions.”
To calculate the stack size for a function that is called recursively, use formula “‘stack size for
function’ × ‘maximum number of recursive calls’.”
Even if the source program does not use any library function, it may include some links to the
run-time routines required for program execution. The size of the stack area to be used by a run-
time routine can be confirmed by a stack analysis tool (described below in the explanation of the
method of confirming the used stack size).

<Method of confirming the used stack size>

When program files are linked by the optlnk command with the -stack option specified, an
information file on used stack size can be generated.
The total size of the stack used by the program can be obtained by using the stack analysis tool
(an accessory to the compiler package) to analyze the generated information file on used stack
size.

 Generation of an information file on used stack size
When program files are linked by the optlnk command with the -stack option specified, an
information file on used stack size is generated.
The information file on used stack size is generated in the current directory at linkage, and its
file name has extension “.sni”.

 Method of using the stack analysis tool
Follow the procedure below to start the stack analysis tool and display the sizes of stack areas
used by programs and subprograms.
For details on how to use the stack analysis tool, refer to the manual for the shc compiler and
the Help of the stack analysis tool.
① If the shc compiler used is of Ver. 7, click the Start button on the Windows® desk

top, select [(All) Programs], select [Hitachi Embedded Workshop 2], and then click
[Hitachi Call Walker] to start the stack analysis tool.
If it is of Ver. 9, click the Start button on the Windows® desktop and then select
[(All) Programs] – [Renesas] – [High-performance Embedded Workshop] – [Call
Walker] to start the stack analysis tool.

② Select [Import Stack file...] from the [File] menu of the stack analysis tool to open a dialog
box, specify the size information file on used stack generated by the loader in the [File
name] field in the dialog box, and then click the Open button.

APPENDIXES

A-25

 Example of display by stack analysis tool

 Notes on analyzing the sizes of the stack used by loaded programs and subprograms
The stack analysis tool indicates that the size of the stack used by a program or subprogram
written in assembly language is 0 byte. Therefore, note the following points when using the
stack analysis tool to analyze the sizes of stack areas used by loaded programs and
subprograms :

 Size of stack used by memcpy()
When a loaded program or subprogram calls the memcpy() function, the program does not
call the memcpy() function stored in the C-language standard library, but calls the
memcpy() function stored in the CPMS library. The stack analysis tool indicates that the
size of the stack used by the memcpy() function in the CPMS library is 0 byte. However,
the memcpy() function in the CPMS library actually uses 28 bytes of stack.
Select the [Modify] command from the [Edit] menu of the stack analysis tool, change the
stack size of the memcpy() function to 28 bytes, and then recalculate the used stack size.
The user can determine whether a loaded program or subprogram uses the memcpy()
function by using the search function of the stack analysis tool to search for memcpy.

 Size of stack used by program or subprogram written in assembly language
Analyze the stack used by a program or subprogram written in assembly language in the
same way as analyzing the size of the stack used by memcpy(). Select the [Modify]
command from the [Edit] menu of the stack analysis tool, change the stack size, and then
recalculate the used stack size.

APPENDIXES

A-26

Appendix D Error Messages

(1/2)

No. Error message Corrective action

1 Task number %d is dormant Check the task status, and then retry operation.

2 Task number %d is not dormant Check the task status, and then retry operation.

3 Task number %d is already suspend Check the task status, and then retry operation.

4 Task number %d is not suspend Check the task status, and then retry operation.

5 Task number %d is not registered Check the specified task number.

6 User Task not running The user task is not running.

7 Invalid address error Check contents of the CMU error log. (*3)

8 Invalid address set Check the set address of ADT.

9 Processor connection table is full Wait until another user ends operation, and then retry
operation.

10 Task number %d is not idle Check the task status, and then retry operation.

11 Cannot get register information Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

12 Cannot register timer event in TRB The number of registered timer events exceeded the
maximum limit. Reduce the number of registered timer
events.

13 Must specify address in text space Check the set breakpoint address .

14 Cannot get TCB Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

15 ADT channel is already set Delete the ADT, and then execute operation.

16 Break task is not found The breakpoint may have been deleted by another PC.
Check contents of the DHP trace information. (*4)
Check the task state and breakpoint setting.

17 systemcall error (%s, errno = %d) Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

18 DHP data read error Check contents of the CMU error log. (*3)
Contact the system administrator. (*1)

19 Cannot DHP trace ON/OFF Check contents of the CMU error log. (*3)
Contact the system administrator. (*1)

20 connection timeout Check the network connection status (IP address and
communication cable), and then retry operation. (*2)

%d: Error code %s: System call name

APPENDIXES

A-27

(2/2)
No. Error message Corrective action

21 connection refused Check the network connection status (IP address and
communication cable), and then retry operation. (*2)
Check contents of the CMU error log. (*3)

22 connection cut Check the network connection status (IP address and
communication cable), and then retry operation. (*2)
Check contents of the CMU error log. (*3)

23 connection reset Check the network connection status (IP address and
communication cable), and then retry operation. (*2)
Check contents of the CMU error log. (*3)

24 server closed Check the network connection status (IP address and
communication cable), and then retry operation. (*2)
Check contents of the CMU error log. (*3)

25 port busy Wait until another user ends operation, and then retry
operation.

26 socket creat error Check contents of the CMU error log. (*3)

27 no buffer Check contents of the CMU error log. (*3)

28 network not reached Check the network connection status (IP address and
communication cable), and then retry operation. (*2)

29 network down An error occurred in the network connection interface of
the CMU. Check contents of the CMU error log. (*3)

30 port No error Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

31 IP address error Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

32 memory attach failed Check contents of the CMU error log. (*3)

33 fatal error Contact the system administrator. (*1)
Check contents of the CMU error log. (*3)

34 rc = %d Check the network connection status (IP address and
communication cable), and then retry operation. (*2)
Check contents of the CMU error log. (*3)

APPENDIXES

A-28

(*1) If an error message “Contact the system administrator.” appears in the Corrective action column, collect the data
for investigation and DHP trace. The data files to be collected are as follows:
<Data for investigation>

C:\Hitachi\S10V\DEBUG\Debugger.log (for S10V CPMS Debugger installed using drive C)
<DHP trace>

File saved by the Save button in the [Display DHP trace] window as described in Section 3.17, “Setup of
DHP Status”

(*2) Method of checking network connection status by using the Ping function of the personal computer
Use a general-purpose personal computer with Windows® 2000, Windows® XP, Windows® 7 (32-bit) installed to
check the Ethernet connection and IP address setting of the relevant CMU.

Use the Ping command to confirm that the IP connection of the CMU is normal as follows:
① Open the [Start] menu, select [(All) Programs], select [Accessory], and then click [Command prompt] to open

the [Command Prompt] window.
② Enter the Ping command to perform a basic test on communication between the personal computer and linked

unit. The input format of the Ping command is “Ping [IP-address]” or “Ping [host-name]”.
<Example of IP address specification> Ping 192.192.192.13

When the Ethernet connection between the CMU and personal computer is normal, the following message
will appear:

Pinging 192.192.192. 13 with 32 bytes of data
Reply from 192.192.192. 13: bytes=32 time=2ms TTL=32
Reply from 192.192.192. 13: bytes=32 time=1ms TTL=32
Reply from 192.192.192. 13: bytes=32 time=1ms TTL=32
Reply from 192.192.192. 13: bytes=32 time=1ms TTL=32
C:\WINDOWS>

③ If the Ethernet connection is abnormal, the following (time-out) message will appear:

Pinging 192.192.192. 13 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
C:\WINDOWS>

(*3) For how to check the error log, see Section 3.12, “Error Log.”
(*4) For how to check the DHP trace, see Section 3.17, “Setup of DHP Status.”

