

First Edition, August 2003, SVE-3-201(A)

All Rights Reserved, Copyright  2003, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission
in writing from the publisher.

Printed in Japan.

BI-NR-MM<IC-NS> (FL-MW20, AI8.0)

 SAFETY PRECAUTIONS

● Read this manual thoroughly and follow all the safety precautions and
instructions given in this manual before operations such as system
configuration and program creation.

● Keep this manual handy so that you can refer to it any time you want.
● If you have any question concerning any part of this manual, contact your

nearest Hitachi branch office or service engineer.
● Hitachi will not be responsible for any accident or failure resulting from your

operation in any manner not described in this manual.
● Hitachi will not be responsible for any accident or failure resulting from

modification of software provided by Hitachi.
● Hitachi will not be responsible for reliability of software not provided by

Hitachi.
● Make it a rule to back up every file. Any trouble on the file unit, power

failure during file access or incorrect operation may destroy some of the
files you have stored. To prevent data destruction and loss, make file
backup a routine task.

● Furnish protective circuits externally and make a system design in a way that
ensures safety in system operations and provides adequate safeguards to
prevent personal injury and death and serious property damage even if the
product should become faulty or malfunction or if an employed program is
defective.

● If an emergency stop circuit, interlock circuit, or similar circuit is to be
formulated, it must be positioned external to the programmable
controller. If you do not observe this precaution, equipment damage or
accident may occur when the programmable controller becomes
defective.

● Before changing the program, generating a forced output, or performing the
RUN, STOP, or like procedure during an operation, thoroughly verify the
safety because the use of an incorrect procedure may cause equipment
damage or other accident.

THIS PAGE INTENTIONALLY LEFT BLANK.

i

PREFACE

This manual describes the Compact Process Monitor System (CPMS), which is an operating
system designed for real-time control of the S10V CMU, centered around the functions of the
operating system and the linkage of macro calls. This manual is intended for those who design
or develop real-time control programs on the Hitachi 04/R600 System. This manual assumes
that readers have a basic knowledge of ordinary operating systems.

<Manual organization>

PART 1 GENERAL DESCRIPTION
CHAPTER 1 OVERVIEW

This chapter describes the configuration and basic function specifications of the
CPMS.

CHAPTER 2 TASK MANAGEMENT

This chapter describes the configuration and linkage of tasks and other task
functions required in creating real-time control programs.

CHAPTER 3 MEMORY MANAGEMENT

This chapter describes memory management functions such as for allocation and
protection of main memory.

CHAPTER 4 TIMER MANAGEMENT

This chapter explains how to manage the time of day and the length of time.

CHAPTER 5 SHARED RESOURCE MANAGEMENT

This chapter describes exclusive control of resources shared by tasks.

CHAPTER 6 I/O DEVICE MANAGEMENT

This chapter explains how to identify I/O devices.

CHAPTER 7 SYSTEM MANAGEMENT

This chapter explains how to start up the system.

CHAPTER 8 TASK ERROR HANDLING

This chapter describes built-in subroutines executed in case of task errors.

CHAPTER 9 SYSTEM SERVICES

This chapter describes functions used to fetch information on the operation status
of the system and tasks.

PART 2 MACRO SPECIFICATIONS

This part describes the functions and linkage of CPMS macro calls.

PART 3 LIBRARIES

This part describes the functions and linkage of libraries such as for arithmetic
operations.

ii

<Related Manual>
● SOFTWARE MANUAL OPERATION RPDP/S10V for windows® (Manual number

SVE-3-133)

Note for storage capacity calculations:
● Memory capacities and requirements, file size and storage requirements, etc. must be

calculated according to the formula 2n. The following examples show the results of such
calculations by 2n (to the right of the equals signs):
1 KB (kilobyte) = 1024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes

● As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n:
1 KB (kilobyte) = 1000 bytes
1 MB (megabyte) = 10002 bytes
1 GB (gigabyte) = 10003 bytes

iii

CONTENTS

PART 1 GENERAL DESCRIPTION

CHAPTER 1 OVERVIEW.. 1 - 2

1.1 CPMS Functions .. 1 - 2
1.2 CPMS Specifications ... 1 - 3
1.3 CPMS Structure ... 1 - 4
1.4 CPMS and Hardware ... 1 - 5
1.5 Interface between the CPMS and Users... 1 - 6

CHAPTER 2 TASK MANAGEMENT ... 1 - 7
2.1 Task.. 1 - 7
2.2 Task Scheduling... 1 - 10
2.3 Task Operations ... 1 - 12
2.4 Task State Transition ... 1 - 15
2.5 Task Control .. 1 - 17
2.5.1 Initial state ... 1 - 17
2.5.2 Task activation .. 1 - 17
2.5.3 Task termination.. 1 - 20
2.5.4 Task execution inhibition.. 1 - 20
2.5.5 Task abortion... 1 - 23
2.5.6 Synchronization between tasks ... 1 - 23

CHAPTER 3 MEMORY MANAGEMENT... 1 - 27

3.1 Logical Space... 1 - 27
3.2 Memory Protection .. 1 - 28
3.3 Error Handling during Memory Access... 1 - 29
3.4 Procedure for Checking Access to the System Bus ... 1 - 30

CHAPTER 4 TIMER MANAGEMENT ... 1 - 31
4.1 Length of Time and Time of Day .. 1 - 31
4.2 Time-Based Task Control .. 1 - 31
4.3 Changing the Time... 1 - 31
4.4 Matching the Times between the CMU and LPU.. 1 - 31

CHAPTER 5 SHARED RESOURCE MANAGEMENT 1 - 32

5.1 Shared Resources ... 1 - 32
5.2 Shared Resource Management Method ... 1 - 34
5.3 Exclusive Control of Shared Resources by the PRSRV and PFREE Macros 1 - 36

CHAPTER 6 I/O DEVICE MANAGEMENT ... 1 - 37
6.1 Structure of the I/O Device Management Feature ... 1 - 37
6.2 I/O Unit Number .. 1 - 37
6.3 Device Number .. 1 - 37

CHAPTER 7 SYSTEM MANAGEMENT ... 1 - 38
7.1 Starting Up and Stopping CPMS... 1 - 38

iv

7.1.1 Status changes at startup and stop... 1 - 38
7.1.2 Startup ... 1 - 39
7.1.3 Stop ... 1 - 39

7.2 INS Built-in Subroutine and Initial Start Tasks... 1 - 40
7.3 Watchdog Timer .. 1 - 41
7.3.1 Functions... 1 - 41
7.3.2 How to use the watchdog timer... 1 - 41

CHAPTER 8 TASK ERROR HANDLING.. 1 - 42

8.1 Repertory of Built-in Subroutines.. 1 - 42
8.2 Execution Environment of Built-in Subroutines ... 1 - 43
8.3 Processing to Link Built-in Subroutines.. 1 - 44
8.4 Linkage of Built-in Subprograms .. 1 - 46
8.5 Recovery from Program Errors.. 1 - 48

CHAPTER 9 SYSTEM SERVICES... 1 - 50
9.1 DHP ... 1 - 50
9.2 CPU Load Ratio... 1 - 51

PART 2 MACRO SPECIFICATIONS

CHAPTER 1 OVERVIEW ... 2 - 2

1.1 Macro Instructions ... 2 - 2
1.2 CPMS Macro Linkage Library .. 2 - 2
1.3 General Rule for Macro Instructions ... 2 - 3
1.4 Macro Instruction Parameter Check .. 2 - 4
1.5 CPMS Macros.. 2 - 5

PART 3 LIBRARIES

CHAPTER 1 OVERVIEW ... 3 - 2

1.1 Programming Requirements .. 3 - 2
1.2 Order of Libraries Specified .. 3 - 2
1.3 Names Defined in Libraries ... 3 - 2

APPENDIXES

APPENDIX A MACRO PARAMETERS .. A - 2
APPENDIX B CPMS ERROR HANDLING... A - 3
APPENDIX C BUILT-IN SUBROUTINE INPUT DATA............................ A - 5

v

FIGURES

Figure 1-1 CPMS Structure... 1 - 4
Figure 1-2 Relation between the Hardware Configuration and the CPMS................... 1 - 5
Figure 1-3 Interface between the CPMS and Users .. 1 - 6
Figure 1-4 Task Structure.. 1 - 7
Figure 1-5 Relationship between Tasks and Levels .. 1 - 8
Figure 1-6 Change of Priority Level and Resource ... 1 - 9
Figure 1-7 CPU Queue.. 1 - 10
Figure 1-8 Level Change ... 1 - 11
Figure 1-9 Concurrent Task Processing (Multitasking) .. 1 - 11
Figure 1-10 Task State Transitions ... 1 - 16
Figure 1-11 Task Activation.. 1 - 17
Figure 1-12 SFACT Macro Instruction ... 1 - 18
Figure 1-13 QUEUE Macro Instruction and Task Execution Order 1 - 19
Figure 1-14 Difference in Task Activation between QUEUE Macro
 Instruction and TIMER Macro Instruction .. 1 - 20
Figure 1-15 DELAY Macro Instruction .. 1 - 21
Figure 1-16 Application of DELAY Macro Instruction.. 1 - 21
Figure 1-17 Inhibition of Execution by ASUSP Macro Instruction................................ 1 - 22
Figure 1-18 Example of Deadlock by ASUSP Macro Instruction 1 - 22
Figure 1-19 Synchronization between Tasks by WAIT/POST 1 - 24
Figure 1-20 Control Flow Using WAIT/POST... 1 - 25
Figure 1-21 ECB State Transition ... 1 - 26
Figure 1-22 Logical Address Map... 1 - 27
Figure 1-23 Procedure for Checking Access to the System Bus..................................... 1 - 30
Figure 1-24 Fault Occurring When No Exclusive Control is Exerted 1 - 32
Figure 1-25 Exclusive Control by Shared Resource Management Macro Instructions .. 1 - 33
Figure 1-26 Usage of RSERV/FREE .. 1 - 34
Figure 1-27 Example of Deadlock .. 1 - 35
Figure 1-28 Sample Deadlock Caused by PRSRV.. 1 - 36
Figure 1-29 Structure of the I/O Device Management Feature 1 - 37
Figure 1-30 Device Number.. 1 - 37
Figure 1-31 Status Changes when CPMS is Started Up and Stopped............................. 1 - 38
Figure 1-32 Processing to Link Built-in Subprograms (1) .. 1 - 44
Figure 1-33 Processing to Link Built-in Subprograms (2) .. 1 - 45
Figure 1-34 Recovery from Program Errors.. 1 - 48
Figure 2-1 CPMS Macro Linkage Library Function ... 2 - 2

vi

TABLES

Table 1-1 CPMS Specifications... 1 - 3
Table 1-2 Factors of Task Activation .. 1 - 12
Table 1-3 Task Execution Conditions (Initial Activation) .. 1 - 13
Table 1-4 Task Suspension Conditions ... 1 - 13
Table 1-5 Task Restart Conditions .. 1 - 14
Table 1-6 Task Termination Conditions.. 1 - 14
Table 1-7 States of Task .. 1 - 15
Table 1-8 Memory Access Rights.. 1 - 28
Table 1-9 States on Startup and Stop... 1 - 38
Table 1-10 Events on Startup and Stop ... 1 - 38
Table 1-11 Start Factors... 1 - 40
Table 1-12 Repertory of Built-in Subroutines ... 1 - 42
Table 1-13 Output Information from Built-in Subroutines ... 1 - 47
Table 2-1 Relationship among TNs at Parameter Check... 2 - 4

PART 1 GENERAL DESCRIPTION

1. OVERVIEW

1 - 2

CHAPTER 1 OVERVIEW

1.1 CPMS Functions
The CPMS (Compact Process Monitor System) is the nucleus of the real-time operating
system.
The CPMS has the following functions.

● Task management

Up to 255 tasks can be controlled.
● Memory management

Memory address conversion and memory protection are controlled.
● Timer management

The time of day and the length of time maintained by the system are controlled.
● Shared resource management

Resources shared by tasks are exclusively controlled.
● I/O device management

A variety of I/O devices are controlled, and I/O drivers are incorporated into the system.
● System management

System initialization as well as the status and configuration of the system are controlled.
● System services

Information in the system and system services are offered.

1. OVERVIEW

1 - 3

1.2 CPMS Specifications
Table 1-1 shows CPMS specifications (system parameters).

Table 1-1 CPMS Specifications

Item Value Remarks

Number tasks Up to 255 Assign task numbers as follows:
1 to 224: User tasks
225 to 255: System tasks
230 to 255: OS tasks

Task priority 32 levels Users: 4 to 27
System: 0 to 31

Number of timers 320 Used by the TIMER,
DELAY, WAKE macros.

Number of concurrently
allocable resources

Up to 16 Used by the RSERV and
PRSRV macros.

DHP buffer 128 KB 12 to 36 bytes per case
Error log buffer 32 KB 1 KB per case
Built-in subroutine 10 points 4 entries at each point

1. OVERVIEW

1 - 4

1.3 CPMS Structure
The CPMS consists of an exception processing program, dispatcher and system tasks as
shown in Figure 1-1.

Error
handling

Internal exception
processing routine group

Internal exception

External exception
processing routine group

External exception

Error
handling

Input/output device
interrupt processing

Task dispatcher
(scheduler)

Idle
processing

System
task

System
task

Break-point
handling

Trap
handling

Macro instruc-
tion processing

User
task

Figure 1-1 CPMS Structure

1. OVERVIEW

1 - 5

1.4 CPMS and Hardware

Figure 1-2 shows the relation between the S10V CMU configuration and the CPMS.

0 2 3 4 5 6 71Slot No.

S10V
L
P
U

P
S

C
M
U

CMU

SH4

PCI bus

LANCE

LSI

Memory bus

SDRAM FROM

Program storage
memory

Figure 1-2 Relation between the Hardware Configuration and the CPMS

• Processor (SH4)
The control program task is operated.

• LSI
Controls memory access and bus access from the processor.

• Memory bus and memory
The main memory (SDRAM) and the FROM reside on the memory bus.
SDRAM: Main memory of the CMU. The OS and program are operated.

The contents are deleted by turning off the power supply or resetting.
FROM: Programs such as OS reside.
Program storage memory: Flash memory that stores the RPDP execution environment,

tasks, and HI-FLOW program. At a startup, data is copied
from the program storage memory into the SDRAM.

1. OVERVIEW

1 - 6

1.5 Interface between the CPMS and Users
The interface between the CPMS and users effects such interactions as operations from the
Real-time Program Development Package (RPDP), linking to built-in subroutines, and
issuing by user tasks of macro instructions.
The RPDP provides a creating environment for tasks and built-in subroutines.

RPDP

User task

 System task
(RPC server) Built-in subroutine

CPMS

Creation

Macro instructions
issued

Macro instructions
issued

Creation

Processing
request

Linking

User

Operation

Interface with
the CPMS

Figure 1-3 Interface between the CPMS and Users

2. TASK MANAGEMENT

1 - 7

CHAPTER 2 TASK MANAGEMENT

2.1 Task

A task is a unit of work done by the system for program execution. On a task-by-task
basis, the CPMS manages program execution and allocates resources.

(1) Task number

The task number (TN) is used to identify a task. CPMS can manage up to 255 tasks.
The user can assign task numbers 1 to 224 to user tasks. The task numbers 225 to 229
are reserved for system tasks. And task numbers 230 to 255 are reserved for the OS.
CPMS starts up the tasks having task number 1 as initial start tasks.

(2) Task structure

A task consists of the TEXT, DATA, BSS, STACK, and OS work areas. TEXT is a
part to be executed in the program. DATA is data with initial values. BSS is data
without initial data. STACK is the work area used for program execution, starting at
the largest address and moving toward the lowest address in the area. TEXT and
DATA are write-protected. The OS work is an operation data part that is used for the
CPMS to execute macro instructions.

Figure 1-4 Task Structure

Multitasks that share TEXT, DATA, and BSS can be created. In this case, STACK is
allocated for each member task, but BSS is shared by the members.

(3) Task types

Two types of tasks are used: user tasks created by the user and system tasks provided
by the system. Tasks having the task numbers 225 to 255, reserved for the system, are
system tasks. User tasks can be assigned the task numbers 1 to 224.

(4) Initial start task

The task having the task number 1 is the user initial start task (UIST). The user is
responsible for creation of user tasks in such a way that they are started up by the user
initial start task.

TEXT DATA STACK BSS OS work Task

2. TASK MANAGEMENT

1 - 8

(5) Task priority level
When multiple tasks make a request for use to shared resources (CPU and memory) in
the system, a task to which the right of use is to be given is determined by the
processing priority associated with each task. This processing priority is called
“priority level” or “level.” Each level is represented by a numeric value of 0 to 31.
The smaller the value, the higher the priority. The levels available for the user are 4 to
27. When registering a task, the level of the task is specified. This level is called the
original level of the task. Usually, when a task is activated, this original level
becomes the task operating level (current execution level).
The order of resource assignment is determined according to this current execution
level.
When a task is registered, its priority level is specified.
Figure 1-5 shows the relationship for assigning levels to system and user tasks.

Figure 1-5 Relationship between Tasks and Levels

Priority
High

Low

Level
0 to 3

4

27
28

31

Task type

User
tasks System

tasks

to

to

2. TASK MANAGEMENT

1 - 9

(6) Changing priority level
The “CHAP” macro instruction can change the level of the task being executed. The
effect of the CHAP macro instruction continues from the start of the task, whose level
was changed, to an end of the processing. When the task operation ends, the original
level becomes the level of the task. If a level is changed by the CHAP macro
instruction before a task starts its operation, the new level given by the CHAP macro
instruction becomes the priority level during the operation. However, if the task
operation is aborted in the period between the level change and the start of operation,
the effect of the macro instruction is lost.
The CHAP macro instruction changes the priority level being a standard for resource
assignment, but does not relinguish a resource already assigned to another task forcedly
to a task having a changed higher priority level. This is shown in Figure 1-6.

Task A (low level)

Resource
contention
with task B

The level of task A is
changed into a higher
level by the CHAP
macro instruction.

Resource occupation

Resource freeing

 Resource occupied

 Waiting for resource

Task A cannot start
operation until task B
releases the resource.

Task B (medium level)

Note: Even if the priority level of task A is raised by the CHAP macro instruction when
task A and task B are in the wait state under resource contention, the resource
occupied by task B is not given to task A.

Figure 1-6 Change of Priority Level and Resource

2. TASK MANAGEMENT

1 - 10

2.2 Task Scheduling

(1) Scheduling Algorithm
When multiple tasks in the system are asking for the right of use for the CPU.
Only one task can always receive the right because there is only one CPU in the
system. To select a task from among multiple tasks is called “dispatch.” The
method of dispatching between tasks is called task scheduling.
Among different scheduling algorithms, the CPMS adopts a fixed priority scheduling
method. According to this method, among the same level of tasks, the FCFS (First
Come First Served) algorithm is employed.
In the FCFS, activation requesting tasks are linked to the CPU queue in the order of
received activation requests. As shown in Figure 1-7, A task is linked to a CPU
queue; a block of memory, called TCB (Task Control Block), is registered in a CPU
queue. A TCB is always assigned to a task.

TCB

High
For level 0

1
2

30
31

Low

Priority

TCB

TCB TCB

TCB

TCB TCB

TCB TCB

: Example of new registration
: Example of cancellation
 (The dotted line pointer is changed into the continuous line.)
: Task to be dispatched first in this figure

Figure 1-7 CPU Queue

In the following 3 cases, a task is released from the CPU queue:
• when the task issued the EXIT macro instruction
• when the task was aborted by the ABORT macro instruction another task issued
• when the task became abnormal (for example, when a task tries to access privileged

data a protection error occurs). When a task results in an error, the task is aborted
by the CPMS.

2. TASK MANAGEMENT

1 - 11

(2) CPU queue’s behavior when changing priority level
Figure 1-8 shows how the TCB of a target task is managed in the CPU queue, when the
CHAP macro instruction is issued from one task to another via CPMS, the former task
is, hereafter, called as an issuing task and the latter task is called as a target task.

TCB TCB

TCBTCB

CPU queue
Pointer

New assigned level

Old (original) level TCB

<Procedure>
① The specified TCB is released from the old level queue.
② The old level queue linkage is changed.
③ The released TCB is linked to the tail of the newly assigned level queue.

Note: When the level is changed by the CHAP macro instruction, the specified TCB is

linked to the tail of the newly assigned level queue in the FCFS algorithm.

Figure 1-8 Level Change

(3) Multitasking
In task management, processing is performed so that the CPU may be usefully used.
For example, when a task in process cannot proceed its processing, for some reason, the
next task in the CPU queue is dispatched at once. The dispatched task starts its
operation. During the execution of this task, if the cause of the suspended task is
eliminated, the dispatcher dispatches the suspended task again as shown in Figure 1-9.
From a broad point of view, this looks like as if two tasks were processed
simultaneously although only one task is processed actually. This concurrent task
processing increases the rate of CPU utilization.

Task A Task B Task C

Suspension

Restart
Suspension

Restart
Suspension

Restart

Figure 1-9 Concurrent Task Processing (Multitasking)

2. TASK MANAGEMENT

1 - 12

2.3 Task Operations
Generally, tasks have a life cycle. That is, tasks are generated, activated, executed,
suspended, restarted, terminated and become extinct. However, for real-time tasks, the
overhead from issuing an activation request till task execution is an important factor to
determine responsiveness. Accordingly, to minimize generation and extinction of a task is
necessary. Therefore, when receiving an activation request, task generation should not be
performed in the real-time system. Tasks are previously generated and registered to the
CPMS. That is, when activating a real-time task, the target task does not need to be
generated anew and only an activation request (issuing the QUEUE macro instruction) is
issued. Besides, after termination of its operation, it is not caused to be extinct.

The events that motivate task activation are shown in Table 1-2. Task execution
conditions (initial activation) are shown in Table 1-3. After a task is activated, it is
executed when all the conditions shown in Table 1-3 are satisfied.

An executed task continues its operation until the task cannot continue its processing by
some reasons or an interrupt occurs and a task with a higher priority level must be operated.
When all necessary processing is completed (termination of program execution), the task
operation terminates. This is called task suspension and termination (abortion).

Table 1-4 shows factors of task suspension. A suspended task restarts its operation when
the factor of suspension is eliminated and a higher-priority task or a same-priority task
earlier activated cannot operate. This is called task restart.
Table 1-5 shows task restart conditions. Table 1-6 shows task termination and abortion
conditions.

Table 1-2 Factors of Task Activation

EVENT Explanation

Issue of QUEUE
macro instruction

When the QUEUE instruction is issued from a task,
the task specified in its parameter is activated.

Internal factor

Lapse of certain
time or at a fixed
time of day

When the TIMER macro instruction is already
issued, the task specified in its parameter is
activated at the specified time or time of day.

External factor Attention interrupt
from I/O device

A task that is registered in built-in subroutine is
activated by an attention interrupt from the I/O
device.

2. TASK MANAGEMENT

1 - 13

Table 1-3 Task Execution Conditions (Initial Activation)

Condition Explanation
All the higher-priority tasks or same-
priority tasks earlier activated cannot
operate.

When a higher-priority task is operable, it is
executed.

The Task’s main program is loaded on the
main memory.

Unless the program is loaded on the main
memory, it cannot operate.

The execution of the task itself is not
inhibited.

When the execution is inhibited by the SUSP,
ASUSP macro instruction, the task is not
executed.

When all the conditions shown in Table 1-3 are satisfied, the task is executed.

Table 1-4 Task Suspension Conditions

Condition Explanation

A higher priority task is activated. When a high-priority task is activated by an
interrupt (process interrupt or timer) and this
task is operable, control is transferred to the
task.

The inhibition of execution for a higher-
priority task is canceled.

When a higher-priority task (whose execution
has been inhibited) becomes operable, control
is transferred to the task.

The execution is suspended by the task
itself.

When the execution is suspended by the task
itself, for example, for synchronization,
control is transferred to another task.

When one of the conditions shown in Table 1-4 is satisfied, the task is suspended.

2. TASK MANAGEMENT

1 - 14

Table 1-5 Task Restart Conditions

Condition Explanation
The inhibition of execution by another task
is canceled.

The inhibition of execution by the SUSP,
ASUSP macro instruction is canceled.

When the system waits for occurrence of
an event, this event occurs.

An event that eliminates the factor of
suspension of the task itself (DELAY or
WAIT) occurs.

A higher-priority task or a same-priority
task earlier activated terminates or is
suspended.

As far as a higher-priority task or a same-
priority task earlier activated is operable,
processor service cannot be rendered to the
task.

When one of the conditions shown in Table 1-5 is satisfied, the task starts its operation.

Table 1-6 Task Termination Conditions

Condition Explanation

The EXIT macro instruction is issued. Usually, task processing is terminated by the
EXIT macro instruction.

The task becomes a target of the ABORT
macro instruction.

Processing aborted by the ABORT macro
instruction.

An unprocessable condition is caused by a
program error.

The CPMS performs ABORT processing
automatically for an error originating task.

When one of the conditions shown in Table 1-6 is satisfied, the task terminates its
operation.

2. TASK MANAGEMENT

1 - 15

2.4 Task State Transition
In the CPMS system, multiple real-time tasks are organically linked and operated to
perform the functions of the whole system. Therefore, individual tasks continue their
operations mutually repeating activation, suspension, restart and termination, as described
in Section 2.3, in close connection with one another.

Between tasks, data exchange is performed by using the GLB (Global Data Area) that is a
data area common to tasks.
Between tasks, control exchange is performed by using the macro instructions prepared by
task management.

The task management macro instruction controls a task operation by causing task state
transition. Design system and programs with a correct understanding of how task state
transition is occurred and what macro instructions cause state transition.

Table 1-7 shows the states of a task.
Figure 1-10 shows the relationship between macro instructions and task states.
Note that in the states shown in Figure 1-10, the Running state is not always an executing
state of the task (including the suspended state) in a strict sense.
The state of the task produced by the macro instruction is only an example but does not
represent all cases.

Table 1-7 States of Task

State Designation Explanation

Execution is in progress. RUNNING The CPU is locked for task execution.
Execution is being awaited. RUNNABLE The task is waiting for the CPU to be

unlocked.
Execution is suspended. SUSPENDED Execution of the task is suspended.
An event is being awaited. WAIT The task is waiting for an event.
Startup is being awaited. IDLE The task is waiting to be executed.
Startup is suspended. DORMANT Startup of the task is suspended.
Non-registered NON-EXISTENT The task is not registered in CPMS.

2. TASK MANAGEMENT

1 - 16

SUSP

RUNNING

RUNNABLE

SUSPENDED

IDLE

DORMANT

NON-EXISTENT

EXIT

Task switching

ABORT

QUEUE,
timer-based startup

Task registration

Task deletion

ABORT

RLEAS

ABORT

RSUM

SUSP RSUM

Return from RSERV

ABORT,
task error

SUSP, RSERV,
DELAY

WAIT

WAIT

POST

ABORT

Return from DELAY,

Figure 1-10 Task State Transitions

(Supplement) It a susp/rsum macro is issued to a non-gueued task that is in the IDLE state,
it is executed but the state of that task remains unchanged, and the suspended
state is indicated in the tc-flag field of the task control table (TCB).

2. TASK MANAGEMENT

1 - 17

2.5 Task Control
The task control method will be explained by giving examples below.

2.5.1 Initial state

When the system is started (when the power is on and the processor starts to operate), all
user tasks except an initial start task are in the DORMANT state.
The initial start task is automatically activated by the CPMS when the system is started.
The initial start task puts the tasks required for job execution into the IDLE state by the
RLEAS macro instruction. (This is called “to release the task.”) This state is ready for
receiving an activation request.

2.5.2 Task activation

● QUEUE macro instruction
Tasks are activated by the QUEUE macro instruction. An activated task can get the
factor of activation (FACT) by the GFACT macro instruction to know what factor
activated the task itself. Figure 1-11 shows this relationship.

Task 1

QUEUE

Task 2

Activation

Activation

QUEUE

Task 3

When being activated, the
task gets FACT to know why
the task itself was activated.

GFACT

Processing corresponding to
the factor of activation (FACT)

The task must
check FACT again
before it terminates.

FACT 0

FACT=0

By the GFACT macro instruction, task 3 can know by what task (task 1 or task 2) the
task 3 is activated. That is, if the FACT by which task 1 activates task 3 is specified
to make a difference from the FACT by which task 2 activates task 3, it is possible to
know which task activates task 3.

Figure 1-11 Task Activation

2. TASK MANAGEMENT

1 - 18

In Figure 1-11, the GFACT macro instruction reads out factors of activations one after
another. For example, supposing that 4 factors of activation (integers of 1 to 32) are
set as “1”, “5”, “10” and “11” the GFACT macro instruction reads them out in
sequence from the younger number.

At the first issue of the GFACT macro instruction, FACT = 1 is read out. At the
second issue of the GFACT macro instruction, FACT = 5 is read out. The read out
FACT is cleared by the GFACT macro instruction. Accordingly, in the above
example, FACT = 1 is not read out again even if the GFACT macro instruction is
issued after FACT = 1 is once read out.

Such a FACT can also be set by the SFACT macro instruction. Figure 1-12 shows
this example.

Task 2

Route 4Route 2Route 1

A different FACT is
set for each route.

Route 3

Task 1

By the FACT input by the
GFACT, it is possible to
know which route of task 1
activated the task.

GFACT

SFACT

Processing corresponding to
the factor of activation (FACT)

FACT 0

FACT=0

QUEUE

SFACT

SFACTSFACT

Figure 1-12 SFACT Macro Instruction

2. TASK MANAGEMENT

1 - 19

In the CPMS, the “first come first served” rule is applied for among same-level tasks
for high-efficiency real-time control. Accordingly, the task execution order flow is
changed by the mutual relation of task activation levels as shown in Figure 1-13.

Task 1

QUEUEQUEUE

Task 1

Task 2

Control is transferred to
task 2 immediately when
the QUEUE is issued.

Control is not returned
until task 2 terminates
or is suspended.

Task 2 operates
immediately after
task 1 terminates.

When task 1 activates task 2 by
the QUEUE macro instruction,
the control flow is changed by the
mutual relation of task levels.

When the priority level of task
1 is higher than that of task 2
or equal to it.

When task 1 activates task 2 by the QUEUE macro instruction, the control
flow is changed by the mutual relation of task levels.

Figure 1-13 QUEUE Macro Instruction and Task Execution Order

● TIMER macro instruction

As seen in Figure 1-13, task activation by the QUEUE macro instruction is usually
performed at once. In some cases, however, a task must be activated after the lapse
of certain time or at certain time of day. In these cases, use the TIMER macro.
This macro instruction can activate a task at the time of day or after the lapse of
certain time as specified in a parameter. At this time, the factor of activation (FACT)
is transferred to the activated task like the FACT using the QUEUE macro instruction.

2. TASK MANAGEMENT

1 - 20

Task 1

If the TIMER macro
instruction is used, task
2 is activated at the
specified time of day.

If the QUEUE macro
instruction is used, task 2
is activated immediately.

Task 2

Task 2

TIMERQUEUE

Task 1

Figure 1-14 Difference in Task Activation between QUEUE Macro
Instruction and TIMER Macro Instruction

2.5.3 Task termination

A task terminates processing by issuing the EXIT macro instruction. In the CPMS, tasks
are allowed to issue the EXIT macro instruction when returning from the main routine.

2.5.4 Task execution inhibition

● DELAY macro instruction
The TIMER macro instruction is used to activate another task after the lapse of certain
time. To activate the task itself, this can be attained by the DELAY macro
instruction.

The TIMER macro instruction can also be issued to the task itself. If the DELAY
macro instruction is used, the environment (e.g., BSS, STACK value) provided when
the DELAY macro instruction was issued can be kept when control is returned to the
task itself after the lapse of the time specified in a parameter. When the TIMER
macro instruction is used, operation is started from the beginning of the task but the
environment is not kept. For this reason, to start the operation again after the
suspension of certain time, the DELAY macro instruction is used.

2. TASK MANAGEMENT

1 - 21

Control is transferred to
another task for the time
specified in a parameter.

Another task
DELAY

DELAY

Unprocessable because
another task is in processing.

The DELAY macro instruction is
applicable when a retry is made
after the lapse of certain time.

A retry is made after the
lapse of certain time.

Processing

Proce-
ssing

Figure 1-15 DELAY Macro Instruction Figure 1-16 Application of DELAY
 Macro Instruction

● ASUSP macro instruction
 To inhibit the execution of all other tasks including higher-priority tasks, the ASUSP

macro instruction is used.

 The tasks whose execution was inhibited by the ASUSP macro instruction is freed

from the inhibited state by the ARSUM macro instruction. However, these
instructions are used to inhibit the execution of other tasks. If the use of them is not
limited, a deadlock may be caused.

 To avoid such a deadlock, any processing that requires a system resource must not be

performed between the issue of the ASUSP macro instruction and the issue of the
ARSUM macro instruction.

2. TASK MANAGEMENT

1 - 22

Task 1

Task 2

Processing 1

Processing 3

Task 3

Recovery

Processing 2

Normal

Abnormal

QUEUE

ASUSP

ARSUM

Task 3 which controls processings 1, 2 and 3 inhibit the execution of tasks 1
and 2 by the ASUSP macro instruction when processing 1 is abnormal. Task
3 makes processing 2 and 3 suspended by the ASUSP macro instruction until
the recovery processing ends. After inhibition, recovery processing is
performed so that processing 2 and 3 may be performed normally, and then the
inhibition of task 1 and 2 execution is canceled by the ARSUM macro
instruction.

Figure 1-17 Inhibition of Execution by ASUSP Macro Instruction

Task 1

 Resource
occupation
request

Inhibition of all
tasks except the
task itself

ASUSP

RSERV

FREE

ARSUM

When a resource occupation request is issued while the execution of other tasks
is inhibited, a deadlock is caused if the inhibited tasks occupy the resource.

Figure 1-18 Example of Deadlock by ASUSP Macro Instruction

2. TASK MANAGEMENT

1 - 23

2.5.5 Task abortion
● ABORT macro instruction
 To abort task execution and put the task into the execution inhibit state, the ABORT

macro instruction is used.

 The ABORT macro instruction aborts a task in execution (or in the wait state),

forcedly frees the resource occupied by the task, and put the task into the DORMANT
state.

2.5.6 Synchronization between tasks

For synchronization between tasks (to perform another task processing after termination
of a task processing), the WAIT macro instruction and POST macro instruction are
available. This synchronization is controlled by an “event.” To synchronize with
another task, a task informs an area called ECB (Event Control Block) that it waits for an
event occurrence, and enters the WAIT state. This ECB is defined for each event.

A task that notifies occurrence of an event references the ECB and checks who waits for
occurrence of the event, then informs the waiting task of an event occurrence and releases
it from the WAIT state. See Figure 1-19. This processing is performed by the WAIT
macro instruction and POST macro instruction, respectively.

One ECB is assigned to one event. The same ECB must not be shared with multiple
events and multiple tasks must not share the same ECB. Through the ECB, detailed
event information can be exchanged between tasks. This is called POST code.

In the WAIT/POST macro instruction, there is no limitation on the relation of issuing
order. This is shown in Figure 1-20.

To prevent a deadlock, the effect of the ASUSP macro instruction is lost if the WAIT
macro instruction is issued after the ASUSP macro instruction is issued.
Figure 1-21 shows ECB state transition.

2. TASK MANAGEMENT

1 - 24

Task 1

ECB

The wait state
is canceled.

WAIT

Task 2

POST

POST code

Task 1

ECBWAIT

Task 2

POST

Task 1 waits

Task 1

ECB

 Restart of execution.
The POST code is
transferred as a return code.

 Waiting tasks are examined by ECB and the wait state is canceled.
The POST code (POST macro instruction parameter) is set in ECB.

 The wait state of task 1 is indicated in ECB.
Task 2 is activated when an event occurs. In this case, task 2 serves as a system task,
which searches the ECBs for a task waiting for an event and clears its wait state.

WAIT

Task 2

POST

POST code

Figure 1-19 Synchronization between Tasks by WAIT/POST

2. TASK MANAGEMENT

1 - 25

Task 1

WAIT
Task 2

Immediately
after posting
occurs, the task
1 wait state is
cleared.

POST

Task 1

WAIT is ahead and task 2
is of higher level.

WAIT
Task 2

Even when posting
occurs, the task 1 wait
state is not cleared.

POST

WAIT is ahead and task 1
is of higher level.

Task 2

POST

Task 1

POST is ahead and task 2
is of higher level.

Since posting has
already been done,
WAIT issuance does
not place task 1 in the
wait state.

WAIT

The control flow between tasks varies depending on difference of levels between tasks
and issuing order of WAIT and POST macros. The dotted line indicates that task
execution is inhibited (in the WAIT state).

Figure 1-20 Control Flow Using WAIT/POST

2. TASK MANAGEMENT

1 - 26

ECB

ECB

W

31 30 29 0 (Bit number)

C Post code/Task No.

0

31 30 29 0

1 POST code0 0

1 0 Task No. 1

31 30 29 0

1 POST code

0

31 30 29 0

0 POST code

31 30 29 0

31 30 29 0

0

WAIT WAIT

(*) POST

(After WAIT is cleared)

WAIT

POST

POST

POST

0

(initial state)

(During processing by OS)

ECB bit numbers 31 and 30 are called W (Wait) bit and C (Complete) bit respectively.
The POST code marked (*) is overwritten.

Figure 1-21 ECB State Transition

3. MEMORY MANAGEMENT

1 - 27

CHAPTER 3 MEMORY MANAGEMENT

3.1 Logical Space
CPMS runs all tasks in a single logical space. CPMS also manages conversion between
logical addresses and physical addresses.

0x0000 0000

0x0001 0000

0x0100 0000

0x0110 0000

0x0300 0000

0x0340 0000

0x0C00 0000

0x1800 0000

0x1C00 0000

0x2000 0000

0x2800 0000

0x3000 0000

0x4000 0000

0x5000 0000

0x6000 0000

0x7000 0000

0x8000 0000

Figure 1-22 Logical Address Map

Reserved

S10 space

NX user area

Reserved

HIFLOW space

Reserved

System bus space

PCI space

Reserved

MAP space

CPMS space

Task space

GLBR

GLBW

IRSUB

Reserved

User access
inhibit area

Reserved: Reserved for the CPMS.
S10 space: The LPU memory is allocated.
NX user area: The buffer area to be used by the NX is allocated.
HIFLOW space: The HIFLOW program is allocated.
System bus space: The high-speed bus I/O and memory are

allocated.
PCI bus memory space: The PCI bus I/O and memory are

allocated. The built-in LANCE uses
this space.

MAP space: The tasks and IRSUB to be used by the CPMS and
the built-in subroutine control table are arranged.

CPMS space: Space exclusively used by the CPMS.
Task space: The TEXT, DATA, BSS, STACK, and OS works

of tasks are allocated.
GLBR: The shared memory (read only) among tasks in the PU

is allocated.
GLBW: Shared memory (read and write allowed) among tasks

in the PU is allocated.
IRSUB: The shared indirect link subprogram among tasks is

allocated.
User access inhibit area: The area after 0x80000000 cannot be

accessed by task. Access will result
in a program error.

3. MEMORY MANAGEMENT

1 - 28

3.2 Memory Protection
CPMS manages memory write-protection for pages each consisting of 4 KB. Table 1-8
lists the memory access rights.
Tasks can write to the following memory spaces. The other spaces are write-protected.
● BSS and STACK for the local task (When a multitask is used, BSS is shared.)
● Area in the GLBW and CM where the logical space and the physical memory are

mapped.
● PI/O space and cyclically transferred memory in system bus memory space.
The CPMS wrtmem macro allows user programming tasks to rewrite programs and
protected data. This macro can be used to write to write-protected main memory.

Table 1-8 Memory Access Rights

Accessed by CPMS Task Remarks Space
Accessed mode System User

Task space (In the user space)
 Text for the local task R-X R-X
 Data for the local task R-X R-X
 Stack for the local task RWX RWX
 BSS for the local task RWX RWX
 Text for other tasks R-X R-X
 Data for other tasks R-X R-X
 Stack for other tasks R-X R-X
 BSS for other tasks R-X R-X RWX when a multitask is used

User space (except the task space)
 NX user area RWX RWX
 HIFLOW space RWX RWX
 GLBW RWX RWX
 GLBR R-X R-X
 IRSUB R-X R-X
 MAP R-X R-X
 System bus space (for user) RWX RWX
 System bus space (for system) R-X R-X Memory for the OS subsystem (driver)
 CPMS space R-X R-X
 PCI space (for user) RWX RWX
 PCI space (for system) R-X R-X
 LPU space RWX RWX

Kernel space
 Space with V = R specified in

main memory
RWX Text and data of CPMS are included.

 I/O register space RWX Only the kernel and driver can access
it.

 KROM R-X R-X
R: Readable, W: Writable, X: Executable,
 : Inaccessible (When a task executes this access, it will be aborted.)

3. MEMORY MANAGEMENT

1 - 29

3.3 Error Handling during Memory Access

● Memory error
 When a multi-bit error of the memory with the ECC feature occurs, the system stops.

● Memory single-bit error
 A single-bit error in memory provided with the ECC feature is corrected, and data is

read correctly. Therefore, a single-bit error is not handled as an error. When a
single-bit error is encountered during memory patrol, the data is rewritten and the error
is corrected. If the single-bit error persists, it is handled as a solid failure and an alarm
report is logged as an error.

● System bus access error
 Unless the system bus connection I/O is mounted, mapping is not performed to the

system bus memory space. An attempt to access a non-mapped address results in a
program error. However, even if the address has been mapped, an attempt to access
the address in the event of a hardware failure may result in a system bus error. Such
an error is called a target abort error. A target abort error is not handled as a program
error. System behavior against a target abort error is described below.
• If the target abort error is detected during a read access, all-1s data is read.
• If the target abort error is detected during a write access, the program continues

running as if data was written.
• In response to the target abort error, an interrupt is generated to the PU, resulting in a

module failure.

● Write-protect error
 A write may occur at a write-protected address due to a software failure. This results

in a programming error, aborting the task.

3. MEMORY MANAGEMENT

1 - 30

3.4 Procedure for Checking Access to the System Bus

The cyclically transferred memory of the system bus connection I/O is directly accessed
from user programs as the bus memory. To allow for errors during access to bus memory,
the procedure given below is required.

Have the user program issue a CHKBMEM macro to check whether the bus memory in the
specified slot is accessible to the user program. The CHKBMEM macro returns
information that indicates whether (1) bus memory is mounted in the specified slot, and (2)
the hardware is not accessible due to a target abort error. When an error is detected by the
CHKBMEM macro, do not allow the user program to access the bus memory in the slot.

Upon completion of access to bus memory, make sure that a CHKTAER macro has been
issued to check that the hardware is functioning normally. This is because even if the
hardware is faulty, the task continues processing without being aborted as if the operation
required had been done normally.

Access the system bus

Access the system bus

chkbmem(slot)

Accessible

Inaccessible

Normal access

No error

Error
chktaer(slot)

Access error

Procedure for checking access to the system bus

Access the system bus.

No error

Error
chktaer(slot)

After a series of
accesses to the system
bus, the presence of an
error can be checked

Access the system bus.

No error

Error
chktaer(slot)

It is also possible to
check minor errors.

Figure 1-23 Procedure for Checking Access to the System Bus

4. TIMER MANAGEMENT

1 - 31

CHAPTER 4 TIMER MANAGEMENT

4.1 Length of Time and Time of Day
CPMS manages the length of time and the time of day. The time is represented as
Gregorian year, month, day, hour, minute, and second. Years are valid within the range of
1970 to 2069. The length of time is in milliseconds.

Tasks can use the GTIME macro to get the time of day under management by CPMS. The
STIME macro can also be used to change the time managed by CPMS.

The CMU does not includes a real-time clock (RTC) that is backed up by battery in case of
a power failure. However, the LPU includes an RTC. When CPMS is started up, it
reads the year, month, day, hours, minutes and seconds from the RTC and sets that time as
the point from which the time of day starts to be measured. During operation, CPMS
manages the length of time and the time of day by using the internal timer based on clocks
supplied to the processor. Since the RTC and internal timer operate based on different
clocks, an error may be caused after a long time elapsed. To allow for this, CPMS sets the
time of day based on the internal timer in the RTC once per day to eliminate any error.

4.2 Time-Based Task Control
Tasks can use the DELAY macro to suspend task execution for a specified duration. The
TIMER macro can be used to create a timer that starts up a task at a specified time or after
the elapse of a specified length of time and then restart the task at fixed intervals. The
timer can be deleted with the CTIME macro, if necessary. The timer created by the
TIMER macro accepts a time of day only within 24 hours after the TIMER macro is issued,
as the initial value.

4.3 Changing the Time
If the time is changed by the STMIE macro, this has an effect on the operation of the timer
in which a task start is set by the time start in the TIMER macro. If the scheduled time is
jumped over by advancing the time, the first scheduled start time may elapse and the start
timing may be lost. In this case, the timer is started when it is changed. In the case of
cyclic time specification, the scheduled start time is shifted so that the time resulting from
adding the cyclic time to the first scheduled start time may be behind the changed time.
The timer that started a task at the scheduled time does not perform re-registration for a
start at the scheduled time even if the time is set backward.
For the time-specified timer, the start time is not changed even if the time is changed.

4.4 Matching the Times between the CMU and LPU
The LPU mounts an RTC but the CMU does not mount any RTC. Accordingly, the CMU
time is set to the current time of the LPU according to the following timing.
• Issue of the STIME macro by CMU
• CMU time matching (00 hour, 00 minute, 30 seconds)
Note that when the current time is set in the basic system, the CMU time becomes
discontinuous.

5. SHARED RESOURCE MANAGEMENT

1 - 32

CHAPTER 5 SHARED RESOURCE MANAGEMENT

5.1 Shared Resources
As resources that are shared among tasks, the main memory, CPU, I/O and data area (GLB)
can be mentioned. Out of these resources, the main memory, CPU and I/O are exclusively
controlled on the system side. However, the GLB must be exclusively controlled on the
user side.

Figure 1-24 shows the necessity of this exclusive control. Figure 1-25 shows the
prevention against a fault due to resource contention by exclusive control.

Task 1 Task 2

As shown at left, when tasks 1 and 2
operate simultaneously, the result varies
with orders of operations.

X is fetched.

X*3 is stored in X.

Task 1

X(=2) is fetched.

X*3(=6) is stored in X.

Task 2

X(=2) is fetched.

X*2(=4) is stored in X.

The result X becomes 4 .

Task 1

X(=2) is fetched.

X*3(=6) is stored in X.

Task 2

X(=2) is fetched.

X*2(=4) is stored in X.

The result X becomes 6 .

X is fetched.

X*2 is stored in X.

Figure 1-24 Fault Occurring When No Exclusive Control is Exerted

5. SHARED RESOURCE MANAGEMENT

1 - 33

Task 1

X is fetched.
Task 2

X*3 is stored in X.

X is freed.

This control is exerted by the
shared resource management macro
instruction FREE.

A check is made to
see if X is used. If it
is used, the task itself
is put into the wait
state.

This control is exerted by the
shared resource management
macro instruction RSERV.

X is fetched.

X*2 is stored in X.

X is freed.

A check is made to
see if X is used. If it
is used, the task itself
is put into the wait
state.

A

B

Control flows in the order of ①, ②, ③ and ④ to prevent both and
from being operated at the same time.

Figure 1-25 Exclusive Control by Shared Resource Management Macro Instructions

A
B

5. SHARED RESOURCE MANAGEMENT

1 - 34

5.2 Shared Resource Management Method
Regarding the GLB being a shared resource among tasks, the physical resource itself can be
occupied. That is, each time the GLB address and size are registered in the system table
that manages shared resources and an occupation request is sent by the RSERV macro
instruction, this system table is referenced and a check is made to see if the target GLB is
already occupied or not. If the target GLB is occupied, the requesting task is put into the
SUSPENDED state by the RSERV macro instruction until the resource is freed. The
SUSPENDED state of this task is released when the requesting resource is freed and
becomes usable.

When multiple tasks waits for freedom of a resource, this resource will be assigned to the
highest-level task among them. However, this principle is not applicable when the
highest-level task cannot operate for another reason.

As a rule, all the resources required by a task are supposed to be occupied at a finite time to
avoid a deadlock. Therefore, the RSERV macro does not permit multiple issue, that
means a task already occupying a requesting resource cannot issue this RSERV instruction
again. As shown in Figure 1-26, A task occupies all necessary resources at the beginning
and starts processing. When these resources are selected, and performed their roles, they
are freed by the FREE macro instruction at once.

Figure 1-27 shows an example of deadlock. As shown in this example, the RSERV macro
instruction must not be issued after such a macro instruction that inhibits execution of
another task as the SUSP macro instruction.

Task

RSERV A, B, C, D, E ...

Use
A, B, C, D ...

Use
B, C, D ...

Use
C, D ...Processing of A, B, C, ...

FREE A

Processing of B, C, ...

FREE B

Processing of C, D, ...

• All the resources to be requested by a task are occupied at a time.
 After they are used, they are freed in sequence by the FREE macro instruction.
• A single FREE macro instruction can free multiple resources at a time.

Figure 1-26 Usage of RSERV/FREE

5. SHARED RESOURCE MANAGEMENT

1 - 35

Task 1

ASUSP task 2

Task 2

RSERV A

FREE A

RSERV A

FREE A

ARSUM task 2

① After task 2 occupies resource A
② Control is transferred from task 2 to task 1 before task 2 frees resources A.
③ Task 1 performs SUSP processing for task 2. (Consequently, task 2 becomes

inoperable and cannot free resource A.)
④ Task 1 attempts to occupy resource A but this resource has already occupied by

task 2. Task 1 has to be put into the wait state and cannot perform RSUM
processing for task 2.

⑤ With this happening, both task 1 and task 2 become unexecutable.

Figure 1-27 Example of Deadlock

5. SHARED RESOURCE MANAGEMENT

1 - 36

5.3 Exclusive Control of Shared Resources by the PRSRV and PFREE Macros
The PRSRV and PFREE macros can be used for exclusive control of shared resources
between tasks more precisely than using the RSERV and FREE macros.
To start locking: Issue a PRSRV macro in which SAREA in GLB and the locking range are

specified.
To terminate locking: Issue a PFREE macro in which SAREA in GLB and the locking

range are specified.

When the specified GLB area cannot be locked, control is not returned to the task that
issued a PRSRV macro until the shared resource is freed. Tasks can issue the PRSRV
macro as many times as necessary. Therefore, a task can gradually share multiple
resources using more than one PRSRV macro rather than getting them at one time. This
would reduce the number of waits in locking resources. However, the order in which
shared resources are locked should be clarified to prevent a deadlock.

Task 1

A

B

PRSRV A

PRSRV APRSRV B

PRSRV B

PFREE A

PFREE BPFREE A

PFREE B

Task 2

In the example above, task 1 is locking resource A and task 2 is locking resource B. Task
1 waits for resource B to be freed, while task 2 waits for resource A to be freed. Each task
is waiting for the other task to free the locked resource, resulting in a deadlock. A
solution to this problem is to lock the same resource in the same order.

Figure 1-28 Sample Deadlock Caused by PRSRV

6. I/O DEVICE MANAGEMENT

1 - 37

CHAPTER 6 I/O DEVICE MANAGEMENT

6.1 Structure of the I/O Device Management Feature
CPMS provides subsystems (I/O drivers) responsible for controlling I/O devices with the
basic functions of I/O Device Management. Perform input/output operations using the
interfaces of individual subsystems.

Basic functions of I/O Device Management

User program

I/O subsystem 1 I/O subsystem 2 I/O subsystem 3

I/O device 3I/O device 1 I/O device 2 Hardware

CPMS and
control LAN
driver

Figure 1-29 Structure of the I/O Device Management Feature

6.2 I/O Unit Number
The CPMS identifies the system bus connection I/O as the I/O target (device) by unit
number (abbreviated as UNO). A number resulting from adding 4 to the connected slot
number is allocated to each unit number.

6.3 Device Number
The device number identifies a logical device and the driver that controls it.

The logical device is used to define the purposes of a device. More than one logical
device can be defined for one single device.

The device number consists of a major number and minor number. The major number
identifies the subsystem that controls the device. The minor number specifies the location
where the device is connected and its purposes. The device-dependent field is defined for
each subsystem.

Slot
number

Channel
number

Device-dependent
fieldDevice number

0151631 12 11 8 7

Major number Minor number

Figure 1-30 Device Number

7. SYSTEM MANAGEMENT

1 - 38

CHAPTER 7 SYSTEM MANAGEMENT

7.1 Starting Up and Stopping CPMS

7.1.1 Status changes at startup and stop
Figure 1-31 shows how the status changes when CPMS is started up and stopped. Table
1-9 explains each state, while Table 1-10 explains events.

Power
recovery

Power
failure

Power
failure

System down

Power
recovery

The ERR LED comes on.

ERROR
STOP

LPU down

RUN

POWER OFF

STOP

The ERR LED blinks.

Figure 1-31 Status Changes when CPMS is Started Up and Stopped

Table 1-9 States on Startup and Stop

State Explanation
POWER OFF The power supply is OFF.

STOP The LPU has gone down.
ERROR STOP The system program is stopped due to a system error.

RUN The system program is running.

Table 1-10 Events on Startup and Stop

Event Explanation
Power recovery Power is turned on.
Power failure Power is turned off.
System down The system program stops due to an error.

7. SYSTEM MANAGEMENT

1 - 39

7.1.2 Startup
The first hardware status is a power OFF (memory erased) status. When a power
recovery is made from this status, the CPMS is started into a RUN status. If data is
downloaded into the ROM card, the programs and data on the program storage memory
are copied according to this timing.

7.1.3 Stop

Turning off the power supply stops the system.

7. SYSTEM MANAGEMENT

1 - 40

7.2 INS Built-in Subroutine and Initial Start Tasks
As the final processing during the start of the operating system, CPMS carries out the
procedure below.
(1) Link to the INS built-in subroutine.
(2) Start up the system initial start task (SIST having task number 255).
(3) Start up the user initial start task (UIST having task number 1).

CPMS passes the numbers corresponding to the start factors listed in Table 1-11, as
parameters in the INS built-in subroutine and the start factors of the initial start tasks.

Table 1-11 Start Factors

Number Start factor Explanation
1 IPL start This factor the initial start task always started up.

7. SYSTEM MANAGEMENT

1 - 41

7.3 Watchdog Timer

7.3.1 Functions
CPMS uses a watchdog timer to monitor tasks to prevent them from going into an infinite
loop. The watchdog timer can detect the fact that a task took too much execution time
and could not serve for plant control. When a WDT timeout occurs, a link is provided to
the built-in subroutine WDTES. The user can register error handling programs in
WDTES. The user can also force to stop the CPU using the value returned by WDTES.
When the watchdog timer expires with no error handling programs registered in WDTES,
CPMS does not abort the task, nor does it stop the CPU itself.

7.3.2 How to use the watchdog timer

When using the watchdog timer, make sure that one of the tasks for which execution time
is monitored issues WDT control macros (WDTSETs) at an interval shorter than the time
set in the watchdog timer. When the execution time of the macro-issuing task or tasks
having higher priorities than that macro extends beyond the expected value, the setting of
the watchdog timer is no longer updated by the task. As a result, the watchdog timer
causes a time-out.

On the startup of the initial start task, the watchdog timer is not yet started. It starts
when the user program issues the first WDTSET macro. The watchdog timer set to 0 by
the WDTSET macro stops without a time-out.

CPMS uses only one watchdog timer, so only one task at a time is subjected to execution
time monitoring based on the watchdog timer. Set a task that monitors the tasks
involved in plant control, and monitor the monitoring task with the watchdog timer.

8. TASK ERROR HANDLING

1 - 42

CHAPTER 8 TASK ERROR HANDLING

The basic concept of error handling during task execution is as follows:
• When a task error is encountered, the execution of the task is canceled. A method of

continuing task execution is available when the task returns to its recovery point. (See “8.5
Recovery from Program Errors.”)

• In the case of a hardware error that does not affect task execution, the task continues its
execution. The task can get hardware error information to perform error handling.

• A built-in subroutine handles task errors. The task number of the erroneous task is returned
with an input parameter of the built-in subroutine.

8.1 Repertory of Built-in Subroutines

CPMS imposes some rules on built-in subroutines so that the user can create part of system
processing.

A total of four entries are allowed for each built-in subroutine: two for middleware and the
operating system and two for the user.

Entry numbers 1 and 2 are assigned for middleware and the operating system, while the
entry numbers 3 and 4 are for the user. Entry are linked in the ascending order of entry
numbers like 1 → 2 → 3 → 4.

Table 1-12 Repertory of Built-in Subroutines

Built-in
subroutine

name
When to link Input

information
Output

information
Macro
issuing

Number
of entries

CPES A programming
error occurs.

PRGEB Available Possible 4

IES An I/O error occurs. IOERB Available Possible 4
EAS An error is logged. ADB Available Possible 4
INS Before start of IST Start factor None Not possible 4
EXS A task exits. Task number None Possible 4
ABS A task aborts. Task number None Possible 4
PCKS A macro parameter

error occurs.
SVCEB Available Possible 4

MODES A module error
occurs.

HARDEB Available Possible 4

WDTES The watchdog timer
expires.

None Available Possible 4

ADTS An ADT exception
occurs.

Break
information

None Possible 4

8. TASK ERROR HANDLING

1 - 43

8.2 Execution Environment of Built-in Subroutines
CPMS executes built-in subroutines in a system mode in which interrupts are inhibited.
The execution priorities of all built-in subroutines are higher than those of any tasks. The
following restrictions are imposed on the execution environment of built-in subroutines:
• The user must estimate that the size of the stack area used by built-in subroutines is only

up to 1 KB. When the stack area overflows, the CPU stops.
• Built-in subroutines are intended for event logging, access to GLB, and start and stop of

other tasks. Do not perform processing by which built-in subroutines being executed are
made to wait or are stopped.

• To limit the time during which interrupts are inhibited, make sure that a built-in
subroutine is executed within one millisecond.

• Only the RLEAS, QUEUE, and ABORT macros can be called by built-in subroutines.
• Floating-point arithmetic operations cannot be used in built-in subroutines. Such an

attempt stops the CPU.
• A programming error in a built-in subroutine stops the CPU.

8. TASK ERROR HANDLING

1 - 44

8.3 Processing to Link Built-in Subroutines
Figure 1-32 shows how the INS, ABS, EXS, CPES, PCKS, and WDTES built-in
subroutines are linked to EAS.

ABS

ABORT is issued.

Release resource.

PCKS

Macro
parameter error

INS

System start Watchdog
timer time-out

WDTESCPES

Programming error

Processing by
ABORT

YES

NO

YES

NO

Processing by
RLEAS

YES

NO

NO

YES

EAS

Turn on error suppress
bit in log.

Processing by
NON_FATAL LOG

EXS

EXIT is issued.

Release resource.

ERROR STOP

Processing by
FATAL LOG

ABORT
suppressed?

RLEAS?

CPU stopping?

Message display
suppressed?

ADTS

ADT exception

Figure 1-32 Processing to Link Built-in Subprograms (1)

8. TASK ERROR HANDLING

1 - 45

Figure 1-33 shows how the IES, PIOS, and MODES built-in subroutines are linked to EAS.

MODES

Other hardware error
CARDOFF, CARDON

Logging
suppressed?

NO

YES

IES

I/O error

CPU
stopped?

YES

NO

ERROR STOP

NO

YES

EAS

Turn on error
suppress bit in log.

Processing by
NON_FATAL LOG

Message display
suppressed?

Processing by
FATAL LOG

USREL macro

Figure 1-33 Processing to Link Built-in Subprograms (2)

8. TASK ERROR HANDLING

1 - 46

8.4 Linkage of Built-in Subprograms

#include<cpms_ulsub.h>

● CPES - CPU Error Subroutine
 int cpes(prgeb)
 struct PRGEB *prgeb; /* Program Error Block */

● IES - I/O Error Subroutine
 int ies(ioerb)
 struct IOERB *ioerb; /* Program Error Block */

● EAS - Error Alert Subroutine
 int eas(adb)
 struct ADB *adb; /* Alert Data Block */

● INS - Initial Start Subroutine
 int ins(reset)
 long reset; /* System start factor */ See start factors in Table 1-11.

● EXS - Exit Subroutine
 int exs(tn)
 long tn; /* Task Number */

● ABS - Abort Subroutine
 int abs(tn)
 long tn; /* Task Number */

● PCKS - Parameter Check Subroutine
 int pcks(svceb)
 struct SVCEB *svceb; /* SVC Error Block */
 long piono, isw, idp;

● MODES - Module Error Subroutine
 int modes(hardeb)
 struct HARDEB *hardeb;

● WDTES - WDT Error Subroutine
 int wdtes()

● ADTS - ADT Subroutine
 int adts(adtdb)
 struct ADTDB *adtdb;

NOTE 1: When CPES or PCKS is called, the task is aborted by default. To suppress task

abort, turn on the ULSUB_OUT_ABORTSUPRES bit in output information.
NOTE 2: WDTES is called when the system watchdog timer expires. WDTES is not

intended for monitoring termination of each task.
NOTE 3: In the case of a system task error, no link to either EXS or ABS occurs.

8. TASK ERROR HANDLING

1 - 47

For input information, see “APPENDIX C BUILT-IN SUBROUTINE INPUT DATA.”
Output information (return values)
 All output information items from built-in subroutines are in the common format.

Their meanings depend on bits. Since there is more than one entry point, output
information from each set-up data is ORed.

 #define ULSUB_OUT_LOGSUPRES 0x00000010 /* Error logging is suppressed. */
 #define ULSUB_OUT_MSGSUPRES 0x00000020 /* Error message display is suppressed. */
 #define ULSUB_OUT_RLEAS 0x00000040 /* The task is released. */
 #define ULSUB_OUT_ABORTSUPRES 0x00000080 /* Task abort is suppressed. */
 #define ULSUB_OUT_CPUDOWN 0x00000100 /* The CPU goes down. */

 These bits may or may not have an effect depending on the built-in subroutine type, as

show in Table 1-13.

Table 1-13 Output Information from Built-in Subroutines

 CPES IES EAS INS EXS ABS PCKS MODES WDTES ADTS

Availability of output information Yes Yes Yes No No No Yes Yes Yes No

ULSUB_OUT_ABORTSUPRES √ iv iv iv iv iv √ iv iv iv

ULSUB_OUT_RLEAS √ iv iv iv iv iv √ iv iv iv

ULSUB_OUT_LOGSUPRES iv √ iv iv iv iv iv √ iv iv

ULSUB_OUT_MSGSUPRES iv iv √ iv iv iv iv iv iv iv

ULSUB_OUT_CPUDOWN √ √ iv iv iv iv √ √ √ iv

√: Valid
iv: Invalid

(1) ULSUB_OUT_ABORTSUPRES
This bit suppresses the task specified by an argument from being aborted. The bit has
an effect with the CPES and PCKS built-in subroutines. When the
ULSUB_OUT_CPUDOWN bit is On but the ULSUB_OUT_ABORTSUPRES bit is
Off, the task is aborted and then the CPU is stopped.

(2) ULSUB_OUT_RLEAS

This bit releases the task specified by an argument. The bit has an effect with the
CPES and PCKS built-in subroutines. To abort or release a task, turn on this bit but
turn off the ULSUB_OUT_ABORTSUPRES bit.

(3) ULSUB_OUT_LOGSUPRES

This bit has an effect with the MODES and IES built-in subroutines. When a module
error or I/O access has been normally processed, turn on this bit. The On/Off
condition of this bit is judged by the CPMS or I/O driver. When the bit is On, error
logging is skipped.

(4) ULSUB_OUT_MSGSUPRES

This bit has an effect only with the EAS built-in subroutine. When the bit is On, the
message suppress flag in error information is set to 1. Actual processing to suppress
message display is entrusted to the display program. Make sure that the display
program performs processing according to the message suppress flag in the error
information. This bit does not affect error logging.

(5) ULSUB_OUT_CPUDOWN

This bit stops the CPU when an error occurs.

8. TASK ERROR HANDLING

1 - 48

8.5 Recovery from Program Errors
To allow for program errors caused by a task, set a recovery point in advance. Returning
to the recovery point enables the task to continue execution. The recovery point is
effective for program errors caused in the routine including a recovery point or the
subroutines called from that routine.
• Call save_env to save the execution environment data at the recovery point into GLB.
• Call resume_env from the CPES built-in subroutine to return control to the recovery point

after CPES is executed.

save_env(&env_g)

What return value?

Loop terminated?

Error handling for the loop

NO

YES

START

END

0 (returned by resume_env)

CPES

Task recoverable from error?

YES

NO

Program error

resume_env(&env_g,val)

Task

Return (Task is aborted.) Return (Task is not aborted.)

env_g

GLB

=0
(When setting)

Built-in subroutine

Area to save execution
environment

Figure 1-34 Recovery from Program Errors

8. TASK ERROR HANDLING

1 - 49

(1) How to use
● Call save_env(&env_g) to save the execution environment at the error recovery

point into env_g allocated in GLB. save_env will return 0.

● Make sure the task that caused the error is linked to the CPES built-in subroutine.

● When the task that caused an error is recoverable from the error, the task should not

be aborted. To do this, set a user built-in subroutine registered in the CPES built-
in subroutine in such a way that resume_env(&env_g, val) resumes the erroneous
task from the error recovery point. Make sure that val is set to a non-0 value.

● When the task returns from the built-in subroutine without being aborted, the task

resumes from the recovery point. At the same time, save_env returns val.

● From the code returned from save_env, the task can learn control has been returned

from the CPES built-in subroutine, enabling the task to perform postprocessing for
the error.

(2) Notes

● It is assumed that when an error occurs, the contents of the stack remain the same as
when the recovery point was set. The task cannot recover from an error caused by
a stack crash or program crash.

● When the task is recovered from an error by resume_env, external variables, static

variables, or auto variables are not recovered. Since, for example, the number of
loops in the figure above remains unchanged, the loop in error can be determined.
Conversely, when these variables are corrupted due to an error, processing cannot
be continued correctly even after the task returns to the error recovery point.

● When the CPES built-in subroutine attempts recovery from an unrecoverable error,

an infinite loop may occur, repeating programming errors and recovery processing.
Limit the programming errors from which the task in error should recover, and
make sure that CPES checks whether the task is a recoverable task.

● Be sure to specify, in resume_env, the area (env_g) where the execution

environment is saved by the task in error with save_env. Otherwise, the task
cannot return to the recovery point correctly.

9. SYSTEM SERVICES

1 - 50

CHAPTER 9 SYSTEM SERVICES

9.1 DHP
Each time CPMS passes a predetermined processing point, it records that fact in a buffer in
main memory. This record is called the debugging helper (DHP). The DHP buffer is
allocated in the kernel work area. CPMS supports DHP processing.

(1) Recording point

DHPs are taken at the following points:
• In general, a DHP is taken after all CPMS macros are issued and the parameters are

read. Upon completion of macro processing, the processing result (for example,
start factor returned to the user with GFACT) may be recorded as a DHP.

• Before and after task switch processing
• Processing to start up or stop a task
• Processing to start up I/O or issue a termination interrupt
• Task error handling
• Error handling for the operating system or hardware
• The USRDHP macro can also be used to record user information.

(2) Data to be recorded

At each DHP point, the following data is recorded:
• Code representing a DHP point (4 bytes)
• DHP recording time (4 bytes)
• Task number and task priority (2 bytes each)
• Data necessary for analysis (variable length between 0 and 20 bytes)

(3) Recording mode

By default, recording is always working. The RPDP svdhp command can be used to
stop or restart DHP processing.

(4) DHP buffer

The DHP buffer uses 128 KB in main memory.

(5) Output of the record

• The RPDP svdhp command can be used to read the current DHP data.
• Errors are logged together with the most recent DHP data.

9. SYSTEM SERVICES

1 - 51

9.2 CPU Load Ratio
The user can measure the CPU load ratio and the CPU execution time for each task.

(1) CPU load ratio

The SYS_IDLE function of the getsysinfo macro can be used to get the accumulated
CPU idle time. The idle time is continually accumulated. Obtain the idle time by
calculating the difference between the accumulated idle time when the previous
SYS_IDLE is issued and the current accumulated idle time. The accumulated idle
time overflows when it reaches 32 bits long. Take care when obtaining the idle time.
If the current value is greater than the previous value, simply calculate the difference
between the two. If the current value is smaller than the previous value, add the twos
complement (one greater than the inverted value) of the previous value to the current
value.
Make sure that the measurement time is 24 hours or less.

The CPU load ratio is calculated as follows:

Measurement time – Difference between current and previous accumulated idle times
 Measurement time
CPU load ratio =

THIS PAGE INTENTIONALLY LEFT BLANK.

PART 2 MACRO SPECIFICATIONS

1. OVERVIEW

2 - 2

CHAPTER 1 OVERVIEW

1.1 Macro Instructions

Macro instructions are used for a user program (task) to request the CPMS for processing.
In the user program, macro instructions are described as subroutine calls. These
subroutines are automatically expanded into trap instructions being CPMS calling
instructions by the macro linkage library.
When a subroutine is run, the subroutine links to the CPMS by this trap instruction, so that
requesting processing is executed.

1.2 CPMS Macro Linkage Library

The CPMS macro linkage library is a subroutine to expand a macro instruction described in
the user program into a trap instruction when a CPMS macro instruction is used.
When the CPMS macro linkage library is called, it stores parameters into the user stack
and/or registers in the order specified for each macro instruction, and issues a trap
instruction.

This is shown in Figure 2-1.

rts
rte

macro(a, b, c)

User program

_macro:

CPMS macro
linkage library

Issue of trap instruction

macro:

Macro instruction
processing

CPMS macro
processing routine

The macro identification code
corresponding to a macro instruction is
stored into the stack and/or registers.

Figure 2-1 CPMS Macro Linkage Library Function

1. OVERVIEW

2 - 3

1.3 General Rule for Macro Instructions

(1) Transfer of parameters
When the CPMS macro linkage library is used, parameters are transferred in the form
of address or contents. For example, when creating a user program in the C language,
parameters are transferred as follows:

long tn ;
tn = 100 ;
abort (&tn) ;

When the ABORT macro instruction is used, the address containing tn (= 100) is
described in an argument. (&tn indicates the pointer to tn or the address containing
tn.)
This must not be written as abort (tn).
When the C language is used for writing programs, there are various description
methods in addition to the above. Create a program by using a method that permits
easy coding. A coding example is shown below.

● When parameters comprises the whole array:

long x[n] ;
macro (x) ;

● When parameters are a part of array elements:
 (The lower 3 are equal.)

long x [n] ; long x [n] ; long * x [i] ;
x [i]=100 ; x [i]=100 ; * x [i]=100 ;
macro (&x[i]) ; macro (x+i) ; macro (x[i]) ;

● When parameters are simple variables:
 (The lower 2 are equal.)

long x ; long * x ;
x=100 ; * x=100 ;
macro (&x) ; macro (x) ;

(2) Return code

The execution result of a macro instruction is returned as a return code from the macro
processing module of the CPMS. When a macro instruction is used as a function, the
processing result of the macro instruction can be judged by the return code as shown in
below.

long macro () , rtn ;
long * x ;

rtn = macro (x) ;
if (rtn)
 {

 }

Note: When macro instruction processing is normally performed, 0 is usually returned

as a return code. However, for some macro instructions, a value other than 0 is
returned as a return code that indicates normal processing.

…
…

1. OVERVIEW

2 - 4

1.4 Macro Instruction Parameter Check
Macro instructions are direct data exchange between a user program and the CPMS. If a
parameter is wrong, this may cause a system malfunction or system failure.

For the CPMS macro instructions, a rationality check is made on their major parameters by
software. If any parameter is regarded as irrational, it is reported as a macro parameter
error and the macro instruction issuing task is aborted.

Figure 2-2 shows the relationship among TNs when making a parameter check.

In the parameter check for each macro, the maximum user task number is 224. A memory
protect check is conducted in accordance with the information (accessibility/inaccessibility)
supplied for individual tasks.

Table 2-1 Relationship among TNs at Parameter Check

Target TN

Issuing TN
User task
1 to 224

System task, ROM task
225 to 255

Error TN
256 to

1 to 224 Normally processed Do not issue. *
225 to 255 Normally processed Normally processed *

When a task with an issuing TN issues a parameter check instruction for a task with target
TN, one of the following results is obtained.
Normally processed: Normal execution takes place for each.
Do not issue: Execution takes place for each, but the results is unpredictable. Do not issue

the instruction.
*: Detected as a parameter error.
When target TN = 0, the CPMS does not regard it as a parameter error but performs no
processing and returns 1.

1. OVERVIEW

2 - 5

1.5 CPMS Macros

(1) Task management
rleas
queue
exit
abort
wait
post
susp
rsum
asusp
arsum
chap
sfact
gfact

(2) Memory management
wrtmem
chkbmem
chktaer
mvmem
uspchk

(3) Timer management
timer
ctime
delay
stime
gtime
wake
cwake

Notes on coding
CPMS has the following include files:
• cpms_types.h Defines variable types used by macros.
• cpms_macro.h Defines macro functions.
• cpms_errno.h Defines return codes from macros.
• cpms_table.h Defines the structures of the tables in CPMS.
• cpms_dhp.h Defines the codes used in the DHP.
• cpms_elog.h Defines the codes and structures used in error log.
• cpms_ulsub.h Defines the codes and structures used by built-in subroutines.
When using a system management macro of class (5) above for loading, specify the
-lsysctl option in loadhr.

(4) Shared resource management
rserv
prsrv
free
pfree

(5) System management
wdtset

(6) System services

getsysinfo
gettaskinfo
gtkmem
usrdhp
usrel
save_env
resume_env
gettimebase
TimebaseToSecs
atmswap
atmand
atmor
atmxor
atmadd
atmtas
atmcas

1. OVERVIEW

2 - 6

NAME
rleas - Make a task wait to be started up.

SYNOPSIS

int rleas(&tn)
long tn;

DESCRIPTION

The rleas macro checks whether the task specified by the tn parameter is in the
DORMANT state. If so, the macro places the task in the IDLE state. When the task
is not in the DORMANT state, the macro has no effect.
Specify the task number of the task in the tn parameter.

When the task is aborted during its I/O processing, the task enters the DORMANT state
and is not actually aborted until it has the I/O processing completed. When an rleas
macro is issued to a task in the DORMANT state which is performing I/O processing,
rleas terminates normally as soon as possible, with the return code 0 returned. The
task aborts when it has the I/O completed, and then enters the IDLE state.

DIAGNOSTICS

Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
3: The task specified by tn is not in the DORMANT state.
4: The task specified by tn is not registered.

PARAMETER CHECK
Parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 7

NAME
queue - Start up a task.

SYNOPSIS

int queue(&tn, &fact)
long tn, fact;

DESCRIPTION

The queue macro makes the task specified by the tn parameter wait to be executed by
the CPU if the task is in the IDLE state. Making a task wait for CPU execution is
called starting up the task.

Tasks waiting for CPU execution are dispatched in their order of priority: the higher the
priority, the faster the task is executed. When the specified task has a higher priority
than the task that issued rleas, the specified task is dispatched. When the specified task
has a lower priority, the task that issued rleas is executed.
Specify the task number of the task in the tn parameter.

When the task is made to wait for CPU execution, the setting of the fact parameter is set
as the start factor. Up to 32 start factors can be set. Note that the same factor cannot
be set repeatedly. When a start factor is fetched by a gfact macro, the factor is deleted.

When the value of the specified start factor does not fall in the range of 1 to 32, the task
is processed, assuming that no start factor is specified.

Another queue macro can be issued to the task specified to wait for CPU execution.
After the task terminates, it is made to wait for CPU execution once more. Multi-
execution requests like this are stored up to two levels. This means that when the
specified task is waiting for CPU execution, the task is queued in such a way that it is
started up once more; when the task is not waiting for CPU execution, the task is
queued in such a way that it can wait for CPU execution twice. When the execution of
the task aborts, however, the second startup request queued for the task is canceled.

DIAGNOSTICS

Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is already in the DORMANT state.
4: The task specified by tn is not registered.

PARAMETER CHECK

A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 8

NAME
exit - Terminate a task.

SYNOPSIS

exit()

DESCRIPTION
The exit macro terminates the execution of the task that issued the macro, that is, places
the task in the IDLE state rather than making it wait to be executed by the CPU.

The task priority that was changed by a chap macro during task execution is restored to
the value at task registration.

All shared resources having been locked by an rserv macro are released.

The monitoring of task termination is also canceled.

Where the EXS built-in subroutine is registered, the exit macro links to EXS.

When startup requests are queued, the task is made to wait for CPU execution again
after processing to terminate the task is completed.

DIAGNOSTICS

Issuing an exit macro does not return, control to the task. Therefore, there is no return
code.

1. OVERVIEW

2 - 9

NAME
abort - Forcibly terminate a task.

SYNOPSIS

int abort(&tn)
long tn;

DESCRIPTION

The abort macro forcibly terminates the task specified by the tn parameter and places it
in the DORMANT state. When the execution of the task is inhibited or the task is
waiting for an event, abort shifts the task from those states to the DORMANT state.

The task priority that was changed by a chap macro during task execution is restored to
the value at task registration.

All shared resources having been locked by an rserv macro are released.

The start factors set for the task are cleared.

The monitoring of task termination is also canceled.

When the ABS built-in subroutine is registered, abort links to ABS.

The timer event registered by the specified task using a timer macro is not canceled.
Timer event-based startup for the task is also not canceled unless the task is in the
DORMANT state, in which case the startup is not handled normally.

DIAGNOSTICS

Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is already in the DORMANT state.
4: The task specified by tn is not registered.

PARAMETER CHECK

Parameter check is performed to see whether the following requirement is satisfied. If
not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 10

NAME
wait - Suppress task execution until an event is generated.

SYNOPSIS

int wait(&ecb_g)
long ecb_g;

DESCRIPTION

The wait macro makes the task that issues it wait for an event to be generated by a post
macro. The event to be awaited can be specified by the ecb_g parameter. In the
ecb_g parameter, set the address of the pointer to the event control block (ECB)
allocated in GLB.

When the value of the ecb_g parameter specified in the post macro matches the value of
the ecb_g parameter in the wait macro, the task that has issued the wait macro is
released from the waiting state and waits to be executed by the CPU.

When the event to be awaited is already generated by a post macro, the task that issued
the wait macro cannot wait for the event.

When an event is generated by a post macro, the post code specified by the pcode
parameter in post is set in bits 29 to 0 (bit 0 is the LSB) in the ECB.

The post code is reported as the return code from the wait macro. For instance,
suppose that the task that issued a post macro sets the factor as the post code, by which
an event is generated. Then, after the task that has issued a wait macro is released
from the event-waiting state, the task can learn the factor from the post code.

Define an ECB for each event.

DIAGNOSTICS

Upon normal termination, the post code is returned.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The ECB specified by ecb_g already used by the wait macro issued by another task.

NOTE

Be sure to initialize the ECB allocated in GLB to 0 before using it.

1. OVERVIEW

2 - 11

NAME
post - Generate an event and restart the task.

SYNOPSIS
int post(&ecb_g, &pcode)
long ecb_g;
long pcode;

DESCRIPTION
The post macro releases from the wait state the task that issued a wait macro and is
waiting for an event. Then, post passes the post code specified by the pcode
parameter. The event to be generated can be specified by the ecb_g parameter. In
the ecb_g parameter, set the address of the pointer to the event control block (ECB)
allocated in GLB. The post code is set in bits 29 to 0 (bit 0 is the LSB) in the ECB.

When the task released from the wait state by a post macro has a higher priority than the
task that issued post, control is passed to the task with higher priority.

When the value of the ecb_g parameter specified in post matches the value of the ecb_g
parameter in the wait macro, the task that issued wait is released from the event waiting
state and waits to be executed by the CPU.

When there is no task that issued a wait macro and is waiting for the event to be
generated, the post code specified by the pcode parameter is set in bits 29 to 0 (bit 0 is
the LSB) in the ECB. This means that the fact the event was already generated is
recorded. The post code set like this is passed when a wait macro in which the event is
set is issued.

DIAGNOSTICS
When there is no task that is waiting for the event specified by ecb_g, processing is
terminated normally with the return code 3. Upon normal termination under other
conditions, the value of the return code is 0. In other cases, the following value is
returned:
2: The task waiting for the specified event is in the DORMANT state.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The post code specified by pcode is set in bits 29 to 0 (bit 0 is the LSB) in the ECB.

1. OVERVIEW

2 - 12

NAME
susp - Suppress the execution of a task.

SYNOPSIS
int susp(&tn)
long tn;

DESCRIPTION
The susp macro suppresses the execution of the task specified by the tn parameter.
The specified task must be waiting to be executed by the CPU or be in the IDLE state.

The specified task is not released from the execution-suppressed state until an rsum or
arsum macro is issued or the task is forcibly terminated by an abort macro.

When two or more susp macros are issued for the same task, only one macro has an
effect. Therefore, one rsum macro is enough to release the task from the execution-
suppressed state.

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is in the DORMANT state.
3: The task specified by tn is already in the execution-suppressed state.
4: The task specified by tn is not registered.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 13

NAME
rsum - Release a task from the execution-suppressed state.

SYNOPSIS
int rsum(&tn)
long tn;

DESCRIPTION
The rsum macro releases the task specified by the tn parameter from the execution-
suppressed state if the task is placed in that state by a susp macro.

When the task released from the execution-suppressed state has a higher priority than
the task that issued rsum, control is passed to the task with higher priority.

The rsum macro has no effect in a certain case. For instance, when an rsum macro is
issued to a task placed in the execution-suppressed state by an asusp macro, the task is
not released from that state.

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is in the DORMANT state.
3: The task specified by tn is not placed in the execution-suppressed state by a susp

macro.
4: The task specified by tn is not registered.

PARAMETER CHECK
Parameter check is performed to see whether the following requirement is satisfied. If
not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 14

NAME
asusp - Suppress the execution of multiple tasks.

SYNOPSIS
int asusp()

DESCRIPTION
The asusp macro suppresses the execution of all tasks other than the task that has issued
the macro. CPMS records the number of times asusp is issued in the execution-
suppressed counter. The counter is incremented by one each time asusp is issued,
while the counter is decremented by one each time arsum is issued. When the counter
is 0, it is no longer decremented. When the counter is greater than 0, all tasks other
than the task that issued asusp are placed in the execution-suppressed state. Only one
asusp macro is executed at a time.

When the task that issued asusp issues a wait or exit macro, the execution suppression
counter is set to 0. The counter is also set to 0 when the task that issued asusp aborts.

The rsum macro cannot cancel the execution-suppressed state enabled by asusp. When
an susp macro is issued to a task placed in the execution-suppressed state by asusp, the
execution suppression counter remains unchanged. In this case, however, the fact that
execution was suppressed by susp is recorded. To release the task from this state, the
counter must be zero-cleared by arsum and the execution-suppressed state enabled by
susp must be released by rsum.

DIAGNOSTICS
After asusp is executed, the value of the execution suppression counter is returned.

NOTES
The overhead of asusp increases as the number of tasks being executed increases.

Asusp is a macro that locks the CPU. However, it cannot be used to lock other
resources.

When asusp causes a conflict with another task for the resource to be locked by a rserv
macro, a deadlock occurs. After asusp is issued, do not issue any processing routine or
macro that causes a conflict for resources.

Minimize the time during which asusp is active. Otherwise, the system operation may
be affected adversely. Other macros should not be issued from when asusp is issued
until arsum is issued.

1. OVERVIEW

2 - 15

NAME
arsum - Release multiple tasks from the execution-suppressed state.

SYNOPSIS
int arsum()

DESCRIPTION
The arsum macro clears the execution-suppressed state effected by an asusp macro.
CPMS records the number of times asusp is issued in the execution suppression counter.
The counter is incremented by one each time asusp is issued, while the counter is
decremented by one each time arsum is issued. When the counter is 0, it is no longer
decremented. When the counter is greater than 0, all tasks other than the task that
issued asusp are placed in the execution-suppressed state.

When the task that issued asusp issues a wait or exit macro, the execution suppression
counter is set to 0. The counter is also set to 0 when the task that issued asusp aborts.

The rsum macro cannot clear the execution-suppressed state effected by asusp in a
certain case. For instance, when an arsum macro is issued to a task placed in the
execution-suppressed state by a susp macro, that state is not cleared.

When the task released from the execution-suppressed state has a higher priority than
the task that issued arsum, control is passed to the task with higher priority.

DIAGNOSTICS
After arsum is executed, the value of the execution suppression counter is returned.
0: The execution-suppressed state effected by asusp is already released.
n: To clear the execution-suppressed state effected by asusp, arsum must be issued n

more times.

1. OVERVIEW

2 - 16

NAME
chap - Temporarily change a task priority.

SYNOPSIS
int chap(&tn, &chgp)
long tn, chgp;

DESCRIPTION
The chap macro temporarily changes the priority of the task specified by the tn
parameter to the priority specified by the chgp parameter. After chap is executed, the
priority of the specified task may be higher than that of the task that issued chap. In
this case, control is passed to the specified task if the task is waiting to be executed by
the CPU. When the specified task is the task that issued chap and its priority is
lowered by chap, control is passed to a task with a higher priority.

The priority temporarily changed by chap remains in effect until the specified task
terminates or aborts.

The chap macro can also be used to increase the priority of the task waiting for a
resource to be freed. However, this does not mean that the resource is forcibly
allocated to the task.

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is in the DORMANT state.
4: The task specified by tn is not registered.

PARAMETER CHECK
A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task number.
• When the specified task is a system task, the priority specified by chgp is within the

range of 0 to 31.
• When the specified task is a user task, the priority specified by chgp is within the

range of 4 to 27.

1. OVERVIEW

2 - 17

NAME
sfact - Set a start factor for a task.

SYNOPSIS
int sfact(&tn, &fact)
long tn, fact;

DESCRIPTION
The sfact macro sets the start factor specified by the fact parameter for the task specified
by the tn parameter. When the value of the specified start factor does not fall in the
range of 1 to 32, the task is processed, assuming that no start factor is specified.

The set start factor is read by a gfact macro and then cleared. Even when an attempt is
made to set the same start factor twice or more for the same task, it is set only once.
The start factor is cleared by a single gfact macro.

When the specified task is in the DORMANT state, no start factor is set. When the
specified task aborts, all start factors set for the task are cleared.

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
2: The task specified by tn is in the DORMANT state.
4: The task specified by tn is not registered.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task number.

1. OVERVIEW

2 - 18

NAME
gfact - Read a start factor of a task.

SYNOPSIS
int gfact(fact)
long *fact;

DESCRIPTION
The gfact macro reads a start factor set for the task that issued the macro. Only one
start factor is read by a single gfact macro at the address specified by the fact parameter,
in the ascending order of numerical values.

After the start factor is read, it is cleared. The remaining start factors can be read by
issuing gfact again. When all start factors are read, gfact returns a 0 to the address
specified by the fact parameter.

Make sure that when a task is started up, all its start factors are read by gfact.

DIAGNOSTICS
Upon normal termination, a 0 is returned.

1. OVERVIEW

2 - 19

NAME
wrtmem - Write to protected memory.

SYNOPSIS
int wrtmem(vaddr, dst, size)
long *vaddr;
long *dst;
int size;

DESCRIPTION
The wrtmem macro writes to protected memory and is used by programming tasks to
write programs and data to such memory.

PARAMETERS
vaddr: First address of the transfer source. (Specify an address on a four-byte

boundary.)
dst: First address of the transfer destination. (Specify an address on a four-byte

boundary.)
size: Number of data items. (Specify data in bytes. The number of data items must

be a multiple of four within 8,192.)

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: Parameter error. (One of the vaddr, data, and size parameters is invalid.)

NOTES
Depending on the specified address, the wrtmem macro may destroy the program.
CPMS cannot prevent the macro from destroying the program.

1. OVERVIEW

2 - 20

NAME
chkbmem - Check access to bus memory.

SYNOPSIS
int chkbmem(slot)
long slot;

DESCRIPTION
The chkbmem macro returns a value that indicates whether access to bus memory in the
specified slot is possible.

PARAMETER
slot: Number of the slot where bus memory is mounted (0 to 7)

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, combination of the following
values is returned:
0x8000: Parameter error.
0x8001: Not mounted.
0x8004: Target abort error was detected. (Failure)

1. OVERVIEW

2 - 21

NAME
chktaer - Check for a target abort.

SYNOPSIS
int chktaer(slot)
long slot;

DESCRIPTION
The chktaer macro returns a value that indicates whether there is a target abort in bus
memory in the specified slot.

PARAMETER
slot: Number of the slot where bus memory is mounted (0 to 7)

DIAGNOSTICS
Return codes
0: There was a target abort.
1: There was no target abort.

1. OVERVIEW

2 - 22

NAME
mvmem - Data transfer between specified areas

SYNOPSIS
int mvmem(wno, daddr, saddr)
long *wno;
long *daddr;
long *saddr;

DESCRIPTION
The mvmem macro transfers the specified number of bytes of data from the address
specified in saddr to the address specified in daddr.

PARAMETER
wno: Number of transfer words
daddr: Beginning address of data transfer destination
saddr: Beginning address of data transfer source

DIAGNOSTICS
The return code is always 0.

1. OVERVIEW

2 - 23

NAME
uspchk - Check the number of bytes used for stack.

SYNOPSIS
int uspchk(usebyt, addr)
long *usebyt;
long *addr;

DESCRIPTION
The uspchk macro checks if the task having issued this macro instruction uses the stack
exceeding the number of bytes specified in the parameter. It makes a check with stack
size used when this macro is called.

PARAMETER
usebyt: Number of bytes of the stack area to be checked
addr: Mask of the status register to be changed

DIAGNOSTICS
Upon normal termination, a 0 is returned and the free capacity up to the number of bytes
of the stack area specified in addr is returned.
Upon abnormal termination, a 1 is returned and the capacity exceeding the number of
bytes of the stack area specified in addr.

REMARKS
• It is the most effective to execute this macro instruction at the deepest position of

program nesting.
• After completion of debug, we recommend the user to delete this macro instruction

from the program.
• The user must describe the error handling according to the judgement of a return code.

1. OVERVIEW

2 - 24

NAME
timer - Register a task that starts up based on a timer event.

SYNOPSIS
int timer(&id, &tn, &fact, &t, &cyt)
long id, tn, fact, t, cyt;

DESCRIPTION
The timer macro registers the task specified by the tn parameter so that it is started up
based on the timer event specified by the id parameter. Four timer events are
specifiable: length-of- time basis, time-of-day basis, length-of-time and cycle basis, and
time-of-day and cycle basis. These events are explained in the table below.

When the time of day that already elapsed is specified to register a timer event, the time
is registered as the same time on the next day. When the time of day is advanced by
an stime macro and the timer event with the time of day specified is skipped, the time is
registered as the same time on the next day.

The start factor specified by the fact parameter is passed to the task subject to timer
event-based startup.

When the value of the specified start factor does not fall in the range of 1 to 32, the task
is processed, assuming that no start factor is specified.

When a timer event is to be registered, the status of the specified task is not checked.
When the specified task is in the DORMANT state on the occurrence of the timer event,
the task does not start up.

To cancel the timer event, use a ctime macro. Even when a task for which a timer
event is registered is aborted or deleted, the timer event is not canceled.

PARAMETERS
id: Timer event type (1 to 4)
tn: Task number of the task for which a timer event is to be registered
fact: Start factor to be passed to the task to be started up
t: Time of day for the first timer event or length of time relative to the current time (in

milliseconds)
cyt: Duration of the cycle when events are to be generated cyclically (milliseconds).
Specify a 0 when id is 1 or 2, or a value greater than 0 but smaller than or equal to
86,400,000 when id is 3 or 4.

1. OVERVIEW

2 - 25

Explanation of the id, t, and cyt parameters in the timer macro

Timer event id t cyt Explanation
Length-of-time
basis

1 Relative time up to
the start time,
measured from the
current time of day

0 After the length of time specified
by the t parameter elapses, the
task specified by the tn parameter
is started up.

Time-of-day
basis

2 Time of day at
which the task is
started up,
measured from
00:00

0 The task specified by the tn
parameter is started up at the time
specified by the t parameter.

Length-of-time
and cycle basis

3 Relative time up to
the start time,
measured from the
current time of day
(relative time up to
the first startup)

Interval at
which the task
is started up
cyclically after
the first startup

After the length of time specified
by the t parameter elapses, the
task specified by the tn parameter
is started up.
Then, the task is started up
cyclically at the interval specified
by the cyt parameter.

Time-of-day
and cycle basis

4 Time of day at
which the task is
started up,
measured from
00:00 (time of day
at the first startup)

Interval at
which the task
is started up
cyclically after
the first startup

The task specified by the tn
parameter is started up at the time
specified by the t parameter.
Then, the task is started up
cyclically at the interval specified
by the cyt parameter.

DIAGNOSTICS

Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The value of tn is 0.
4: No more timer events can be registered because the system tables are full.

PARAMETER CHECK
Parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task number.
• The value of the type specified by id is within the range of 1 to 4.
• When the value of id is 1 or 3, the length of time specified by t is greater than 0 but

does not exceed 86,400,000.
• When the value of id is 2 or 4, the time of day specified by t is greater than or equal to

0 but less than 86,400,000.
• When the value of id is 1 or 2, the value of cyt is 0.
• When the value of id is 3 or 4, the value of cyt is greater than 0 but does not exceed

86,400,000.

1. OVERVIEW

2 - 26

NAME
ctime - Cancel timer events for a task.

SYNOPSIS
int ctime(&tn, &fact)
long tn, fact;

DESCRIPTION
The ctime macro cancels timer events registered by a timer macro for the specified task.

Specifically, ctime searches for the timer event having the task number specified by the
tn parameter and the start factor specified by the fact parameter, and deletes all
occurrences of the timer event. When the value of the specified start factor does not
fall into the range of 1 to 32, it is assumed that no start factor is specified.

The ctime macro cannot cancel the execution of a task that was already started up.
When cyclic events to be generated after the current time are registered, however, these
events are canceled.

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, the following value is returned:
1: The timer event having the specified task number and start factor is not registered.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The task number specified by tn is within the range of 0 to the maximum task

number.

1. OVERVIEW

2 - 27

NAME
delay - Suppress task execution for a specified time.

SYNOPSIS
int delay(&t)
long t;

DESCRIPTION
The delay macro suppresses the execution of the task that issued the macro for the time
specified by the t parameter.

In the t parameter, specify the time in milliseconds during which task execution is to be
suppressed. During the suppression of task execution, another task has control. After
the task execution has been suppressed for the specified time, control is returned to the
task that issued delay if there are no other runnable tasks (that have higher priorities
than the task that issued delay or have the same priority but have been already started
up).

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, the following value is returned:
4: Task execution could not be suppressed because of insufficient system tables.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The time during which to suppress task execution specified by t is greater than 0 but

does not exceed 86,400,000 (24 hours)

NOTE
For system operation reasons, the delay macro should not be issued while shared
resources are being locked.

1. OVERVIEW

2 - 28

NAME
stime - Set the time of day.

SYNOPSIS
int stime(&time)
struct{
 short year;
 short month;
 short day;
 short week;
 long msec;
} time;

DESCRIPTION
The stime macro changes the time of day managed by CPMS to the time specified by
the time parameter, and also sets the time in the TOD.

Specify the time parameter as follows:
year: Calendar year from 1970 to 2069
month: Month
day: Day
week: Set 0 because it is not used.
msec: Time in milliseconds measured from 00:00 within the range of 0 to 86,399,000

(23:59:59)

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, the following value is returned:
1: The time specified by time is invalid.

PARAMETER CHECK
A parameter check is performed to see whether the following requirement is satisfied.
If not, a parameter check error is returned.
• The year is from 1970 to 2069. The month is from 1 to 12. The day is from 1 to

31.
The number of milliseconds is from 0 to 86,399,000.

1. OVERVIEW

2 - 29

NOTE
The timer events registered by the timer macro are affected at the time of their
occurrence as described below.

Timer event type When time is delayed When time is advanced Remarks
Length-of-time
basis and length-
of-time and cycle
basis

The time of the timer
event is not affected.

The time of the timer
event is not affected.

After the length of
time specified by the
timer macro elapses,
the timer event is
generated.

Time-of-day basis
and time-of-day
and cycle basis

When the time to
generate the timer
event is delayed 24
hours or more, the
time is registered as
the same time on the
next date.

The scheduled start time
is shifted so that the
time resulting from
adding the cyclic time to
the first scheduled start
time may be behind the
changed time. If the
first scheduled start time
has elapsed and the start
timing is lost, the timer
is started when it is
changed.

The timer events registered by the wake macro are affected at the time of their
occurrence as described below.

Timer event type When time is delayed When time is advanced Remarks
Time-of-day basis When the start time is

skipped by advancing
the time, the time is
registered as the same
time on the next date.

Time-of-day basis
and cycle basis

(When Don’t care is
specified) When the
start time is delayed
24 hours or more by
delaying the time, the
time is set to the same
time on the same date
after a change.
(When the absolute
time specified)
The time is not
affected by time
change.

When the start time is
skipped by advancing
the time, the time is
registered so that the
time resulting from
adding the cyclic time to
the first start time may
be behind the newly set
time.

1. OVERVIEW

2 - 30

NAME
gtime - Read the current time.

SYNOPSIS
int gtime(time)
struct{
 short year;
 short month;
 short day;
 short week;
 long msec;
}*time;

DESCRIPTION
The gtime macro stores the current time at the address specified by the time parameter.
The following values are returned to the address specified by the time parameter:
year: Calendar year from 1970 to 2069
month: Month
day: Day
week: Week (1 to 7 correspond to Sunday to Saturday.)
msec: Time in milliseconds measured from 00:00

DIAGNOSTICS
Upon normal termination, a 0 is returned.

1. OVERVIEW

2 - 31

NAME
wake - Start a task at the specified time

SYNOPSIS
int wake(&id, &tn, &fact, &time, &cycle)
long id;
long tn;
long fact;
TIME time;
Long cycle;

DESCRIPTION
The wake macro starts a task at the start time specified in the parameter. When Cyclic
start is specified, this macro starts a task at the start time and starts the task at each
specified cyclic time. As a task start factor, fact specified in the parameter is
transferred to the task.

PARAMETER
id: Start mode (0: Time start, 1: Cyclic start)
tn: Task No. of the task to be started
fact: Start factor that is transferred to the task to be started
time: Pointer to the TIME structure to set the start time

short sec: Specified in units of second supposing that 00:00 am is 0.
(0≦sec≦86399)

short day: Specified by day.
short month: Specified by month.
short year: Specified by Gregorian year (1970≦year≦2069)
long week: Set 0 because it is not used.

cycle: Specify the cyclic time. (1≦msec≦863400)

• The relation among id, time, and cycle is as follow.

id time cycle Contents
0 Start time 0 The macro starts the specified task only once at

the time specified in time.
1 First start time Cyclic start time

after the first
start time

The macro starts the specified task at the time
specified in time. After that, the macro starts
the requested task in the cycle specified in
cycle.

1. OVERVIEW

2 - 32

• The start time can be set as follows by using the Don’t care code (= -1).

No. year month day sec Contents
1 1990 1 10 36610 Start at 10 seconds, 10 minutes, 10

hours, 10th day, January, 1990 (The
absolute hour is specified.)

2 -1
Don’t care

1 10 36610 Start at 10 seconds, 10 minutes, 10
hours, 10th day, January, this year or
next year (*2)

3 (*1) -1
Don’t care

10 36610 Start at 10 seconds, 10 minutes, 10
hours, 10th day, this month or next
month (*2)

4 (*1) (*1) -1
Don’t care

36610 Start at 10 seconds, 10minutes, 10
hours, today or tomorrow (*2)

(*1) Higher-order data than the Don’t care code is ignored.
(*2) When the time is ahead of the present time, the task is started next year, next month or next

day. If the time is behind the present time, the task is started this year, this month or today.

DIAGNOSTICS
Upon normal termination, a 0 is returned.
1: tn = 0
4: Cannot be registered because of an insufficient system table.

1. OVERVIEW

2 - 33

NAME
cwake - Cancel the task start request registered by wake.

SYNOPSIS
int cwake(&tn, &fact)
long tn;
long fact;

DESCRIPTION
The cwake macro cancels the start request registered by wake.
This macro cancels a task from the start request when the specified tn matches fact.

PARAMETER
tn: Task No. of the task to be started
fact: Start factor to be transferred to started

DIAGNOSTICS

Upon normal termination, a 0 is returned.
1: Any task that matches the specified one is not found in the system table.

1. OVERVIEW

2 - 34

NAME
rserv - Lock shared resources in a centralized manner.

SYNOPSIS
#include <cpms/cpms-_rsrv.h>

int rserv(&n, ¶1, ¶2, …)
long n;
cpms_rserv_t para1, para2, …;

DESCRIPTION
The rserv macro locks the shared resources specified by parameters para1, para2, and so
on. The rserv macro returns with an error when the task that issued the macro has
been locking shared resources with another rserv macro. Since shared resources are
locked in a centralized manner like this, a deadlock is prevented.

The rserv macro does not perform exclusive control for shared resources between rserv
and prsrv.

When the specified task does not yet lock shared resources with another rserv macro,
the issued rserv macro checks whether the shared resources specified by parameters
para1, para2, and so on are being locked by other tasks. If all specified shared
resources are free, the specified task locks them. If some of the specified shared
resources are locked by other tasks, control is not returned from rserv, suppressing the
execution of the specified task.

When the resource-locking tasks release all shared resources with free macros, the
specified task in the execution-suppressed state can lock them and return from rserv.

The shared resources are freed when a free macro is issued or when the task that is
locking them terminates or aborts.

The shared resources being locked with a rserv macro cannot be freed with a pfree
macro.

The task that has issued rserv is also placed in the execution-suppressed state when
system tables are insufficient. This is true even when the specified resources are not
being locked by other tasks. System tables have available space when other tasks free
the shared resources with free macros. At this time, the task locks the shared resources
and returns from the rserv macro. The number of system tables used for shared
resource management is defined in CPMS. Be sure to specify shared resources within
the range of the defined number of system tables.

Do not issue rserv after issuing a susp or asusp macro that suppresses the execution of
an other task(s). If an execution-suppressed task is locking a shared resource, a
deadlock occurs.

A shared resource is represented as an area in SAREA of GLB.

1. OVERVIEW

2 - 35

Specify the n parameter and cpms_rserv_t structure as shown below.

n: Number of resources to be locked (1 to 5)

typedef struct cpms_rserv{
 long type;
 long addr;
 long top;
 long last;
}cpms_rserv_t;

type: This parameter has no meaning and is always set to 0.
addr: Address of SAREA including the shared resource to be locked
top: Starting address of the resource to be locked, relative to the beginning of SAREA
last: End address of the resource to be locked, relative to the beginning of SAREA

DIAGNOSTICS
When all specified resources are locked, a 0 is returned.
Otherwise, the following value is returned:
2: The shared resource is already being locked with rserv or prsrv.

PARAMETER CHECK
A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The value of addr is valid.
• The value of top or last is valid.
• The number of resources specified by n is within the range of 1 to 5.

NOTE
When resources are being locked with prsrv, no resource can be locked with rserv.

1. OVERVIEW

2 - 36

NAME
free - Free the shared resources being locked by rserv.

SYNOPSIS
#include <cpms/cpms_rsrv.h>

int free(&n, ¶1, ¶2, …)
long n;
cpms_rserv_t para1, para2, …;

DESCRIPTION
The free macro frees the resources being locked by an rserv macro. Of the shared
resources specified by parameters para1, para2, and so on, the free macro frees the
shared resources being locked, if any.

The tasks waiting for shared resources to be freed are released from the execution-
suppressed state when the shared resources are freed.

When the specified shard resources include a resource not being locked, the free macro
gives the return code 1. Even in this case, the shared resources being locked are freed.

The shared resources being locked with a prsrv macro cannot be freed with a free
macro.

A shared resources is represented as an area in SAREA of GLB.

Specify the n parameter and cpms_rserv_t structure as shown below.

n: Number of resources to be freed (1 to 5)

typedef struct cpms_rserv{
 long type;
 long addr;
 long top;
 long last;
}cpms_rserv_t;

type: This parameter has no meaning and is always set to 0.
addr: Address of SAREA including the shared resource to be freed
top: Starting address of the resource to be freed, relative to the beginning of SAREA
last: End address of the resource to be freed, relative to the beginning of SAREA

DIAGNOSTICS
When the shared resources are freed, a 0 or 1 is returned. Otherwise, the following
value is returned:
2: All specified resources were already freed.

1. OVERVIEW

2 - 37

PARAMETER CHECK
A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The value of addr was valid.
• The value of top or last was valid.
• The number of resources specified by n was within the range of 1 to 5.

1. OVERVIEW

2 - 38

NAME
prsrv - Lock shared resources.

SYNOPSIS
#include <cpms/cpms_rsrv.h>

int prsrv(&n, ¶1, ¶2, …)
long n;
cpms_rserv_t para1, para2, …;

DESCRIPTION
The prsrv macro locks the shared resources specified by parameters para1, para2, and so
on. When the task that issued prsrv is already locking shared resources with another
prsrv macro, the prsrv macro can be used to lock other resources.

The prsrv macro does not perform exclusive control for shared resources between prsrv
and rserv.

The prsrv macro checks whether the shared resources specified by parameters para1,
para2, and so on are being locked by other tasks. If all specified shared resources are
free, the specified task locks them. If some of the specified shared resources are being
locked by other tasks, control is not returned from prsrv, suppressing the execution of
the task that issued that prsrv macro.

When a specified shared resource is being locked by the prsrv macro issued by the task
itself, processing is performed, assuming that the shared resource is now locked. Note
that the same resource may be locked more than once by the same task with prsrv. To
free such a shared resource, pfree must be issued as many times as prsrv was issued.

When the resource-locking tasks release all shared resources with pfree macros, the task
in the execution-suppressed state can lock them and return from prsrv.

The shared resources are freed when a pfree macro is issued or the task that is locking
them terminates or aborts.

The shared resources being locked with a prsrv macro cannot be freed by a free macro.

The task that issued prsrv is also placed in the execution-suppressed state when system
tables are insufficient. This is true even when the specified resources are not being
locked by other tasks. System tables have available spaces when other tasks free
shared resources with pfree macros. At this time, the task locks the shared resources
and returns from the prsrv macro. The number of system tables used for shared
resource management is defined in CPMS. Be sure to specify shared resources within
the defined number of system tables.

A shared resource is represented as an area in SAREA of GLB.

1. OVERVIEW

2 - 39

Specify the n parameter and cpms_rserv_t structure as shown below.

n: Number of resources to be locked (1 to 5)

typedef struct cpms_rserv{
 long type;
 long addr;
 long top;
 long last;
}cpms_rserv_t;

type: This parameter has no meaning and is always set to 0.
addr: Address of SAREA including the shared resource to be locked
top: Starting address of the resource to be locked, relative to the beginning of SAREA
last: End address of the resource to be locked, relative to the beginning of SAREA

DIAGNOSTICS
When all specified resources are locked, a 0 is returned.
Otherwise, the following value is returned:
2: The number of shared resources sharable by a single task was exceeded.

PARAMETER CHECK
A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The value of addr was valid.
• The value of top or last was valid.
• The number of resources specified by n was within the range of 1 to 5.

1. OVERVIEW

2 - 40

NAME
pfree - Free the shared resources being locked by prsrv.

SYNOPSIS
#include <cpms/cpms_rsrv.h>

int pfree(&n, ¶1, ¶2, …)
long n;
cmps_rserv_t para1, para2, …;

DESCRIPTION
The pfree macro frees the resources being locked by a prsrv macro. Of the shared
resources specified by parameters para1, para2, and so on, the pfree macro frees the
shared resources being locked, if any.

The tasks waiting for shared resources to be freed are released from the execution-
suppressed state when the shared resources are freed.

When the specified shard resources include a resource not being locked, the pfree macro
gives the return code 1. Even in this case, the shared resources being locked are freed.

The shared resources being locked by an rserv macro cannot be freed by a pfree macro.

A shared resource is represented as an area in SAREA of GLB.

Specify the n parameter and cpms_rserv_t structure as shown below.
n: Number of resources to be freed (1 to 5)

typedef struct cpms_rserv{
 long type;
 long addr;
 long top;
 long last;
}cpms_rserv_t;

type: This parameter has no meaning and is always set to 0.
addr: Address of SAREA including the shared resource to be freed
top: Starting address of the resource to be freed, relative to the beginning of SAREA
last: End address of the resource to be freed, relative to the beginning of SAREA

DIAGNOSTICS
When the shared resources are freed, a 0 or 1 is returned. Otherwise, the following
value is returned:
2: All specified resources were already freed.

PARAMETER CHECK
A parameter check is performed to see whether the following requirements are satisfied.
If not, a parameter check error is returned.
• The value of addr was valid.
• The value of top or last was valid.
• The number of resources specified by n was within the range of 1 to 5.

1. OVERVIEW

2 - 41

NAME
wdtset - Start or stop the watchdog timer.

SYNOPSIS
int wdtset(&msec)
long msec;

DESCRIPTION
The wdtset macro starts or stops the watchdog timer.

When the watchdog timer expires, the macro links to the WDTES built-in subroutine.

Have WDTES perform processing upon time-out of the watchdog timer.

PARAMETER
msec: Time to be set in the watchdog timer (0 to 65,535) in milliseconds.
 When a value from 1 to 65,535 is set, the watchdog timer starts.
 When a 0 is set, the watchdog timer stops immediately.

DIAGNOSTICS
0: Normal termination
1: Parameter error

1. OVERVIEW

2 - 42

NAME
getsysinfo - Get system status information.

SYNOPSIS
int getsysinfo(type, addr)
int type;
char *addr;

DESCRIPTION
The getsysinfo macro returns the system information identified by the type parameter to
the address specified by the addr parameter.

In the type parameter, specify one of the following values:

● SYS_IDLE
 The accumulated idle time is returned.

struct sys_idle {
 unsigned int idle_sec; /*Measured in seconds*/
 int long idle_nsec; /*Measured in nanoseconds*/
};

The idle time is accumulated, assuming the time of CPMS start is 0. Obtain the idle
time by calculating the difference between the accumulated idle time when the previous
SYS_IDLE was issued and the current accumulated idle time.

Make sure that the measurement time is 24 hours or less.

● SYS_CPMS
 The version number of CPMS is returned.

 int cpms_ver;

● SYS_PROC
 The processor number is returned.

 int proc_no;

DIAGNOSTICS
Upon normal termination, the size in bytes of the information is returned as the return
code. Otherwise, one of the following values is returned:
0: The system information identified by type was not intended for use in processing.
-1: System information could not be fetched correctly.

1. OVERVIEW

2 - 43

NAME
gettaskinfo - Return task status information.

SYNOPSIS
int gettaskinfo(type, tn, addr)
int type, tn;
char *addr;

DESCRIPTION
The gettaskinfo macro returns task information identified by the type parameter to the
address specified by the addr parameter. Specify the task for which information is to
be fetched in the tn parameter. When fetching information on the task that issued
gettaskinfo, specify 0 in tn.

In the type parameter, specify one of the following values:

● TASK_TN

The task number of the task that issued gettaskinfo is returned. Be sure to specify
0 in tn.

int task_tn;

● TASK_PRI

The priority of the task specified by tn is returned.

int task_pri;

● TASK_STAT
The current status of the task specified by tn is returned.

int task_stat;

0: Not registered, 1: DORMANT, 2: IDLE, 3: READY, 4: SUSPENDED, 5: WAIT

DIAGNOSTICS

Upon normal termination, the size in bytes of the information is returned as the return
code. Otherwise, one of the following values is returned:
0: The task information identified by type was not intended for use in processing. Or,

the task specified by tn was not registered.
-1: Task information could not be fetched correctly.

1. OVERVIEW

2 - 44

NAME
gtkmem - Read a table managed by CPMS.

SYNOPSIS
int gtkmem(tblno, caseno, offset, size, buf)
int tblno, caseno, offset, size;
char *buf;

DESCRIPTION
The gtkmem macro reads data from a table managed by CPMS.

PARAMETERS
tblno: Table number to be acted on:

1: OSCB table
2: SYSCB table
3: TCB table
4: TMCB table
5: RSCB table
6: RSVB table
7: UCB table
8: TRB table

caseno: Relative case number in the table. When the OSCB or SYSCB, TMCB or
RSCB table is specified, specify 0 in caseno.

offset: Relative address in the case of the data to be read
size: Size in bytes of the data to be read
buf: Address of memory to be read

DIAGNOSTICS
Upon normal termination, a 0 is returned. Otherwise, one of the following values is
returned:
1: The table specified by tblno was not intended for use in processing.
2: Data could not be read correctly from the table.

1. OVERVIEW

2 - 45

NAME
usrdhp - Write to the DHP record.

SYNOPSIS
#include <cpms_dhp.h>

int usrdhp(code, data, ndata)
unsigned long code;
long *data;
long ndata;

DESCRIPTION
The usrdhp macro records user-defined events in the kernel operation trace (DHP).

PARAMETERS
code: Trace code. Specify one of DHP_USR0 to DHP_USR7.
data: Pointer to the array where trace data is to be stored
ndata: Number of elements in the array (0 to 5; one case consists of four bytes).

DIAGNOSTICS
0: Normal termination
1: Parameter error

1. OVERVIEW

2 - 46

NAME
usrel - Write user error log.

SYNOPSIS
#include <cpms_elog.h>

int usrel(type, class, retcode, errtype, erb)
long type;
long class;
long retcode;
long errtype;
long *erb;

DESCRIPTION
After linking to the EAS built-in subroutine, the usrel macro writes the error
information specified by arguments to the error log buffer area in the operating system.

PARAMETERS
type: Specifies one of the following severity types:

LOG_TYPE_NONFATAL
Errors that do not cause the system to go down. When degrading some of
features, use this type. Errors of this type include program errors and I/O errors.
LOG_TYPE_WARNING
Warning errors. Use this type for recoverable errors. Errors of this type include
those caused by insufficient resources such as temporarily insufficient memory.
LOG_TYPE_NOTE
Messages to provide the user with information

class: Specifies either of the following error message classes (provided for subsystem

identification): To assign meanings to these classes is a task for the user.

LOG_CLASS_MSOFT1 to LOG_CLASS_MSOFT16 (for middleware)
LOG_CLASS_USER1 to LOG_CLASS_USER16 (for applications)

retcode: Specifies the return value by which a function was called immediately before

error detection. When no function was called, set retcode to 0.

errtype: Specifies either of the following possible failure causes:

LOG_ERRTYPE_HARD (hardware)
LOG_ERRTYPE_SOFT (software)

1. OVERVIEW

2 - 47

erb: Specifies the pointer to the error block. The error block format is shown below.

● Error block format

erb [0]

erb [117]

erb [1]

erb [2]

erb [3]

formtype

size

errcode

data [0]

to

data [n]

Max

formtype: Specifies a format type of error messages.

The following values are usable as format types:

LOG_FORM_MSOFT1 to LOG_FORM_MSOFT16 (for middleware)
LOG_FORM_USER1 to LOG_FORM_USER16 (for applications)
LOG_FORM_PIOERR (PI/O errors)
LOG_FORM_MODULERR (module errors)

To assign meanings to the format types for middleware and applications is a task for the
user.

The formats for PI/O errors and module errors are defined by the operating system.

size: Specifies the size in bytes of the effective data after the errcode field. (4 to 464)
errcode: Specifies an error code:
 0x08000000 to 0x08FFFFFF (for middleware)
 0x09000000 to 0x09FFFFFF (for applications)

To assign meanings to these error codes is a task for the user. However, use the high-
order 16 bits as the major part to specify an error type, and the low-order 16 bits as the
minor part to specify a detail factor. It is also possible to use the error codes of PI/O
errors and module errors defined by the operating system.

data: Detailed data on the error. Make sure that the format of this data matches the

format specified in the formtype field.

DIAGNOSTICS
0: Normal termination
1: Parameter error

1. OVERVIEW

2 - 48

NAME
save_env - Save the execution environment of a task.

SYNOPSIS
#include <cpms_table.h>
int save_env(env)
struct task_env *env;

DESCRIPTION
The save_env macro saves the execution environment information for the task at the
time save_env is issued. The address at which to save the data can be specified in the
env parameter. The saved data is used by the resume_env macro.

In the env parameter, specify the address of the task_env structure in which the
execution environment info for the task is to be saved.

The task_env structure is configured as shown below. It requires a 424-byte area.

struct task_env {
 struct basic_regs env_basic_regs;
 struct float_regs env_float_regs;
};

Allocate the area in which to save the execution environment info for the task in GLB.

The save_env macro issued from a built-in subroutine does not perform any processing.

DIAGNOSTICS
When the execution environment info for the task is saved successfully by save_env, a 0
is returned.

When control is returned from save_env as the result of issuing a resume_env macro,
the value specified by val in resume_env is given as the return code. When a 0 is
specified by val, a 1 is returned.

NOTE
When control is returned by resume_env to the point where save_env was issued, the
contents of the user stack or the BSS or GLB data related to task control may differ
from those at the time save_env was issued. If this happens, resume_env may not
assure the same processing as before.

1. OVERVIEW

2 - 49

NAME
resume_env - Restore the execution environment of a task.

SYNOPSIS
#include <cpms_table.h>
void resume_env(env, val)
struct task_env *env;
int val;

DESCRIPTION
The resume_env macro restores the execution environment of the task specified in the
parameter env. The execution environment of the task to be restored is only the
register, so the contents of the user task and BSS are not restored.

Make sure that resume_env is issued from the CPES built-in subroutine. resume_env
is effective as long as neither a task abort nor a CPU down occurs according to the
execution result of the CPES built-in subroutine. The task execution environment is
restored not immediately after resume_env is issued, but after all entries of CPES are
executed. Then, control is passed to the return address specified by the save_env
macro corresponding to the env parameter.

Upon normal restoration of the task execution environment, control is returned from
save_env that saved the execution environment of the specified task. At the same
time, save_env returns the val parameter as the return code. When a 0 is specified by
val, save_env returns a 1.

When resume_env is issued more than once from multiple entries in the CPES built-in
subroutine, the parameters in the last resume_env macro are in effect.

DIAGNOSTICS
The resume_env macro does not give any return code.

NOTES
The resume_env macro must be issued from the CPES built-in subroutine.

When resume_env is issued from other than CPES, it does not perform any processing.

When control is returned by resume_env to the point where save_env was issued, the
contents of the user stack or the BSS or GLB data related to task control may differ
from those at the time save_env was issued. If this happens, resume_env may not
assure the same processing as before.

If the env parameter is specified incorrectly, the CPU may go down.

1. OVERVIEW

2 - 50

NAME
gettimebase - Read the time base.

SYNOPSIS
void gettimebase(timebase)
unsigned long timebase [2];

DESCRIPTION
The gettimebase macro reads and returns the 64-bit time base. The time base is
incremented every four bus clocks. Since the bus clock of the CMU operates at 39.996
MHz, the time base is incremented at a rate of 9.999 MHz. Division of the time base
by 9,999,000 results in the number of seconds measured from January 1, 1970,
00:00:00.

PARAMETERS
timebase[0]: High-order 32 bits of the time base register (TBU)
timebase[1]: Low-order 32 bits of the time base register (TBL)

NOTES
The time base depends on the model. In the future, the time base is likely to be
handled in a different way depending on the model and operating frequency.

For the CMU, the contents of the area are 39996000 (0x02624a60).

1. OVERVIEW

2 - 51

NAME
TimebaseToSecs - Convert the time base value into seconds or nano seconds.

SYNOPSIS
void TimebaseToSecs(timebase, tval)
unsigned long timebase [2];
struct tval{
 unsined int tv_sec;
 int tv_nsec;
} tval;

DESCRIPTION
The TimebaseToSecs macro converts the 64-bit time base value into relative seconds
from the year 1970 or nano seconds that are less than a second.

1. OVERVIEW

2 - 52

NAME
atmswap, and other macros - Atomic operation libraries

SYNOPSIS
long atmswap(addr, data)
long *addr, data;

long atmand(addr, data)
long *addr, data;

long atmor(addr, data)
long *addr, data;

long atmxor(addr, data)
long *addr, data;

long atmadd(addr, data)
long *addr, data;

long atmtas(addr, data)
long *addr, data;

long atmcas(addr, data1, data2)
long *addr, data1, data2;

DESCRIPTION
These libraries prevent another task or interrupt processing from rewriting the memory
while the memory is read, changed or written, thus guaranteeing exclusive read, change
and write operations. This permits exclusive control.

Each library handles only 32-bit integers (long int) as data. The return value in olddata
is the value (addr) in memory before operation. The symbol “→addr” indicates that
data is to be stored at the address specified by addr.

olddata=atmswap(addr, data): data→addr
olddata=atmand(addr, data): (addr) AND data→addr
olddata=atmor(addr, data): (addr) OR data→addr
olddata=atmxor(addr, data): (addr) XOR data→addr
olddata=atmadd(addr, data): (addr) + data→addr
olddata=atmtas(addr, data): Test And Swap if (addr) = 0 then data→addr
olddata=atmcas(addr, data1, data2): Compare And Swap if (addr) = data1 then data2→

addr

NOTE
Exclusive control achieved by these libraries takes effect between processing programs
within the local processor. They cannot be used for exclusive control with another
processor or I/O DMA.

PART 3 LIBRARIES

1. OVERVIEW

3 - 2

CHAPTER 1 OVERVIEW

1.1 Programming Requirements

When using library subroutines in a program, link the library by specifying the -l option in
the svload command. Meet the following requirements when linking libraries:

● When using subroutines in libcrs.a
 Specify “-lcrs” in the svload command.

1.2 Order of Libraries Specified

Meet the following requirements when specifying libraries in the svload command:

● If the same name exists in the specified libraries, specify first the library containing the
option file to be linked.

1.3 Names Defined in Libraries

The names defined in libraries are given below. Code a program so that a name will not
be duplicated. When using a duplicated name, specify the library file after the object file
to be linked. This prevents the library files from being linked first.

● libcrs.a

fpcheck fpchecko fpsetmask fpgetmask
fpsetround fpgetround fpsetsticky fpgetsticky

1. OVERVIEW

3 - 3

IEEE floating-point processing environment control subroutines

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky -

IEEE floating-point processing environment control

SYNOPSIS
#include <ieeefp.h>

typedef enum {

FP_RN =0, /* round nearest */
FP_RZ =1 /* round zero (truncate) */

} fp_rnd;

#define fp_except int
#define FP_X_INV 0x10 /* invalid operation exception */
#define FP_X_OFL 0x04 /* overflow exception */
#define FP_X_UFL 0x02 /* underflow exception */
#define FP_X_DZ 0x08 /* devided by zeros exception */
#define FP_X_IMP 0x01 /* imprecise(loss of precision) */

fp_rnd fpgetround(void);
fp_rnd fpsetround(fp_rnd rnd_dir);
fp_except fpgetmask(void);
fp_except fpsetmask(fp_except mask);
fp_except fpgetsticky(void);
fp_except fpsetsticky(fp_except sticky);

DESCRIPTION

These macros control floating-point rounding and floating-point exception occurrence.
(1) Rounding

Rounding is divided into 2 modes and controlled by fpgetround() and fpswtround().
 FP_RN: Rounding to nearest
 FP_RZ: Rounding to zero
The initial value of rounding is FP_RN.

1. OVERVIEW

3 - 4

(2) Floating-point exceptions
The floating-point exceptions that may occur in the CMU are as follows.
• FPU error (E): When FPSCR.DN=0 and a non-normalized value is input (*)
• Invalid operation (V): Invalid operation such as a NaN input
• Division by 0 (Z): Division by divisor 0
• Overflow (O): An operation result overflows.
• Underflow (U): An operation result underflows.
• Imprecise exception (I): An overflow, underflow or rounding occurs.
(*) In the CMU, FPSCR.DN=1 is set, so a non-normalized value is handled as 0 and

no FPU error occurs.

An floating-point exception occurs when 1 set in the enable bit corresponding to the
exception of the floating-point control register (FPSCR).
When a floating-point exception occurs, the corresponding bit in the FPU exception
factor field of the floating-point control register (FPSCR) is set to 1 and 1 is stacked
in the bit corresponding to the FPU exception flag field. When no FPU exception
occurs, the corresponding bit in the FPU exception factor field is cleared to 0 and
the bit corresponding to the FPU exception flag field is not changed.
The initial value of the floating-point exception enable bit is as follows:
• Invalid operation (V): Valid
• Division by 0 (Z): Valid
• Overflow (O): Valid
• Underflow (U): Invalid
• Imprecise exception (I): Invalid
Floating-point exception control is exerted by fpgetmask(), fpsetmask(),
fpgetsticky(), and fpsetsticky().

• fpgetround returns the current rounding mode.

FP_RN: Rounding to nearest
PF_RZ: Rounding to zero

• fpsetround() sets the rounding mode and returns the previous rounding mode.
• fpgetmask() returns the current FPSCR exception enable bit value.

The relation between the exception mask and the FPSCR enable bit is shown below.

Exception mask FPSCR enable bit

FP_X_INV Invalid operation (V)
FP_X_DZ Division by 0 (Z)
FP_X_OFL Overflow (O)
FP_X_UFL Underflow (U)
FP_X_IMP Imprecise exception (I)

1. OVERVIEW

3 - 5

• fpsetmask() sets the FPSCR exception enable bit according to the exception mask
value and returns the previous set value.
The relation between the exception mask and the FPSCR exception enable bit is
the same as that of fpgetmask().

• fpgetsticky() returns the value of the FPU exception flag field.
The relation between the sticky flag and the FPSCR FPU exception flag field is
shown below.

sticky flag FPSCR flag field

FP_X_INV Invalid operation (V)
FP_X_DZ Division by 0 (Z)
FP_X_OFL Overflow (O)
FP_X_UFL Underflow (U)
FP_X_IMP Imprecise exception (I)

• fpsetsticky() sets the value in the FPU exception flag field according to the sticky

flag value and returns the previous value.
The relation between the sticky flag and the FPSCR FPU exception flag field is
the same as that of fpgetsticky().

NOTES

fpsetsticky() changes the value of the FPU exception flag field corresponding to every
the sticky flag.
fpsetmask() changes the exception enable bit corresponding to every exception mask
value.
The following mode are not available for rounding control by fpgetround() and
fpsetround().
• FP_RP: A negative value is truncated and a positive value is rounded up.
• FP_RM: A positive value is truncated and a negative value is rounded up.

1. OVERVIEW

3 - 6

NAME
fpcheck, fpchecko - Detect a floating-point exception.

SYNOPSIS
#include <ieeefp.h>

typedef enum {

FP_RN =0, /* round nearest */
FP_RZ =1 /* round zero (truncate) */

} fp_rnd;

#define fp_except int
#define FP_X_INV 0x10 /* invalid operation exception */
#define FP_X_OFL 0x04 /* overflow exception */
#define FP_X_UFL 0x02 /* underflow exception */
#define FP_X_DZ 0x08 /* devided by zeros exception */
#define FP_X_IMP 0x01 /* imprecise (loss of precision) */

void fpcheck(fp_except flg);
void fpchecko(void);

DESCRIPTION
These macros detect an occurrence status of a flowing-point exception that suppressing
occurrence.
When the occurrence of a floating-point exception is detected, it results in a program
error and the task is aborted.
fpchecko() detects whether an overflow occurs or not.
fpcheck() detects whether the exception specified in the parameter occurs or not. For
detecting multiple exceptions simultaneously, specify the OR of exception factors.

1. OVERVIEW

3 - 7

EXAMPLE
The following is an example of suppressing the occurrence of an overflow and detecting
the occurrence of an overflow after operations.

 … Invalid operation and division by 0 are validated.
(Overflow is invalidated.)

 … Clear the factor flag bit.

 … Check whether an overflow occurs or not.

If an overflow occurs, this results in a program
error.

▼

▲

fpsetmask(FP_X_INV|FP_X_DZ)

fpsetsticky(0)

Floating-point operation

fpchecko()

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIXES

APPENDIXES

A - 2

APPENDIX A MACRO PARAMETERS

Macro name Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6
rleas tn
queue tn fact
exit
abort tn
wait ecb
post ecb pcode
susp tn
rsum tn
asusp
arsum
chap tn chgp
sfact tn fact
gfact fact
wrtmem vaddr data size
chkbmem slot
chktaer slot
mvmem wno daddr saddr
uspchk usebyt addr
timer id tn fact t cyt
ctime tn fact
delay t
stime time
gtime time
wake id tn fact time cycle
cwake tn fact
rserv n para1 para2 para3 para4 para5
prsrv n para1 para2 para3 para4 para5
free n para1 para2 para3 para4 para5
pfree n para1 para2 para3 para4 para5
wdtset msec
getsysinfo type addr
gettaskinfo type tn addr
gtkmem tblno caseno offset size buf
usrdhp code data ndata
usrel type class retcode errtype erb
save_env env
resume_env env val
gettimebase timebase
TimebaseToSecs timebase tval
atmswap addr data
atmand addr data
atmor addr data
atmxor addr data
atmadd addr data
atmtas addr data
atmcas addr data1 data2

APPENDIXES

A - 3

APPENDIX B CPMS ERROR HANDLING
(1/2)

No. Error
code Error message Error description Fault

category
Fault

location Termination Recovery

1 03620000 Program error (Invalid Data Access) Data access error Software TASK TASK ABORT Program correction
2 03660000 Program error (Data Access

Protection)
Data access protect error Software TASK TASK ABORT Program correction

3 03600000 Program error (Data Page Fault) Data access page fault Software TASK TASK ABORT Program correction
4 03420000 Program error (Invalid Inst. Access) Instruction access error Software TASK TASK ABORT Program correction
5 03460000 Program error (Inst. Access

Protection)
Instruction access protect error Software TASK TASK ABORT Program correction

6 03400000 Program error (Instruction Page
Fault)

Instruction access page fault Software TASK TASK ABORT Program correction

7 03030000 Program error (Inst. Alignment
Error)

Instruction alignment error Software TASK TASK ABORT Program correction

8 03080000 Program error (Privileged
Instruction)

Privileged instruction error Software TASK TASK ABORT Program correction

9 03040000 Program error (Illegal Instruction) Illegal instruction error Software TASK TASK ABORT Program correction
10 03390000 Program error (FP Program Error) Floating-point calculation error Software TASK TASK ABORT Program correction
11 03470000 Program error (Data Alignment

Error)
Data alignment error Software TASK TASK ABORT Program correction

12 05130000 Invalid macro Undefined-macro issuance Software TASK TASK ABORT Program correction
13 05110000 Macro parameter error Macro parameter abnormal Software TASK TASK ABORT Program correction
14 05C70000 WDT timeout error Watchdog timer timeout Software TASK － Program correction
15 03B70000 Module error (Bus Target Abort) Bus target abort Hardware I/O － Hardware

replacement or
program correction

16 05000000 Module error (Invalid Interrupt) Invalid interrupt Hardware CMU － Hardware
replacement

17 05000001 Module error (Undefined Invalid
Interrupt)

Undefined invalid interrupt Hardware CMU － Hardware
replacement

18 05000002 Module error (INTEVT Invalid
Interrupt)

INTEVT invalid interrupt Hardware CMU － Battery replacement

19 0500F001 Module error (HERST Invalid
Interrupt)

Serious fault invalid interrupt Hardware CMU － Battery replacement

20 0500F002 Module error (HERST2 Invalid
Interrupt)

Serious fault invalid interrupt 2 Hardware CMU － Hardware
replacement

21 0500F003 Module error (BUERRSTAT Invalid
Interrupt)

Bus error serious fault interrupt
status invalid

Hardware CMU － Hardware
replacement

22 0500F006 Module error (MHPMCLG Invalid
Interrupt)

Memory serious fault interrupt
status invalid

Hardware CMU － Hardware
replacement

23 0500F007 Module error (ECC 2bit Master
Invalid Interrupt)

Memory ECC 2-bit error serious
fault status invalid

Hardware CMU － Hardware
replacement

24 0500F008 Module error (RERRMST Invalid
Interrupt)

RERR interrupt status invalid Hardware CMU － Hardware
replacement

25 0500C001 Module error (NINTR Invalid
Interrupt)

NINT status invalid Hardware CMU － Hardware
replacement

26 0500B001 Module error (PUINTR Invalid
Interrupt)

PUINT status invalid Hardware CMU － Hardware
replacement

27 05008001 Module error (PUINTC Invalid
Interrupt)

PUINTC status invalid Hardware CMU, LPU － Hardware
replacement

28 05005001 Module error (RINTR Invalid
Interrupt)

RINT status invalid Hardware CMU － Hardware
replacement

29 05003001 Module error (LV3 INTST Invalid
Interrupt)

Level 3 interrupt status invalid Hardware CMU － Hardware
replacement

30 05003002 Module error (RQI6 INF Invalid
Interrupt)

RQI6 status invalid Hardware CMU － Hardware
replacement

31 05001001 Module error (RQI3 INT Invalid
Interrupt)

RQI3 status invalid Hardware CMU － Hardware
replacement

32 05001002 Module error (RQI3 Link Invalid
Interrupt)

RQI3 link status invalid Hardware CMU － Hardware
replacement

33 05001003 Module error (RQI3 Module Invalid
Interrupt)

RQI3 module status invalid Hardware CMU － Hardware
replacement

34 0D010000 Module error (Memory Alarm) Memory 1-bit error (solid) Hardware CMU － Hardware
replacement

35 0D320000 Module error (Memory Error) Memory error Hardware CMU, I/O － Hardware
replacement

36 0D330000 Module error (Hardware WDT
Timeout)

Hardware WDT timeout Hardware CMU, I/O － Hardware
replacement

37 0D340000 Module error (Software WDT
Timeout)

Software WDT timeout Hardware CMU, I/O － Hardware
replacement or
program correction

38 0D350000 Module error (RAM Sum Check
Error)

RAM checksum error Hardware CMU, I/O － Hardware
replacement or
program correction

39 0D360000 Module error (ROM Sum Check
Error)

ROM checksum error Hardware CMU, I/O － Hardware
replacement

40 0D370000 Module error (Clock Stop Error) Clock stop error Hardware CMU, I/O － Hardware
replacement

41 0D380000 Module error (OS Clear Error) OS clear error Hardware CMU, I/O － Program load

APPENDIXES

A - 4

(2/2)
No. Error

code Error message Error description Fault
category

Fault
location Termination Recovery

42 0D800000 Module error (TOD Error) Backup clock error Hardware CMU, LPU － Hardware
replacement

43 05A00000 Kernel warning Kernel warning Software － － －
44 05A00001 Clock synchronization Kernel warning Software － － －
45 05D00000 Kernel information Kernel information Software － － －
46 0D810000 System down (BPU Error) BPU error Hardware CMU CMU STOP Hardware

replacement
47 03820000 System down (Memory Error) Memory error Hardware CMU CMU STOP Hardware

replacement
48 038A0000 System down (Memory Access

Error)
Memory access error Hardware CMU CMU STOP Hardware

replacement
49 038B0000 System down (Internal Bus Parity) Internal bus parity error Hardware CMU CMU STOP Hardware

replacement
50 038C0000 System down (System Bus Parity) System bus parity error Hardware CMU CMU STOP Hardware

replacement
51 038F0000 System down (Undefined Machine

Check)
Undefined-machine check error Hardware CMU CMU STOP Hardware

replacement
52 03620000 System down (Invalid Data Access) Data access error Software CPMS CMU STOP Program correction
53 03660000 System down (Data Access

Protection)
Data access protect error Software CPMS CMU STOP Program correction

54 03600000 System down (Data Page Fault) Data access page fault Software CPMS CMU STOP Program correction
55 03420000 System down (Invalid Inst. Access) Instruction access error Software CPMS CMU STOP Program correction
56 03460000 System down (Inst. Access

Protection)
Instruction access protect error Software CPMS CMU STOP Program correction

57 03400000 System down (Instruction Page
Fault)

Instruction access page fault Software CPMS CMU STOP Program correction

58 03030000 System down (Inst. Alignment Error) Instruction alignment error Software CPMS CMU STOP Program correction
59 03040000 System down (Illegal Instruction) Illegal instruction error Software CPMS CMU STOP Program correction
60 03380000 System down (FP Unavailable) Floating-point unavailable

exception
Software CPMS CMU STOP Program correction

61 03390000 System down (FP System Down) Floating-point calculation error Software CPMS CMU STOP Program correction
62 03470000 System down (Data Alignment

Error)
Data alignment error Software CPMS CMU STOP Program correction

63 030F0000 System down (Illegal Exception) Illegal exception Software CPMS CMU STOP Program correction
64 05700000 System down (System Error) System failure (system error) Software CPMS CMU STOP Program correction
65 05800000 System down (Kernel Trap) System failure (kernel trap) Software CPMS CMU STOP Program correction
66 03620000 ULSUB down (Invalid Data Access) Data access error Software ULSUB CMU STOP Program correction
67 03660000 ULSUB down (Data Access

Protection)
Data access protect error Software ULSUB CMU STOP Program correction

68 03600000 ULSUB down (Data Page Fault) Data access page default Software ULSUB CMU STOP Program correction
69 03420000 ULSUB down (Invalid Inst. Access) Instruction access error Software ULSUB CMU STOP Program correction
70 03460000 ULSUB down (Inst. Access

Protection)
Instruction access protect error Software ULSUB CMU STOP Program correction

71 03400000 ULSUB down (Instruction Page
Fault)

Instruction access page fault Software ULSUB CMU STOP Program correction

72 03030000 ULSUB down (Inst. Alignment
Error)

Instruction alignment error Software ULSUB CMU STOP Program correction

73 03080000 ULSUB down (Privileged
Instruction)

Privileged instruction error Software ULSUB CMU STOP Program correction

74 03040000 ULSUB down (Illegal Instruction) Illegal instruction error Software ULSUB CMU STOP Program correction
75 03380000 ULSUB down (FP Unavailable) Floating-point unavailable

exception
Software ULSUB CMU STOP Program correction

76 03390000 ULSUB down (FP System down) Floating-point calculation error Software ULSUB CMU STOP Program correction
77 03470000 ULSUB down (Data Alignment

Error)
Data alignment error Software ULSUB CMU STOP Program correction

78 030F0000 ULSUB down (Illegal Exception) Illegal exception Software ULSUB CMU STOP Program correction
79 05140000 System down (ULSUB Stop) System failure (built-in sub-stop) Software ULSUB CMU STOP Program correction
80 05F00000 Program error (ADT Error) Memory access detection Software TASK Log Program correction
81 00000201 Message frame error Message frame error Software NXACP － －
82 00000401 Buffer status Buffer status report Software NXACP － －
83 00000501 Socket error Socket error Software NXACP － －
84 00000601 Transfer memory address error Transfer area duplication error Software TASK － Program correction

APPENDIXES

A - 5

APPENDIX C BUILT-IN SUBROUTINE INPUT DATA

(1) CPES input data format (PRGEB)

 Name Description

0 pge_form LOG_FORM_PRGERR 168 pge_fr14 Floating-point register FPR14_BANK0
4 pge_frsz Data size after pge_ecd (in bytes) 172 pge_fr15 Floating-point register FPR15_BANK0
8 pge_ecd Error code 176 pge_fr16 Floating-point register FPR0_BANK1

12 pge_tn Task number 180 pge_fr17 Floating-point register FPR1_BANK1
16 pge_gr0_b0 General register R0_BANK0 184 pge_fr18 Floating-point register FPR2_BANK1
20 pge_gr1_b0 General register R0_BANK0 188 pge_fr19 Floating-point register FPR3_BANK1
24 pge_gr2_b0 General register R0_BANK0 192 pge_fr20 Floating-point register FPR4_BANK1
28 pge_gr3_b0 General register R0_BANK0 196 pge_fr21 Floating-point register FPR5_BANK1
32 pge_gr4_b0 General register R0_BANK0 200 pge_fr22 Floating-point register FPR6_BANK1
36 pge_gr5_b0 General register R0_BANK0 204 pge_fr23 Floating-point register FPR7_BANK1
40 pge_gr6_b0 General register R0_BANK0 208 pge_fr24 Floating-point register FPR8_BANK1
44 pge_gr7_b0 General register R0_BANK0 212 pge_fr25 Floating-point register FPR9_BANK1
48 pge_gr8 General register R8 216 pge_fr26 Floating-point register FPR10_BANK1
52 pge_gr9 General register R9 220 pge_fr27 Floating-point register FPR11_BANK1
56 pge_gr10 General register R10 224 pge_fr28 Floating-point register FPR12_BANK1
60 pge_gr11 General register R11 228 pge_fr29 Floating-point register FPR13_BANK1
64 pge_gr12 General register R12 232 pge_fr30 Floating-point register FPR14_BANK1
68 pge_gr13 General register R13 236 pge_fr31 Floating-point register FPR15_BANK1
72 pge_gr14 General register R14 240 pge_fpscr Floating-point status control register
76 pge_gr15 General register R15 244 pge_fpul Floating-point communication register
80 pge_pc Program counter 248 pge_iarvn9 Contents of address 36 indicated by
84 pge_sr Status register program counter
88 pge_pr Procedure register 252 pge_iarvn8 Contents of address 32 indicated by
92 pge_gbr Global base register program counter
96 pge_mach Sum-of-products upper register 256 pge_iarvn7 Contents of address 28 indicated by

100 pge_macl Sum-of-products lower register program counter
104 pge_expevt expevt register 260 pge_iarvn6 Contents of address 24 indicated by
108 pge_fadr Fault Address program counter
112 pge_fr0 Floating-point register FPR0_BANK0 264 pge_iarvn5 Contents of address 20 indicated by
116 pge_fr1 Floating-point register FPR1_BANK0 program counter
120 pge_fr2 Floating-point register FPR2_BANK0 268 pge_iarvn4 Contents of address 16 indicated by
124 pge_fr3 Floating-point register FPR3_BANK0 program counter
128 pge_fr4 Floating-point register FPR4_BANK0 272 pge_iarvn3 Contents of address 12 indicated by
132 pge_fr5 Floating-point register FPR5_BANK0 program counter
136 pge_fr6 Floating-point register FPR6_BANK0 276 pge_iarvn2 Contents of address 8 indicated by
140 pge_fr7 Floating-point register FPR7_BANK0 program counter
144 pge_fr8 Floating-point register FPR8_BANK0 280 pge_iarvn1 Contents of address 4 indicated by
148 pge_fr9 Floating-point register FPR9_BANK0 program counter
152 pge_fr10 Floating-point register FPR10_BANK0 284 pge_iarv0 Contents of address indicated program
156 pge_fr11 Floating-point register FPR11_BANK0 counter
160 pge_fr12 Floating-point register FPR12_BANK0 288 pge_iarv1 Contents of address +4 indicated by
164 pge_fr13 Floating-point register FPR13_BANK0 program counter

APPENDIXES

A - 6

(2) IES input data format (IOERB)

 Name Description
0 ioe_form Format type (in this case, LOG_FORM_IOERR)
4 ioe_frsz Data size after ioe_ecd (bytes)
8 ioe_ecd Error code

12 ioe_uno Unit No.
16 ioe_dev Device No.
20 ioe_dva Device address
24 ioe_ioec Detailed error code
28 ioe_tn Task No. (-1 is used if the task No. is invalid.)
32 ioe_data[110] Detailed information of I/O error.

(Detailed information depends on each I/O.)
472

(3) EAS input data format (ADB)

 Name Description
0 adb_logno Error log No.
4 adb_timestamp Time (host clock value)
8 adb_type Significance type

12 adb_class Failure detecting component class
16 adb_retcode Return code from function when failure is detected
18 adb_errtype Failure type (hardware/CPMS/other)
20 adb_flag Error message flag (i.e., display suppression)
24 adb_site[16] Site name
40 erb[118] Error block (failure report data).

The area size is fixed at 472 bytes but the effective data size
depends on the format type.
For details, see “Error Log Format.”

512 adb_dhpbuf[128] DHP data (512 bytes)

1024

APPENDIXES

A - 7

(4) PCKS input data format (SVCEB)

 Name Description
0 sve_form Format type (in this case, LOG_FORM_PARAMERR)
4 sve_frsz Data size after sve_ecd (bytes)
8 sve_ecd Error code

12 sve_tn Task No.
16 sve_svc Macro ID
20 sve_epn Error parameter No.
24 sve_p1 Macro instruction parameter 1
28 sve_p2 Macro instruction parameter 2
32 sve_p3 Macro instruction parameter 3
36 sve_p4 Macro instruction parameter 4
40 sve_p5 Macro instruction parameter 5
44 sve_p6 Macro instruction parameter 6
48 sve_p7 Macro instruction parameter 7

(5) MODES input data format (HARDEB)

 Name Description
0 mde_form Format type (in this case, LOG_FORM_MODULERR)
4 mde_frsz Data size after mde_ecd (bytes)
8 mde_ecd Error code

12 mde_slot Slot No.
16 mde_msw0 Module status word 0 (-1 is used if this word is invalid.)
20 mde_msw1 Module status word 1 (-1 is used if this word is invalid.)
24 mde_data[112] Detailed format of module error

472

APPENDIXES

A - 8

(6) ADTS input data format (ADTDB)

 Name Description

0 adt_form LOG_FORM_ADTERR 192 adt_fr10 Floating-point register FPR10_BANK0
4 adt_frsz Data size after adt_ecd (in bytes) 196 adt_fr11 Floating-point register FPR11_BANK0
8 adt_ecd Error code 200 adt_fr12 Floating-point register FPR12_BANK0

12 adt_tn Task number 204 adt_fr13 Floating-point register FPR13_BANK0
16 adt_gr0 General register R0_BANK0 208 adt_fr14 Floating-point register FPR14_BANK0
20 adt_gr1 General register R1_BANK0 212 adt_fr15 Floating-point register FPR15_BANK0
24 adt_gr2 General register R2_BANK0 216 adt_fr16 Floating-point register FPR0_BANK1
28 adt_gr3 General register R3_BANK0 220 adt_fr17 Floating-point register FPR1_BANK1
32 adt_gr4 General register R4_BANK0 224 adt_fr18 Floating-point register FPR2_BANK1
36 adt_gr5 General register R5_BANK0 228 adt_fr19 Floating-point register FPR3_BANK1
40 adt_gr6 General register R6_BANK0 232 adt_fr20 Floating-point register FPR4_BANK1
44 adt_gr7 General register R7_BANK0 236 adt_fr21 Floating-point register FPR5_BANK1
48 adt_gr8 General register R8 240 adt_fr22 Floating-point register FPR6_BANK1
52 adt_gr9 General register R9 244 adt_fr23 Floating-point register FPR7_BANK1
56 adt_gr10 General register R10 248 adt_fr24 Floating-point register FPR8_BANK1
60 adt_gr11 General register R11 252 adt_fr25 Floating-point register FPR9_BANK1
64 adt_gr12 General register R12 256 adt_fr26 Floating-point register FPR10_BANK1
68 adt_gr13 General register R13 260 adt_fr27 Floating-point register FPR11_BANK1
72 adt_gr14 General register R14 264 adt_fr28 Floating-point register FPR12_BANK1
76 adt_gr15 General register R15 268 adt_fr29 Floating-point register FPR13_BANK1
80 adt_pc Program counter 272 adt_fr30 Floating-point register FPR14_BANK1
84 adt_sr Status register 276 adt_fr31 Floating-point register FPR15_BANK1
88 adt_pr Procedure register 280 adt_fpscr Floating-point status control register
92 adt_gbr Global base register 284 adt_fpul Floating-point communication register
96 adt_mach Sum-of-products upper register 288 adt_iarvn9 Contents of address -36 indicated by

100 adt_macl Sum-of-products lower register program counter
104 adt_expevt expevt register 292 adt_iarvn8 Contents of address -32 indicated by
108 adt_fadr1 Fault Address1 program counter
112 adt_fadr2 Fault Address2 296 adt_iarvn7 Contents of address -28 indicated by
116 adt_bara Break address register A program counter
120 adt_bamra Break address mask register A 300 adt_iarvn6 Contents of address -24 indicated by
124 adt_bbra Break bus cycle register A program counter
128 adt_basra Break A SID register A 304 adt_iarvn5 Contents of address -20 indicated by
132 adt_bamrb Break address register B program counter
136 adt_bamrb Break address mask register B 308 adt_iarvn4 Contents of address -16 indicated by
140 adt_bbrb Break bus cycle register B program counter
144 adt_basrb Break A SID register B 312 adt_iarvn3 Contents of address -12 indicated by
148 adt_brcr Break control register program counter
152 adt_fr0 Floating-point register FPR0_BANK0 316 adt_iarvn2 Contents of address -8 indicated by
156 adt_fr1 Floating-point register FPR1_BANK0 program counter
160 adt_fr2 Floating-point register FPR2_BANK0 320 adt_iarvn1 Contents of address -4 indicated by
164 adt_fr3 Floating-point register FPR3_BANK0 program counter
168 adt_fr4 Floating-point register FPR4_BANK0 324 adt_iarv0 Contents of address indicated program
172 adt_fr5 Floating-point register FPR5_BANK0 counter
176 adt_fr6 Floating-point register FPR6_BANK0 328 adt_iarv1 Contents of address +4 indicated by
180 adt_fr7 Floating-point register FPR7_BANK0 program counter
184 adt_fr8 Floating-point register FPR8_BANK0
188 adt_fr9 Floating-point register FPR9_BANK0

	Cover
	Copyright
	SAFETY PRECAUTIONS
	PREFACE
	CONTENTS
	FIGURES
	TABLES
	PART 1 GENERAL DESCRIPTION
	CHAPTER 1 OVERVIEW
	1.1 CPMS Functions
	1.2 CPMS Specifications
	1.3 CPMS Structure
	1.4 CPMS and Hardware
	1.5 Interface between the CPMS and Users

	CHAPTER 2 TASK MANAGEMENT
	2.1 Task
	2.2 Task Scheduling
	2.3 Task Operations
	2.4 Task State Transition
	2.5 Task Control
	2.5.1 Initial state
	2.5.2 Task activation
	2.5.3 Task termination
	2.5.4 Task execution inhibition
	2.5.5 Task abortion
	2.5.6 Synchronization between tasks

	CHAPTER 3 MEMORY MANAGEMENT
	3.1 Logical Space
	3.2 Memory Protection
	3.3 Error Handling during Memory Access
	3.4 Procedure for Checking Access to the System Bus

	CHAPTER 4 TIMER MANAGEMENT
	4.1 Length of Time and Time of Day
	4.2 Time-Based Task Control
	4.3 Changing the Time
	4.4 Matching the Times between the CMU and LPU

	CHAPTER 5 SHARED RESOURCE MANAGEMENT
	5.1 Shared Resources
	5.2 Shared Resource Management Method
	5.3 Exclusive Control of Shared Resources by the PRSRV and PFREE Macros

	CHAPTER 6 I/O DEVICE MANAGEMENT
	6.1 Structure of the I/O Device Management Feature
	6.2 I/O Unit Number
	6.3 Device Number

	CHAPTER 7 SYSTEM MANAGEMENT
	7.1 Starting Up and Stopping CPMS
	7.1.1 Status changes at startup and stop
	7.1.2 Startup
	7.1.3 Stop

	7.2 INS Built-in Subroutine and Initial Start Tasks
	7.3 Watchdog Timer
	7.3.1 Functions
	7.3.2 How to use the watchdog timer

	CHAPTER 8 TASK ERROR HANDLING
	8.1 Repertory of Built-in Subroutines
	8.2 Execution Environment of Built-in Subroutines
	8.3 Processing to Link Built-in Subroutines
	8.4 Linkage of Built-in Subprograms
	8.5 Recovery from Program Errors

	CHAPTER 9 SYSTEM SERVICES
	9.1 DHP
	9.2 CPU Load Ratio

	PART 2 MACRO SPECIFICATIONS
	CHAPTER 1 OVERVIEW
	1.1 Macro Instructions
	1.2 CPMS Macro Linkage Library
	1.3 General Rule for Macro Instructions
	1.4 Macro Instruction Parameter Check
	1.5 CPMS Macros

	PART 3 LIBRARIES
	CHAPTER 1 OVERVIEW
	1.1 Programming Requirements
	1.2 Order of Libraries Specified
	1.3 Names Defined in Libraries

	APPENDIXES
	APPENDIX A MACRO PARAMETERS
	APPENDIX B CPMS ERROR HANDLING
	APPENDIX C BUILT-IN SUBROUTINE INPUT DATA

