
Self-Evaluation Report

HIME(R) CryptoSystem

Updated, October, 2003
Hitachi, Ltd.

Copyright c© 2003, Hitachi, Ltd. All Right Reserved.



Abstract

This document specifies the public-key cryptosystem HIME(R). HIME(R) is based
on a modular squaring (Rabin’s public-key encryption scheme [34]) over ZN , where
N = pdq (p and q are prime integers, and d > 1), and utilize the fast calculation
method for decryption. With HIME(R), security is additionally enhanced by the
OAEP converting method [3].

HIME(R) has the following exceptional features:

• It is proven to be semantically secure against an adaptive chosen-ciphertext
attack (IND-CCA2) in the random oracle model under the factoring assumption
of N .

• It has a very fast encryption speed.

• The decryption speed (1536 bits) is about two-and-a-half times faster than that
of RSA-OAEP (1024 bits) [3].

• The plaintext space is sufficiently large.

• The amount of computation for the encryption and decryption increases only
slightly compared with previous schemes, even if the size of N increases in the
future.

HIME(R) is the very practical public-key encryption scheme that is provably se-
cure under the factoring assumption. This document details the security of HIME(R)
and its performance.
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1 Background

Many public-key cryptosystems have been presented, and among them the RSA scheme
is the most famous and is well used. Unfortunately, however, RSA scheme is not secure
against an adaptive chosen-ciphertext attack and a concrete attack against an actual system
was shown [4]. Thus, RSA must be utilized in secure environment that the active attack is
not effective.

Many studies on provably security of public-key cryptosystems have been actively carried
out since the early 1990’s and many practical provably secure schemes have been presented.

Dolve, Dwork and Naor presented a cryptosystem that is IND-CCA2 using reasonable
intractability assumption. However, their scheme is completely impractical inasmuch as it
relies on general and expensive construction for a non-interactive zero-knowledge proof [13].

Bellare and Rogaway presented a method for converting public-key encryption schemes
based on trapdoor permutation to be IND-CCA1 [3], called OAEP (Although at first it was
believed that OAEP could convert such schemes to IND-CCA2 schemes, it has recently been
pointed out that the converted schemes are not IND-CCA2 but IND-CCA1 [36]). Their
method is very practical and its security can be demonstrated using two assumptions, i.e.,
the computational intractability of inverting the trapdoor permutation and the existence
of ideal hash functions. That is, the proof of security is given in the random oracle model,
and this is a heuristic proof.

Cramer and Shoup presented a practical public-key cryptosystem which is IND-CCA2
in the standard model [11]. The security of their scheme is based on the intractability of
the Decisional Diffie-Hellman (DDH) problem.

Boneh presented the public-key encryption schemes Rabin-SAEP, Rabin-SAEP+ and
RSA-SAEP+ which are obtained by applying SAEP or SAEP+ (simplified versions of
OAEP or OAEP+[36]) to Rabin’s scheme or RSA[6].

Next, we will classify the security of public-key cryptosystems.
Attacks on public-key cryptosystems are classified as follows:

• Passive Attack

– Chosen-Plaintext Attack (CPA)：An adversary can always gain the cipher-
text for her chosen plaintext by sending the plaintext to an encryption oracle.
Then the adversary attacks the given target ciphertext (An adversary can al-
ways wage this attack on public-key cryptosystems because the encipher keys
are published.).

• Active Attack

– Non-Adaptive Chosen-Ciphertext Attack (CCA1)：An adversary can gain
the plaintext for her chosen ciphertext by sending this ciphertext to a decryption
oracle before the target ciphertext is given. Then the adversary attacks the given
target ciphertext.

– Adaptive Chosen-Ciphertext Attack (CCA2)：An adversary can always
gain the plaintext for all but her target ciphertext by sending ciphertext to a
decryption oracle. Then the adversary attacks the given target ciphertext.
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The above description shows that CCA1 is a stronger attack than CPA, and CCA2 is a
stronger attack than CCA1.

Security levels of public-key cryptosystems are classified as follows.

• One-Wayness (OW)： It is hard for adversaries to invert the encryption function.

• Semantic Security / Indistinguishability (IND)： It is hard for adversaries to
compute partial information about the plaintext from its ciphertext.

• Non-Malleability (NM)： It is hard for adversaries to compute a relation for R
and the ciphertexts yi = E(xi) (1 ≤ i ≤ k) which satisfy R(x, x1, x2, . . . , xk) for the
ciphertext y = E(x), where E is an encryption function.

Now, we can form {security level}-{attack} pairs. For example, if we say that a public-
key cryptosystem is NM-CCA2, it means that the cryptosystem is non-malleable against
an adaptive chosen-ciphertext attack. Figure 1 shows the relation among these pairs ∗.
Here, A → B denotes that if a public-key cryptosystem is A, then it is certainly B. The
A 6→ B denotes its denial. The important point is that IND-CCA2 and NM-CCA2 are
equivalent. Therefore, public-key cryptosystems that are IND-CCA2 or NM-CCA2 will
have the highest level of security.

OW-CPA OW-CCA1 OW-CCA2

IND-CPA IND-CCA1 IND-CCA2

NM-CPA NM-CCA1 NM-CCA2

¾ ¾

¾ ¾

¾ ¾
-¢¢

? ? ?

? ? ?6XXXXXXz
XXXXXXy

¢¢ ¢¢

Figure 1: Relation among definitions of security for public-key cryptosystems.

The main objective of this document is to evaluate the public-key cryptosystem
HIME(R). The design policy of HIME(R) and overview is described in Section 2. The
basic algorithm of HIME(R) is given in Section 3, its security in Section 4 and its perfor-
mance in Section 5.

∗This relation is discussed in [1].
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2 Design Policy and Overview

The design policy of HIME(R) is as follows:

(1) Security： It can be proven to be secure in the sense of IND-CCA2 under the assump-
tion of the intractability of primitive problems (whose computational intractability
is expected under the enough studies, such as the factoring problem or the discrete
logarithm problem).

(2) Efficiency：

(2-1) Both encryption and decryption speeds are fast.

(2-2) The ratio of a plaintext and a ciphertext “(Plaintext)/(Ciphertext)” is not
small.

(2-3) The plaintext space is sufficiently large.

(2-4) It can be mounted with a small memory size (including public key and private
key sizes).

In terms of security, we believe that the factoring problem or the discrete logarithm
problem are almost ideal as a number theoretic assumption of cryptosystems, because with
sufficient study their computational intractability can be taken for granted [17, 25, 26].
Furthermore, there are two categories in number theoretic assumptions that are well utilized
in the practical cryptosystems, i.e.:

Factoring-based: Factoring problem, RSA problem, Quadratic residue problem,
etc,

Discrete-Logarithm-based: Discrete logarithm problem, Computational Diffie-
Hellman problem, Decisional Diffie-Hellman problem, etc,

and the factoring problem and the discrete logarithm problem are the most intractable
problems in each category.

In constructing HIME(R), we focused on the modular square function (Rabin’s encryp-
tion function), because it is well known that inverting the encryption function on ZN is
as intractable as the factoring of N , where N = pq (p and q are prime numbers). An-
other reason is that it has fast encryption speed. However, the following problems were
encountered:

(P-1) The modular square function is not one-way trapdoor permutation, i.e., the decryp-
tion is not done uniquely.

(P-2) Rabin’s scheme is not secure against a chosen-ciphertext attack.

(P-3) The decryption speed is not fast (i.e., it is as same as that of RSA).

In HIME(R), we utilize OAEP [3] to solve the problems (P-1) and (P-2). Owing to
OAEP, we can get the probabilistically uniqueness of the decryption (cf. Section 3.4) and
prove that it is secure in the sense of IND-CCA2 in the random oracle model by using

6



Coppersmith’s algorithm (cf. Sections 4.4 and 4.5). Note that since OAEP was designed
for the public-key encryption schemes that are based on one-way trapdoor permutations †

and HIME(R) is based on the modular square function f(x) = x2 mod N (N is a composite
number) that is not the trapdoor permutation, it was necessary to show if OAEP could
apply to HIME(R) and it was possible to prove its security. We used this idea, applying
OAEP to Rabin’s scheme to solve (P-1) and (P-2), in HIME-2 [21]. After that the same
idea was used in Rabin-SAEP and Rabin-SAEP+ even though the padding method differs
from OAEP. We think that OAEP has the following advantage compared with SAEP and
SAEP+.

(1) The security depending on ideal hash functions should be made to mitigate in consid-
eration of application to an actual system: In actual systems, the ideal hash functions are
replaced by practical hash functions, such as SHA [30], because no ideal hash functions
exist. Therefore, the proof of security in random oracle model cannot transfer to the real
world, and it is important to analyze the security of provably secure schemes in the ran-
dom oracle model in the real world. We believe that the security of SAEP and SAEP+
depends on the ideal hash functions more heavily than the security of OAEP and OAEP+
does. For example, suppose that the adversary can compute the first m1 bits and the last
m2 of f−1(y), where m1 + m2 < |N |/2, y is a target ciphertext, and f is an encryption
function of Rabin-SAEP, Rabin-SAEP+ or RSA-SAEP+. Then, it is impossible to apply
Coppersmith’s algorithm to compute the rest bits of f−1(y). Furthermore, suppose that
the first m1 bits of the output of the hash function H has bias in response to the last m2

bits of the input. That is, the first m1 bits of H(x) can be computed with a probability of
more than 1/2m1 when the last m2 bits of x are known. The adversary will then be able
to guess a correct b with a probability of more than 1/2 (cf. Definition 4.1). However, we
think that the possibility of this occurring in OAEP and OAEP+ is less than that in SAEP
and SAEP+ because the plaintext is doubly protected by the two hash functions G and
H. From the above reason, we think that OAEP and OAEP+ are more secure padding
methods than SAEP and SAEP+ in the real world. Therefore, we believe that our scheme
has a higher security than Rabin-SAEP and Rabin-SAEP+ in the real world.

(2) The plaintext space should be taken largely: The main purpose of public-key cryp-
tosystems is to distribute the data enciphering key of secret-key cryptosystems. However,
there are many systems, such as SET, that the additional information, such as identity
information, are attached with the data enciphering key. In HIME(R), we made it one of
our design policy in considering such systems. The maximal lengths of SAEP and SAEP+
are respectively 256 bits and 384 bits, where the modulo N is 1024 bits. Hence, they are
inferior than OAEP in this point (See Section 5.3 for details). We can thus nearly clear the
above conditions (2-2) and (2-3) by using OAEP.

As OAEP+ has a demerit of requiring one more hash function than OAEP, we therefore
believed that OAEP is the best method to apply HIME(R).

†It was believed that OAEP could convert a public-key encryption scheme that is induced from an
one-way trapdoor permutation f to an IND-CCA2 scheme under the assumption of the intractability of
computing f−1. Recently, however, it was pointed out that OAEP could convert the scheme to IND-CCA1
scheme but exceptions for general f [36], where it was shown that RSA-OAEP is secure in the sense of
IND-CCA2 [36, 16]. OAEP+ is proposed as the modified OAEP that solve the problem of OAEP [36]. In
OAEP+, one more hash function is required than OAEP.
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In HIME(R), we make N = pdq (p, q: prime numbers, d > 1) instead of N = pq and
utilize our calculation method over ZN to solve (P-3). Previously, a modified RSA scheme
was proposed that utilizes such N and applies the original calculation method to make the
decryption speed of RSA faster. The original calculation method was done over Zpd after
ZN is divided into Zpd and Zq by using the Chinese Remainder Theorem (CRT), and the
calculated values on Zpd and Zq were combined on ZN by using CRT again. Our calculation
method differs from this previous one in that ours require no calculation by using CRT. As
a result, our method has the following advantages:

• It has less modular multiplications than the previous one (cf. Section 5.2).

• The actual decryption speed and mountaing size will be smaller than previous one
because ours does not require Euclidean algorithm for CRT.

Although this difference is very small, it is expected that it will be non-negligible in smart
card systems and in systems in which much decryption processing must be done at one
time.

On the other hand, HIME(R) avoids the need for a hybrid scheme ‡ with a secret-
key encryption scheme, meaning that solving (2-4) would require no secret-key encryption
scheme to enable public-key encryption. Another problem with hybrid schemes is that they
may require the use of two different secret-key cryptosystems in a single system, which
would add to development costs. Key encapsulation mechanism (KEM) [37] is recently
proposed, and it is for distribution of the data encryption key of secret-key encryption
schemes. Note that ordinary public-key encryption schemes can also utilize as KEM, and
that the schemes secure in the sense of IND-CCA2 satisfy the conditions that are required
to accomplish the security of KEM (see the security notion of KEM in [37] for details).

From the above discussion, HIME(R) has almost ideal features as follows:

(H-1) It is proven to secure in the sense of IND-CCA2 in the random oracle model under
the factoring assumption of N (= pdq, d > 1).

(H-2) It has a very fast encryption speed.

(H-3) Its decryption speed (1536 bits) is about two-and-a-half times faster than that of
RSA-OAEP (1024 bits).

(H-4) The plaintext space is sufficiently large.

(H-5) The amount of computation for the encryption and decryption increases only slightly
compared with previous schemes, even if the size of N increases in the future.

The condition (H-5) is important for future considerations, although we did not adopt
this condition in (2-1) ∼ (2-4). The processing ability of computers is increasing rapidly,
then the key length must also increase to stay ahead. This increase in key length impairs
the efficiency of encryption schemes. However, our scheme can be used well into the future,
because it can achieve efficient encryption and decryption processing even if the key length
increases (cf. Section 4.6 and 5).

We show the superiority of HIME(R) in Section 5.

‡EPOC-2 [8] is known as the factoring base hybrid scheme.
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3 Basic Scheme

In this section, we present the basic scheme of HIME(R): After this, |x| denotes a binary
length of x.

3.1 Key Generation

(K-1) Choose large prime numbers p, q, such that |p| = |q|, p ≡ 3 (mod 4), and q ≡
3 (mod 4).

(K-2) Choose an integer d with d > 1.

(K-3) Compute N = pdq.

(K-4) Choose positive integers k0, k1 and n § such that n = k − k0 − k1 − 1 and 2k0 < k,
where |N | = k.

(K-5) Choose the hash functions G and H such that

G : {0, 1}k0 → {0, 1}n+k1 , H : {0, 1}n+k1 → {0, 1}k0 .

Then we make

Private key: (p, q),

Public key: (N, k, k0, k1, G,H).

Note that N/2 < 2k−1 < N < 2k. Although the above algorithm is given for general d,
we strongly recommend that d = 2 be chosen at present (The efficiency of decryption can
be increased by taking d > 2 when |N | ≥ 4096). We give the details of the length of each
parameter k0, k1 and k in Section 5.1.

3.2 Encryption

(E-1) For a message x ∈ {0, 1}n with gcd(x,N) = 1, choose the random number r ∈
{0, 1}k0 , and compute

X = (x0k1 ⊕G(r))||(r ⊕H(x0k1 ⊕G(r))).

(E-2) Compute

y = X2 mod N.

Then, y is given as a ciphertext of x.

§Correctly, k0, k1 and n are positive integer valued functions of k.
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3.3 Decryption

For the given ciphertext y，

(D-1) Check if y is a quadratic residue on ZN , namely check

y
p−1
2 ≡ 1 (mod p) and y

q−1
2 ≡ 1 (mod q).

If y is not a quadratic residue, reject it.

(D-2) For i, j ∈ {0, 1}, compute

γ
(i)
0 = (−1)iy

p+1
4 mod p, γ

(j)
1 =

(
(−1)jy

q+1
4 − x0

)
p−1 mod q

and

γ
(i,j)
l =

y − Γ
(i,j)
l−1

2
mod plq

pl−1q
× (2γ

(i)
0 )−1 mod p (2 ≤ l ≤ d),

where

Γ
(i,j)
1 = γ

(i)
0 + γ

(j)
1 p and Γ

(i,j)
l = Γ

(i,j)
l−1 + γ

(i,j)
l pl−1q (2 ≤ l ≤ d− 1).

(D-3) For i, j ∈ {0, 1}, compute

Xi,j = γ
(i)
0 + γ

(j)
1 p +

d∑

l=2

γ
(i,j)
l pl−1q.

Let those Xi,j (0 ≤ i, j ≤ 1) be X1, X2, X3, X4.

(D-4) Choose Xi such that Xi ∈ {0, 1}k−1.

(D-5) For each Xi, compute si ∈ {0, 1}n+k1 and ti ∈ {0, 1}k0 such that Xi = si||ti.
(D-6) For each si and ti, compute

ri = H(si)⊕ ti,

and compute
wi = si ⊕G(ri).

(D-7) For each wi, compute xi ∈ {0, 1}n and zi ∈ {0, 1}k1 such that wi = xi||zi, and output

{
xi if zi = 0k1 for a unique i

“Reject” otherwise,

as the decryption of the ciphertext y.
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3.4 Soundness of Decryption

Theorem 3.1. In the algorithm of HIME(R), the plaintext is correctly decoded from the
valid ciphertext except with a negligible probability.

Proof. We first show that Xi (1 ≤ i ≤ 4) are all square roots of y in ZN . If it is shown,
there are at most four square roots of y in {0, 1}k−1.

We show this by induction on d. Note that any element x in ZN (N = pdq) can be
written by

x = γ0 + γ1p +
d∑

i=2

γip
i−1q (0 ≤ γ0, γ2, . . . , γd−1 < p, 0 ≤ γ1 < q),

and such γi is uniquely determined.
Let d = 2. Then, the element x in Zp2q can be written by x = γ0 + γ1p + γ2pq for some

γ0, γ1, γ2 ∈ Z (0 ≤ γ0, γ2 < p, 0 ≤ γ1 < q).
Suppose that x2 ≡ y (mod p2q). Then, we have

x2 ≡ (γ0 + γ1p + γ2pq)
2

≡ γ0
2 + γ1

2p2 + 2γ0γ1p + 2γ0γ2pq ≡ y (mod p2q). (1)

And it follows that

γ0
2 ≡ y (mod p) and (γ0 + γ1p)2 ≡ y (mod q).

Since p and q are Blum numbers，γ0 and γ1 can be computed as follows (after testing if
y mod p and y mod q are quadratic residue on Zp and Zp respectively):

γ0 = y
p+1
4 mod p or − y

p+1
4 mod p,

γ1 = (y
q+1
4 − γ0)p

−1 mod q or (−y
q+1
4 − γ0)p

−1 mod q.

Hence γ0 is γ
(0)
0 or γ

(1)
0 , and γ1 is γ

(0)
1 or γ

(1)
1 . Furthermore, γ2 is induced from the equation

(1) as follows:

γ2 =
y − (γ0 + γ1p)2 mod p2q

pq
× (2γ0)

−1 mod p.

Hence γ2 is γ
(0,0)
2 , γ

(1,0)
2 , γ

(0,1)
2 or γ

(1,1)
2 . Note that pq divides y−(γ0+γ1p)2 mod p2q. We can

also easily prove that y is a quadratic residue on Zp2q if and only if y mod p and y mod q
are respectively quadratic residue on Zp and Zq.

From the above, it was shown that x0, x1, x2, x4 are all square roots of y in Zp2q.

Next, let d > 2. And assume that Γ
(i,j)
d−1 (= γ

(i)
0 + γ

(j)
1 p +

∑d−1
l=2 γ

(i,j)
l pl−1q) are all square

roots of y in Zpd−1q for 0 ≤ i, j ≤ 1. Suppose that

x2 ≡ y (mod pdq), (2)

for some x ∈ Zpdq. Then, from the assumption, x can be written by

x = Γ
(i,j)
d−1 + γ

(i,j)
d pd−1q,

11



for some γ
(i,j)
d ∈ Z (0 ≤ γ

(i,j)
d < p, 0 ≤ i, j ≤ 2). And we have

x2 ≡ (Γ
(i,j)
d−1 + γ

(i,j)
d pd−1q)2 ≡ Γ

(i,j)
d−1

2
+ 2Γ

(i,j)
d−1γ

(i,j)
d pd−1q ≡ y (mod pdq),

from the equation (2). Hence γ
(i,j)
d can be obtained by

γ
(i,j)
d =

y − Γ
(i,j)
d−1

2
mod pdq

pd−1q
× (2γ

(i)
0 )−1 mod p.

Note that pd−1q divides y − Γ
(i,j)
d−1

2
mod pdq. We can also easily prove that y is a quadratic

residue mod pdq if and only if y mod p and y mod q are respectively quadratic residue on
Zp and Zq, by induction.

Next, we consider the probability that the decryption fails. Let y be a (valid) ciphertext,
and let x be the plaintext of y, namely, y = X2 mod N for X = s||t, where s = x0k1⊕G(r),
t = r⊕H(s), x ∈ {0, 1}n, and r ∈ {0, 1}k0 . Let X ′ be a k− 1 bits string such that y ≡ X ′2

(mod N) and X 6= X ′, and suppose that X ′ = s′||t′ for s′ = (x′1||x′2)⊕G(r′), t′ = r′⊕H(s′),
x′1 ∈ {0, 1}n, x′2 ∈ {0, 1}k1 , and r′ ∈ {0, 1}k0 . We define the following event to consider the
probability that the decryption of y fails because of X ′:

FAIL-X ′ is true if x′2 = 0k1 .

Then we have

Pr[FAIL-X ′] = Pr[FAIL-X ′ | r = r′] · Pr[r = r′] + Pr[FAIL-X ′ | r 6= r′] · Pr[r 6= r′]

≤ Pr[r = r′] + Pr[FAIL-X ′ | r 6= r′]. (3)

We first consider Pr[r = r′]. We have

Pr[r = r′] = Pr[r = r′ | s = s′] · Pr[s = s′] + Pr[r = r′ | s 6= s′] · Pr[s 6= s′]

≤ Pr[r = r′ | s = s′] + Pr[r = r′ | s 6= s′].

If s = s′ then t 6= t′ because X 6= X ′. Since r = t ⊕ H(s) and r′ = t′ ⊕ H(s′), we have
Pr[r = r′ | s = s′] = 0. On the other hand, we have Pr[r = r′ | s 6= s′] = 1/2k0 because H
is a random oracle. Therefore, we obtain

Pr[r = r′] ≤ 1

2k0
. (4)

Next, we consider Pr[FAIL-X ′ | r 6= r′]. Since G is a random oracle, we have

Pr[FAIL-X ′ | r 6= r′] =
1

2k1
. (5)

We finally obtain

Pr[FAIL-X ′] ≤ 1

2k0
+

1

2k1

from (3), (4) and (5).
We have already shown that there are at most three candidates such as X ′ that cause

a failure of the decryption. Hence the probability that the decryption fails is less than
1− (1− 1/2k0 − 1/2k1)3.
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4 Security

We use notations and conventions of [1].

4.1 Probabilistic Algorithms

If A is a probabilistic algorithm, then A(x1, x2, . . . ; r) is the result of running A on inputs
x1, x2, . . . and coins r. We let y ← A(x1, x2, . . . ) denote the experiment of picking r at
random and letting y be A(x1, x2, . . . ; r). If S is a finite set then x ← S is the operation of
picking an element uniformly from S. If α is neither an algorithm nor a set then s ← α is
a simple assignment statement.

4.2 Encryption Schemes

An asymmetric (i.e., public-key) encryption scheme is given by a triple of algorithms, Π =
(K, E ,D), where

• K, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter k ∈ N and returns a pair (pk, sk) of matching public and private keys.

• E , the encryption algorithm, is a probabilistic algorithm that takes a public key pk
and a message x ∈ {0, 1}∗ to produce a ciphertext y.

• D, the decryption algorithm, is a deterministic algorithm that takes a private key sk
and a ciphertext y to produce either a message x ∈ {0, 1}∗ or a special symbol ⊥ to
indicate that the ciphertext was invalid.

We require that for all (pk, sk) which can be output by K(1k), for all x ∈ {0, 1}∗, and for
all y that can be output by Epk(x), we have that Dsk(y) = x. We also require that K, E and
D can be computed in polynomial time. As the notation indicates, the key are indicated
as subscripts to the algorithms.

We say that Π is an encryption scheme in the random oracle model if the algorithms
E and D can access to random oracles to produce a ciphertext and a message (or ⊥)
respectively.

4.3 Indistinguishability

We say that a function epsilon : N→ R is negligible if for every constant c ≥ 0 there exists
an integer kc such that ε(k) ≤ k−c for all k ≥ kc.

Definition 4.1 (IND-ATK in the random oracle model).
Let Π = (K, E ,D) be an encryption scheme and let A = (A1, A2) be an adversary. For atk
∈ {cpa, cca1, cca2} and k ∈ N, let

Advind−atk
A,Π (k)

def
= 2 · Pr

[
H ← Hash ; (pk, sk) ← K(1k) ; (x0, x1, s) ← AH, O1

1 (pk) ;

b ← {0, 1} ; y ← EH
pk(xb) : AH, O2

2 (x0, x1, s, y) = b
]− 1,
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where

If atk=cpa then O1(·) = ε and O2(·) = ε

If atk=cca1 then O1(·) = DH
sk(·) and O2(·) = ε

If atk=cca2 then O1(·) = DH
sk(·) and O2(·) = DH

sk(·),

Hash denotes a set of all functions from some appropriate domain to appropriate range ¶,
s denotes state information (possibly including pk) which the adversary wants to preserve,
and Dsk denotes the decryption oracle. For the above, we insist that A1 outputs x0, x1 with
|x0| = |x1|. We say that Π is secure in the sense of IND-ATK in the random oracle model
if A being polynomial-time implies that Advind−atk

A,Π (·) is negligible.

4.4 Coppersmith’s Algorithm

In this section, we present the fact by Coppersmith [10].

[Coppersmith] Let N be a large composite integer of unknown factorization. Let

f(x) = xk + ak−1x
k−1 + · · ·+ a2x

2 + a1x + a0 ∈ Z[x]

be a monic polynomial of degree k. Then, there is an efficient algorithm to find all x0 ∈ Z
such that

f(x0) = 0 (mod N) and |x0| < N1/k.

We denote by TC(N, k) the running time of Coppersmith’s algorithm when finding roots
of a polynomial f ∈ Z[x] of degree k.

4.5 Proof of Security

A composite number generator G is a probabilistic polynomial time (PPT) algorithm such
that G(1k) outputs a composite number N , where |N | = k.

Definition 4.2. Let G be a composite number generator. We say that algorithm M suc-
ceeds in (t, ε)-factoring G(1k) if

Pr
[
N ← G(1k) : M(N) = (p1, p2, . . . , pd)

] ≥ ε,

where N =
∏d

i=1 pi (each pi is prime numbers), and, moreover, in the experiment above,
M runs in at most t steps.

We simply say that the factoring G is intractable if there is no polynomial time algorithm
M which succeeds in (t, ε)-factoring G(1k) for the non-negligible ε.

Then we obtain the following theorem.

Theorem 4.1. HIME(R) is secure in the sense of IND-CCA2 in the random oracle model
under the assumption of intractability of factoring N (= pdq).

¶These sets might change from scheme to scheme.
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Let G be a composite number generator such that N (= pdq) ← G(1k). We assume that
the distribution of N is the same as that of N with HIME(R).

The proof of Theorem 4.1 is immediately induced from the following theorem.

Theorem 4.2. Let Π = (K, E ,D) be the our encryption scheme with parameters k0 and
k1, and let n be the associated plaintext length. Then, there exists an oracle machine
U such that for each integer k the following is true. Suppose A = (A1, A2) succeeds in
(t, qD, qG, qH , ε)-breaking Π(1k) in the sense of IND-CCA2, namely,

2 · Pr[G,H ← Hash ; (pk, sk) ← K(1k) ; (x0, x1, s) ← A
G,H,DG,H

sk
1 (pk) ;

b ← {0, 1} ; y ← EG,H
pk (xb) : A

G,H,DG,H
sk

2 (x0, x1, s, y) = b]− 1 ≥ ε,

where A runs for at most t steps, makes at most qD queries to the decryption oracle, makes
at most qG queries to G, and makes at most qH queries to H.

Then, M = UA succeeds in (t′, ε′)-factoring G(1k), where

t′ ≤ t + qH TC(N, 2) + qG qH TS(k) + T̃ (k) +O(k)

ε′ ≥ 1

3

(
ε− qG

2k0

)(
1− qG

2k0

) (
1− 2qG + qD

2k0
− qD

2k1

)(
1− 1

2k0
− 1

2k1

)3qD

.

Here, TS(k) denotes the running time of the encryption function Epk(·), and T̃ (k) denotes
the running time of factoring N when an integer that has a commom factor with N is given.
Recall that TC(N, k) denotes the running time of Coppersmith’s algorithm when finding
roots of a polynomial f ∈ Z[x] of degree k.

Proof. We first define the behavior of factoring algorithm M . M is given a composite
number N (= pdq). It is trying to find the prime factor of N . The factoring algorithm M
is defined as follows:

(0) An input to M is N , where N ← G(1k).

(1) M chooses s ∈ {0, 1}n+k1 , t ∈ {0, 1}k0 and b ∈ {0, 1} at random, and set w = s||t. M
computes y = w2 mod N .

(2) M initializes two lists, called its G-list and its H-list, to empty.

Then, M simulates the two stages of A = (A1, A2) as indicated in the next two steps.

(3) (Simulation of the find-stage) M runs A1 on input pk, where pk denotes the public key
of HIME(R). M also provides A with fair random coins and simulates A’s random
oracles G and H as follows.

(3.1) When A1 makes an oracle call h ∈ {0, 1}n+k1 of H, M provides A1 with a
random string Hh ∈ {0, 1}k0 , and adds (h,Hh) to the H-list. M computes x ∈
{0, 1}k0 such that (x + 2k0h)2 ≡ y (mod N) by using Coppersmith’s algorithm
if such x exists. Then, M sets w∗ = h||x.
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(3.2) When A1 makes an oracle call g ∈ {0, 1}k0 of G, M provides A with a random
string Gg ∈ {0, 1}n+k1 , and adds (g,Gg) to the G-list.

Let (x0, x1, c) be the output with which A1 halts.

(4) (Simulation of the guess-stage) M runs A2 on input (y, x0, x1, c). M responds to oracle
queries as follows.

(4.1) Suppose A2 makes H-query h ∈ {0, 1}n+k1 . M provides A1 with a random
string Hh ∈ {0, 1}k0 , and adds (h,Hh) to the H-list. M computes x ∈ {0, 1}k0

such that (x + 2k0h)2 ≡ y (mod N) by using Coppersmith’s algorithm if such x
exists. Then, M sets w∗ = h||x.

(4.2) Suppose A2 makes G-query g ∈ {0, 1}k0 . M provides A2 with a random string
Gg ∈ {0, 1}n+k1 , and adds (g, Gg) to the G-list.

(5) (Simulation of the decryption oracle) Suppose A makes a query y′ to the decryption
oracle. Then, for each (si, Hi) that is included in H-list, for each (rj, Gj) that is
included in G-list, machine M

(5.1) Set ti,j = Hi ⊕ rj.

(5.2) Compute x′i,j ∈ {0, 1}n and z′i,j ∈ {0, 1}k1 such that x′i,j||z′i,j = si ⊕Gj.

(5.3) Outputs
{

x′i,j if it detects an i, j such that z′i,j = 0k1 and y′ = (si||ti,j)2 mod N,

“Reject” otherwise.

(6) M outputs w∗ and halts the above simulations if this string was defined in the above
process, and fail otherwise.

(7) If w 6= w∗ and w + w∗ 6= 0 (mod N), M computes α = gcd(w − w∗, N) and outputs a
pair of integers that is

(p, q) =

{
( d
√

N/α, α) if |α| = k
d+1

,

( d
√

α,N/α) otherwise,

and fail otherwise.

Remark 4.1. The H-list and G-list include the queries and the correponding answers of
both the find and guess stages of A’s execution.

Remark 4.2. When there are plural x in the steps (3.1) and (4.1), M chooses x at random
from them, and define w∗.

Remark 4.3. In the step (5), it is not necessary for M to compute ti,j, x′i,j and z′i,j whenever
the query is submitted to the decryption oracle. M can record them in the table because
the number of them are polynomially bounded.

Remark 4.4. In the step (7), notice that if w 6= w∗ and w+w∗ 6= 0 (mod N) then pd | w−w∗

or q | w − w∗.
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We can assume that A never make the same queries to the random oracles in the above
process. In (3.1) and (4.1), it is possible to apply Coppersmith’s algorithm to compute x,
since 2k0 < k.

We consider the probability space given by the above process. The inputs N to M are
drawn at random according to G(1k). We call this “Game 1” and we let Pr1[·] denote the
corresponding probability.

It is easy to verify that the amount of time t′ to carry out Game 1 is

t′ ≤ t + qH TC(N, 2) + qG qH TS(k) + T̃ (k) +O(k).

It is also easy to verify that there is a universal machine U such that the computation of
M can be done by UA.

In the step (5), we define the following event to consider the difference between the
actual decryption oracle and the simulator of M :

FAIL is true if for a decryption query y′ the output of the simulator is different from
DG,H

sk (y′),

where sk denotes the private key of HIME(R).
Then, we have the following lemma.

Lemma 4.1. The probability that the outputs of the actual decryption oracle and the
simulator are different is upper-bounded by

Pr1[FAIL] ≤ 1−
(

1− 2qG + qD

2k0
− qD

2k1

)(
1− 1

2k0
− 1

2k1

)3qD

.

Proof. We have
Pr1[FAIL] = Pr1[FAIL1] + Pr1[FAIL2],

where FAIL1 and FAIL2 are events such that

FAIL1 is true if for a decryption query y′ the decryption oracle outputs a plaintext
of y′ but M does not.

FAIL2 is true if for a decryption query M outputs some string (not “Reject”) al-
though the decryption oracle outputs “Reject”.

FAIL2 occurs only when the decryption fails for the submitted valid decryption query.
Namely, for the decryption query y, there are plural i (1 ≤ i ≤ 4) such that zi = 0k1 in
the decryption procedure of y (cf. Section 3.3). Since the probability that the decryption
succeeds for a single valid ciphertext is more than (1 − 1/2k0 − 1/2k1)3 (cf. Theorem 3.1),
we have

Pr1[FAIL2] ≤ 1−
(

1− 1

2k0
− 1

2k1

)3qD

. (6)

Similarly, we have

Pr1[FAIL1] ≤
(

1− 1

2k0
− 1

2k1

)3qD

× Pr1[FAIL1∗], (7)

where FAIL1∗ is an event such that
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FAIL1∗ is true if for a decryption query y′ the decryption oracle outputs a plaintext
of y′ but M does under the assumption that all valid decryption queries never fail to
decrypt.

We discuss Pr1[FAIL1∗]. If w∗ is defined in the process, then M halts the simulation.
Hence, no queries to the decryption oracle are made after w∗ is defined. Let y be a target
ciphertext, and let y′ be the query to the decryption oracle. Let si = xi⊕Gri

, ti = ri⊕Hsi
,

(si||ti)2 ≡ y (mod N) (1 ≤ i ≤ 4), s′ = x′0k1 ⊕ Gr′ , t′ = r′ ⊕ Hs′ and (s′||t′)2 ≡ y′

(mod N) for xi ∈ {0, 1}n+k1 , x′ ∈ {0, 1}n, ri, r
′ ∈ {0, 1}k0 , Gri

, Gr′ ∈ {0, 1}n+k1 , and
Hsi

, Hs′ ∈ {0, 1}k0 . The target ciphertext y includes the information about (si, Hsi
) and

(ri, Gri
) for 1 ≤ i ≤ 4. And the adversary may utilize the information.

Remark 4.5. There are at most four X ∈ {0, 1}k−1 such that X2 ≡ y (mod N) as described
in the proof of Theorem 3.1. When the number of such solutions is less than four, we can
ignore si, ti, ri, Gri

, and Hsi
for the needless i ∈ {1, . . . , 4}.

We consider the follwing events:

AskR’ is true if (r′, Gr′) is on the G-list.

AskS’ is true if (s′, Hs′) is on the H-list.

W’=AskR’ ∧ AskS’.

Then, it holds that Pr1[FAIL1∗ | W’] = 0. Hence, we upper bound Pr1[FAIL1∗] by:

Pr1[FAIL1∗] = Pr1[FAIL1∗ | W’] · Pr1[W’] + Pr1[FAIL1∗ | ¬AskR’] · Pr1[¬AskR’]

+ Pr1[FAIL1∗ | AskR’ ∧ ¬AskS’] · Pr1[AskR’ ∧ ¬AskS’]

≤ Pr1[FAIL1∗ | ¬AskR’] + Pr1[AskR’ ∧ ¬AskS’]. (8)

We first consider Pr1[FAIL1∗ | ¬AskR’]. We have

Pr1[FAIL1∗ | ¬AskR’]

= Pr1[FAIL1∗ | r′ 6∈ {r1, . . . , r4} | ¬AskR’] · Pr1[r
′ 6∈ {r1, . . . , r4} | ¬AskR’]

+ Pr1[FAIL1∗ | r′ ∈ {r1, . . . , r4} | ¬AskR’] · Pr1[r
′ ∈ {r1, . . . , r4} | ¬AskR’]

≤ Pr1[FAIL1∗ | r′ 6∈ {r1, . . . , r4} | ¬AskR’] + Pr1[FAIL1∗ | r′ ∈ {r1, . . . , r4} | ¬AskR’].
(9)

Then it is clear that

Pr1[FAIL1∗ | r′ 6∈ {r1, . . . , r4} | ¬AskR’] ≤ qD

2k1
. (10)

If r′ = ri for some 1 ≤ i ≤ 4 then it must be t′ = ti ⊕ Hsi
⊕ Hs′ . However, H-oracle

query si is not made. Hence the probability that such query y′ is made is less than qD/2k0 .
It follows that

Pr1[FAIL1∗ | r′ ∈ {r1, . . . , r4} | ¬AskR’] ≤ qD

2k0
. (11)

From (9), (10) and (11), we have

Pr1[FAIL1∗ | ¬AskR’] ≤ qD

2k1
+

qD

2k0
. (12)
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Next, we consider Pr1[AskR’ ∧ ¬AskS’]. We have

Pr1[AskR’ ∧ ¬AskS’] = Pr1[s
′ 6∈ {s1, . . . , s4} ∧AskR’ ∧ ¬AskS’]

+ Pr1[s
′ ∈ {s1, . . . , s4} ∧AskR’ ∧ ¬AskS’]. (13)

Then, it is clear that

Pr1[s
′ 6∈ {s1, . . . , s4} ∧AskR’ ∧ ¬AskS’] ≤ qG

2k0
. (14)

If s′ = si for some 1 ≤ i ≤ 4 then it must be r′ 6= ri. And any values of Hsi
are unknown.

Hence, it follows that

Pr1[s
′ ∈ {s1, . . . , s4} ∧AskR’ ∧ ¬AskS’] ≤ qG

2k0
. (15)

From (13), (14) and (15), we have

Pr1[AskR’ ∧ ¬AskS’] ≤ qG

2k0−1
. (16)

From (8), (12) and (16), we have

Pr1[FAIL1∗] ≤ 2qG + qD

2k0
+

qD

2k1
. (17)

We finally obtain

Pr1[FAIL] ≤
(

1− 1

2k0
− 1

2k1

)3qD

×
(

2qG + qD

2k0
+

qD

2k1

)
+ 1−

(
1− 1

2k0
− 1

2k1

)3qD

= 1−
(

1− 1

2k0
− 1

2k1

)3qD
(

1− 2qG + qD

2k0
− qD

2k1

)
,

from (6), (7) and (17)

Intuitively, Lemma 4.1 says that the advantage of M deriving new information from
the decryption oracle is negligible. We let Pr2[·] = Pr1[· | ¬FAIL] denote the probability
distribution, in Game 1, conditioned on FAIL not being true, and call this “Game 2”.

Let s = xb0
k1 ⊕Gr and t = r⊕Hs in Game 1, where Gr ∈ {0, 1}n+k1 and Hs ∈ {0, 1}k0 .

We consider the following event:

BAD is true if :

- G-oracle query r was made in the find-stage or the guess-stage, and

- Gr 6= s⊕ xb0
k1

Note that if A makes a H-query h that defines w∗, then M halts. Therefore, a G-query
r should be made before (h,Hh) is not on the H-list for such h.

Then we have the following lemma.
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Lemma 4.2. The probability that the bad event succeeds is upper-bounded by

Pr2[BAD] ≤ qG

2k0
.

Proof. Let consider the following event:

AskSr is true if H-oracle query s was made, and at the point that it was made, r
was not on the G-list.

Since Pr2[BAD | AskSr] = 0, we then have

Pr2[BAD] = Pr2[BAD | AskSr] · Pr2[AskSr] + Pr2[BAD | ¬AskSr] · Pr2[¬AskSr]

≤ Pr2[AskR ∧ ¬AskSr] ≤ qG

2k0
.

We let Pr3[·] = Pr2[·|¬BAD] denote the probability distribution, in Game 2, conditioned
on BAD being untrue, and call this “Game 3”. Now, we consider the experiment which
defines the advantage of A. Namely, choose N ← G(1k) and let E∗ be the corresponding
encryption function under HIME(R). Then choose

G∗, H∗ ← Hash; (x∗0, x
∗
1, c

∗) ← AG∗,H∗,D∗
1 (pk); b∗ ← {0, 1}; y∗ ← EG∗,H∗

∗ (x∗b),

and run AG∗,H∗,D∗
2 (y∗, x∗0, x

∗
1, c

∗), where pk is a public key of HIME(R), and D∗ is the corre-
sponding decryption function under HIME(R). Let Pr∗1[·] be the corresponding distribution
and Game 1∗ be the game. It is clear that Game 3 and Game 1∗ are identical in the sense
that the view of A at any point in these two games is the same before the H-query h that
defines w∗. Indeed, we have chosen the events FAIL and BAD so that the oracle queries
we are returning in Game 1 will mimic Game 1∗ as long as these events remains true.

Let us introduce the following additional events (of Game 3): For s = xb0
k1 ⊕ Gr and

t = r ⊕Hs,

AskH is true if at the end of the guess-stage, (h,Hh) such that h ∈ {0, 1}n+k1 and
(h||x)2 ≡ y (mod N) for some x ∈ {0, 1}k0 is on the H-list.

AskR is true if at the end of the guess-stage, (r,Gr) is on the G-list.

AskS is true if at the end of the guess-stage, (s,Hs) is on the H-list.

W = AskR ∧ AskS.

We want to know the relationship between Pr3[AskH] and the advantage of A. However,
in Game 3, M haults when w∗ is defined. Hence the comparison should be done in Game
1∗. Notice that AskH, AskR, AskS and W are the events that are defined before w∗ is
given and it holds that Pr3[AskH] = Pr∗1[AskH], Pr3[AskR] = Pr∗1[AskR], Pr3[AskS] =
Pr∗1[AskS] and Pr3[W] = Pr∗1[W].

20



Lemma 4.3. The winning probability in Game 3 is bounded below by

Pr∗1[W] ≥ 2Pr∗1[A = b]− 1− qG

2k0
,

where “A = b” denotes the event that A is successful in predicting bit b.

Proof. We upper bound Pr∗1[A = b] by:

Pr∗1[A = b] = Pr∗1[A = b | W] · Pr∗1[W] + Pr∗1[A = b | ¬AskR] · Pr∗1[¬AskR]

+ Pr∗1[A = b | AskR ∧ ¬AskS] · Pr∗1[AskR ∧ ¬AskS]

≤ Pr∗1[W] + Pr∗1[A = b | ¬AskR] · Pr∗1[¬AskR] + Pr∗1[AskR ∧ ¬AskS]

= Pr∗1[W] + Pr∗1[A = b | ¬AskR] · (1− Pr∗1[W]− Pr∗1[AskR ∧ ¬AskS])

+ Pr∗1[AskR ∧ ¬AskS] (18)

Now observe that if ¬AskR is true then A has no advantage in predicting b :

Pr∗1[A = b | ¬AskR] ≤ 1

2
. (19)

We also have
Pr∗1[AskR ∧ ¬AskS] ≤ qG

2k0
. (20)

Therefore, it follows

Pr∗1[W] ≥ 2Pr∗1[A = b]− 1− qG

2k0
,

from (18), (19) and (20).

From Lemma 4.3 and Pr∗1[W] = Pr3[W], we have

Pr3[W] ≥ ε− qG

2k0
> 0. (21)

Note that ε− qG/2k0 is non-negligible since ε is non-negligible and qG/2k0 is negligible.

From Lemma 4.1, Lemma 4.2 and (21), we have

Pr1[AskH] ≥ Pr1[AskS] ≥ Pr2[AskS] · Pr1[FAIL]

≥ Pr2[AskS | ¬BAD] · Pr2[¬BAD] · Pr1[FAIL]

≥ Pr3[AskS] · Pr2[¬BAD] · Pr1[FAIL]

≥ Pr3[W] · Pr2[¬BAD] · Pr1[FAIL]

≥
(
ε− qG

2k0

)(
1− qG

2k0

) (
1− 2qG + qD

2k0
− qD

2k1

)(
1− 1

2k0
− 1

2k1

)3qD

.

The equation X2 ≡ y (mod N) has four solutions in ZN , and two of those are less
than N/2. Since w, w∗ ∈ {0, 1}k−1, the probability that it holds w 6= w∗ and w + w∗ 6= 0
(mod N) is more than 1/3. Note that |N/2| = k − 1 and that the lowest probability is
given when one of four solutions is more than 2k−1. Therefore, we have

Pr1[N ← G(1k) : M(N) = (p, q)]

≥ 1

3

(
ε− qG

2k0

) (
1− qG

2k0

) (
1− 2qG + qD

2k0
− qD

2k1

)(
1− 1

2k0
− 1

2k1

)3qD

.
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4.6 Factoring Problem

In HIME(R), (p, q, d) should be chosen to be intractable to factor N = pdq. Though an
efficient algorithm for factoring N = pdq, when d is large (d ≈ √

log p), is known [7], it is
expected that the factoring of N will be intractable when d is small.

Currently known prime factoring algorithms can be divided into two categories, namely
those which depend on the size of the composite numbers and those which depend on those
prime factors.

As the algorithms depending on prime factors, ρ method, p− 1 method, p + 1 method,
elliptic curve method([26], [33]) are known. The general number field sieve method depends
on the size of the composite number.

HIME(R), in the case of N = p2q, uses 1024∼1400-bit composite numbers which have
340∼460-bit prime factors and 1400∼1600-bit numbers in the case of N = p3q in order to
be as strong as 1024-bit RSA-type integers. For these composite numbers, the ρ method
is ineffective, and if appropriate primes (p − 1 and p + 1 have large prime factors, etc.)
are chosen in the key generation of HIME(R), then the p − 1 and p + 1 methods are also
ineffective.

The elliptic curve method has an amount of calculation for finding a prime factor p of
N Lp[1/2,

√
2] (Lp[a, b] = exp((b + o(1))(log p)a(log log p)1−a)), and an estimation of the

amount of calculation for the number field sieve is LN [1/3, 1.901] ([9]), both of which are
subexponential. In practice, depending on the implementation of the algorithm and the
ability of computers, the size of the prime factors to be factorized is about 180 ∼ 190-bit by
the elliptic curve method, and the size of the composite numbers to be factorized is about
512-bit by the number field sieve method.

More precisely, we estimate the amount of calculation using the above. Let tEC(p) =
log(Lp(1/2,

√
(2))) be the logarithm of the amount of calculation by the elliptic curve

method and tNFS(N) = log(LN(1/3, 1.901)) be that by the number field sieve method.
Then, for 1024-bit RSA-type composite number n = pq (p, q : 512 bits), the number

field sieve method is more efficient than elliptic curve method and we have

α := tNFS(1024-bit N) = CNFS + 59.42,

where CNFS is the constant in the o-factors.
On the other hand, if we use 1344-bit composite number N = p2q (or N = p1p2p3) for

HIME(R) (p, q : 448 bits), then the elliptic curve method is more efficient, and we have

β(448) := α− tEC(448-bit p) = C − 0.28,

where C is some constant coming from the o-factors. (In Figure 2, we show the graph of
β. )

This shows that factoring 1024-bit RSA-type integers is e0.28 = 1.32 times faster than
that of 1344-bit p2q-type integers. Hence we can say that the modulus of 1344-bit HIME(R)
is stronger than that of 1024-bit RSA.

In the case of N = p3q, HIME(R) uses 1400∼1600 bits N which have 350∼400 bits
prime factors. For example, when the bit length of N is 1536, we have

β(448) = C + 4.9.

22



Figure 2: The graph of β

We have e4.9 = 134.3 and we can say that the strength the integers of this type is
comparable with that for 1024-bit RSA-type integers.

Furthermore, we compare the HIME(R)-type integers with 2048-bit and 4096-bit RSA-
type integers. If we need the strength such as 2048-bit RSA-type integers, then we use 2304-
bit p2q-type integers or 3072-bit p3q-type integers, and for 4096-bit RSA-type integers, we
use 4032-bit p2q-type integers or 4928-bit p3q-type integers (Figure 3). For p2q-type integers,
if the bit length is greater than 2700, then the number field sieve method is more efficient
than the elliptic curve method. Thus we can use 4096-bit p2q-type integers for HIME(R).
But we select 4032-bit integers so that the length of p and that of q are same.

On the other hand, the evaluation result based on the implementation is recently re-
ported to compare the integer factoring computational difficulties between N = pq and
N = p2q [12], where p and q are prime numbers. The report guarantees that the compu-
tational difficulty of factoring 1024-bit N = p2q is almost the same with that of factoring
1024-bit N = pq.

By the above argument, we recommend the following modulus lengths for HIME(R).

Table 1: Recommendation modulus length for HIME(R)
RSA-type 1024 2048 4096 (bits)
HIME(R) (N = p2q) 1024 ∼ 1344 2304 4032 (bits)
HIME(R) (N = p3q) 1536 3072 4928 (bits)

4.7 Manger’s Attack

Recently, Manger presented the chosen ciphertext attack against PKCS #1 v2.0 [27]. His
attack is based on the “integrity check”. The actual system must be implemented to be
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Figure 3: Complexity for long modulus

difficult to distinguish a failure in the integer-to-octets conversion from any subsequent
failure, e.g. of the integrity check during OAEP-decoding, to prevent this attack. In this
document, we omit the details of countermeasure against this attack, because this problem
is not peculiar to HIME(R) but is common to many other public-key cryptosystems.
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5 Performance

This section gives the comparison of the basic scheme of HIME(R) and other existing
public-key encryption (basic) schemes that are based on the intractability of the factoring
problem.

5.1 Key Length

We firstly describe the length of each parameter k0, k1 and k in HIME(R). We recommend
to take |k0|, |k1| ≥ 128 from security viewpoints.

Next, Table 2 gives the comparison of each modulus length, namely |k|, of RSA-OAEP
[3], RSA-OAEP+ [36], Rabin-SAEP [6], Rabin-SAEP+[6], EPOC-2 [8], [15] and HIME(R).

Here, it is based on RSA-type 1024, 2048, 4096-bit composite numbers. For p2q, p3q-
type integers, the lengths recommended with Section 4.6 and lengths which have equal
prime factor length to those of RSA-type integers are also made applicable to comparison.

Each modulus length is determined to make the intractability of factoring almost same
when NFS and ECM are used (cf. Section 4.6). Here, for simplicity, we omit the bit length
for hash functions and parameters that indicate each parameter size.

From Table 3, we can see the key length of HIME(R) is shorter than the other schemes.

5.2 Modular Multiplications

In Table 4, we give the cost for the modular multiplications of the encryption and the
decryption in each scheme to evaluate the efficiency of the encryption and the decryption
speeds: Here, we consider RSA-OAEP [3], RSA-OAEP+ [36], Rabin-SAEP [6], Rabin-
SAEP+[6], EPOC-2 [8, 15] and HIME(R).

In each scheme, the decryption by the Chinese remainder theorem is applied if it can.
And, for fairness, the random numbers that are used in all schemes are set 128 bits

We assume that a modular exponentiation ax (x is k bits) requires 3k/2 modular multi-
plications in the standard binary method, and axby (x, y are k bits) requires 7k/4 modular
multiplications in the extended binary method [23]. And, we set a standard to the number
of modular multiplication on 1024 bits modulus. Hence, we assume that an n-bit modular
multiplication costs (n/1024)2. The reason for establishing the bit length of each encryption
scheme is described in Section 4.6.

In the graphs 4, we give an estimation for bigger modulus.
From these data, we can say that the difference in efficiency among HIME(R) and the

above mentioned earlier schemes increases in proportion as |N | increases.
In our scheme, we utilize our calculation method for decryption (cf. Section 2). In the

previous method [38], the average total number of modular multiplications T1 is represented

by T1 = |p|
3

+ 25
6
, where we make d = 2 and set a standard to the number of modular

multiplications on N . On the other hand, in our method, the average total number of
modular multiplications T2 is represented by T2 = |p|

3
+ 11

6
. Although this difference of

efficiency is very small, it is expected that it will be non-negligible in smart card systems
and in systems in which match decryption processing must be done at one time. For
example, in a system in which 600 times decryptions are done at a single time on average,
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Table 2: The length of modulus

Modulus length (bits)
RSA(-OAEP, OAEP+) 1024
Rabin(-SAEP, -SAEP+) 1024
EPOC-2 1024 ∼ 1152
HIME(R) (N = p2q) 1024 ∼ 1152
HIME(R) (N = p3q) 1536
RSA(-OAEP, OAEP+) 2048
Rabin(-SAEP, -SAEP+) 2048
EPOC-2 2304
HIME(R) (N = p2q) 2304
HIME(R) (N = p3q) 3072
RSA(-OAEP, OAEP+) 4096
Rabin(-SAEP, -SAEP+) 4096
EPOC-2 4032
HIME(R) (N = p2q) 4032
HIME(R) (N = p3q) 4928

Table 3: Public and private key length (bits)

Modulus length Public key Secret key
RSA(-OAEP, OAEP+) 1024 1026～2048 2048
Rabin(-SAEP, SAEP+) 1024 1024 1024
EPOC-2 1024 3072 1024

1344 4032 1344
HIME(R) (N = p2q) 1024 1024 683

1344 1344 896
HIME(R) (N = p3q) (1344 1344 672)

1536 1536 728
RSA(-OAEP, OAEP+) 2048 2050～4096 4096
Rabin(-SAEP, SAEP+) 2048 2048 2048
EPOC-2 (2048 6144 2048)

2304 6912 2304
HIME(R) (N = p2q) (2048 2048 1366)

2304 2304 1536
HIME(R) (N = p3q) (2752 2752 1376)

3072 3072 1536
RSA(-OAEP, OAEP+) 4096 4098～8192 8192
Rabin(-SAEP, SAEP+) 4096 4096 4096
EPOC-2 4032 12096 4032
HIME(R) (N = p2q) 4032 4032 2688
HIME(R) (N = p3q) (4096 4096 2048)

4928 4928 2464
The data in the parenthesis are for reference.
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Table 4: Efficiency by the (converted) number of modular multiplications.

Modulus length Encryption Decryption
RSA(-OAEP, -OAEP+) 1024 (bits) 2 ∼ 1536 388
Rabin(-SAEP, -SAEP+) 1024 (bits) 1 388
EPOC-2 1024 (bits) 1158 295

1344 (bits) 2591 667
HIME(R) (N = p2q) 1024 (bits) 1 124

1344 (bits) 2 275
HIME(R) (N = p3q) (1344 (bits) 2 146)

1536 (bits) 3 168
RSA(-OAEP, -OAEP+) 2048 (bits) 8 ∼ 12288 3088
Rabin(-SAEP, -SAEP+) 2048 (bits) 4 3088
EPOC-2 2048 (bits) 9067 2355

2304 (bits) 12879 3353
HIME(R) (N = p2q) (2048 (bits) 4 951)

2304 (bits) 6 1347
HIME(R) (N = p3q) (2752 (bits) 8 1246)

3072 (bits) 9 1320
RSA(-OAEP, -OAEP+) 4096 (bits) 32 ∼ 98304 24640
Rabin(-SAEP, -SAEP+) 4096 (bits) 16 24640
EPOC-2 4032 (bits) 68466 17957
HIME(R) (N = p2q) 4032 (bits) 16 6974
HIME(R) (N = p3q) (4096 (bits) 16 4104)

4928 (bits) 23 5411
The data in the parenthesis are for reference.

Note: In the above table, the orthodox method for exponential calculations is also applied to
EPOC-2, because any techniques for speedup were not described in [15]. The developer of EPOC-
2, however, says that the efficiency of decryption can be improved by using the speedup technique
(e.g., 295 → 180 (1024-bit), 667 → 407 (1344-bit), 2355 → 1444 (2048-bits), 3353 → 2052 (2304-
bit)).
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Figure 4: Efficiency on decryption

the difference in the modular multiplications between our method and the previous one
amounts to 1400. Furthermore, we believe that the actual decryption speed and mountaing
size will be smaller than previous one because ours does not require Euclidean algorithm
for Chinese Remainder Theorem.

5.3 Plaintext and Ciphertext Lengths

We show the maximal plaintext and ciphertext lengths, in Table 5. Here, the modular
length of each scheme is dominated by Table 2, and the bit length of the random numbers
and the check bits are set 128 bits.

The main purpose of the public key cryptosystems is to distribute the data enciphering
key of the secret-key cryptosystems. However, to the best of our knowledge, only a few
protocols send only the data enciphering key, and many protocols, such as SET, want
to send various information (e.g. the identification information of users) with the data
encryption key. It is therefore important to choose the public key encryption scheme that
reflects the purpose. Hence, this comparison is important for making the purpose of the
usage of these public key encryption schemes clear.

The plaintext space of HIME(R) is sufficiently large to send the data encryption key
with the attached information.
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Table 5: Plaintext and ciphertext lengths (bits)

Modular length Plaintext length Ciphertext length
RSA(-OAEP, -OAEP+) 1024 768 1024
Rabin-SAEP 1024 256 1024
Rabin-SAEP+ 1024 384 1024
EPOC-2 1024 Arbitrary 1024+α

1344 Arbitrary 1344+α
HIME(R) (N = p2q) 1024 768 1024

1344 1088 1344
HIME(R) (N = p3q) (1344 1088 1344)

1536 1280 1536
RSA(-OAEP, -OAEP+) 2048 1792 2048
Rabin-SAEP 2048 512 2048
Rabin-SAEP+ 2048 896 2048
EPOC-2 (2048 Arbitrary 2048+α)

2304 Arbitrary 2304+α
HIME(R) (N = p2q) (2048 1792 2048)

2304 2048 2304
HIME(R) (N = p3q) (2752 2496 2752)

3072 2816 3072
RSA(-OAEP, -OAEP+) 4096 3840 4096
Rabin-SAEP 4096 1024 4096
Rabin-SAEP+ 4096 1920 4096
EPOC-2 4032 Arbitrary 4032+α
HIME(R) (N = p2q) 4032 3776 4032
HIME(R) (N = p3q) (4096 3840 4096)

4928 4672 4928
The data in the parenthesis are for reference.
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6 Conclusion

This document showed that HIME(R) has almost ideal features as a public-key cryptosys-
tem. HIME(R) is based on a modular squaring over ZN , where N = pdq (p and q are prime
numbers, d > 1), and is secure in the sense of IND-CCA2 under the factoring assumption of
N . We showed the performance of HIME(R) by comparing it with that of previous practi-
cal factoring base schemes, such as RSA-OAEP or Rabin-SAEP, etc. HIME(R) could gain
great profit by taking the modulo N = pdq instead of N = pq. In particular, its decryption
speed becomes fast and its difference in efficiency in comparison with the above mentioned
earlier schemes increases in proportion as |N | increases (this is owing to the fact that the
efficiency of factoring N = pdq using the elliptic curve method is overtaken by that using
the number sieve field method when |N | is large).

We believe that our scheme offers secure and practical public-key encryption that will
be useful far into the future.

30



References

[1] M. Bellare, A.Desai, D.Pointcheval and P. Rogaway. : Relations among notions of
security for public-key encryption schemes, Advances in Cryptology – Crypto’98, LNCS
1462, Springer-Verlag, pp.26–45 (1998)

[2] M. Bellare and P. Rogaway. : Random oracles are practical – a paradigm for designing
efficient protocol, First ACM Conference on Computer and Communications Security,
pp.62–73 (1993)

[3] M. Bellare and P. Rogaway. : Optimal asymmetric encryption – How to encrypt with
RSA, Advances in Cryptology – Eurocrypt’94, LNCS 950, Springer-Verlag, pp.92–111
(1994)

[4] D. Bleichenbacher. : Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS#1, Advances in Cryptology – Crypto’98, LNCS 1462,
Springer-Verlag, pp.1–12 (1998)

[5] M. Blum and S. Goldwasser. : An efficient probabilistic public-key encryption scheme
which hides all partial information, Advances in Cryptology – Crypto’84, LNCS 196,
Springer-Verlag, pp.289-299 (1985)

[6] D. Boneh. : Simplified OAEP for the RSA and Rabin functions, Advances in Cryptology
– Crypto2001, LNCS 2139, Springer-Verlag, pp.275-291 (2001)

[7] D. Boneh, G.Durfee and N. Howgrave-Graham. : Factoring N = prq for large r,
Advances in Cryptology – Crypto’99, LNCS 1666, Springer-Verlag, pp.326-337 (1999)

[8] Call for Contributions on New Work Item Proposal on Encryption Algorithms, NTT,
2000-3-10.

[9] D. Coppersmith. : Modifications to the number field sieve, Journal of in Cryptology,
6, 3, pp.169-180 (1993)

[10] D. Coppersmith. : Finding a small root of a univariate modular equation, Advances in
Cryptology – Eurocrypt’96, LNCS 1070, Springer-Verlag, pp.155-165 (1996)

[11] R. Cramer and V. Shoup. : A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack, Advances in Cryptology – Crypto’98, LNCS 1462,
Springer-Verlag, pp.13-25 (1998)

[12] CRYPTREC Repot 2001, Information-technology Promotion Agency (IPA) (2002),
Available from http://www.ipa.go.jp/security/enc/CRYPTREC/index.html

[13] D. Dolve, C. Dwork and M. Naor. : Non-malleable cryptography, Proceedings of the
23rd Annual Symposium on Theory of Computing, ACM, pp.542–552 (1991)

[14] T. ElGamal. : A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Information Theory, IT-31, 4, pp.469-472(1985)

31



[15] EPOC-2 Specification, NTT Information Sharing Platform Laboratories (2001),
http://info.isl.ntt.co.jp/epoc/index.html

[16] E. Fujisaki, T. Okamoto and D. Pointcheval : RSA-OAEP is secure under the RSA as-
sumption, Advances in Cryptology – Crypto2001, LNCS 2139, Springer-Verlag, pp.269-
274 (2001)

[17] D.M. Gordon : Designing and detecting trapdoors for discrete log cryptosystems,
Advances in Cryptology – Crypto’92, LNCS 740, Springer-Verlag, pp.66-75 (1992)

[18] S. Goldwasser and M. Bellare. : Lecture Notes on Cryptography (1997), Available from
http:/www-cse.ucsd.edu/users/mihir/

[19] S. Goldwasser and S. Micali: Probabilistic encryption, Journal of Computer and Sys-
tem Sciences, 28, 2, pp.270–299 (1984)

[20] Specification of HIME-1 CryptoSystem, Hitachi, Ltd. (2000)

[21] Specification of HIME-2 CryptoSystem, Hitachi, Ltd. (2000)

[22] Specification of HIME(R) CryptoSystem, Hitachi, Ltd. (2001)

[23] D. E. Knuth. : The Art of Computer Programming, Addison-Wesley (1981)

[24] N. Koblitz. : Elliptic curve cryptosystems, Math. Comp., 48, 177, pp.203-209 (1987)

[25] A.K. Lenstra and H.W. Lenstra,Jr. : The Development of the Number Field Sieve,
Lect. Notes Math. 1554, Springer-Verlag (1993)

[26] H.W. Lenstra,Jr. : Factoring integers with elliptic curves, Annals of Math., 126, pp.649-
673 (1987)

[27] J. Manger : A chosen ciphertext attack on RSA optimal asymmetric encryp-
tion padding (OAEP) as standardized in PKCS#1 v2.0, Advances in Cryptology –
Crypto2001, LNCS 2139, Springer-Verlag, pp.230-238 (2001)

[28] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. : Handbook of Applied Cryptog-
raphy, CRC Press (1996)

[29] V. S. Miller. : Use of elliptic curves in cryptography, Advances in Cryptology –
Crypto’85, LNCS 218, Springer-Verlag, pp.417-426 (1985)

[30] National Institute of Standards, FIPS Publication 180, Secure Hash Standards (1993)

[31] M.Naor and M.Yung. : Public-key cryptosystems provably secure against chosen ci-
phertext attacks, Proceedings of the 22nd Annual Symposium on Theory of Computing,
ACM, pp.427–437 (1990)

[32] M. Nishioka, H. Satoh and K. Sakurai. : Design and analysis of fast provably secure
public-key cryptosystems based on a modular squaring, Proceedings of ICISC2001,
LNCS 2288, Springer-Verlag, pp.81-102 (2001)

32



[33] J. M. Pollard. : A Monte-Carlo method for factorization, BIT 15, pp.331-334 (1975)

[34] M. O. Rabin. : Digital signatures and public-key encryptions as intractable as factor-
ization, MIT, Technical Report, MIT/LCS/TR-212 (1979)

[35] R. L. Rivest, A. Shamir and L.Adleman. : A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, Vol.21, No.2, pp.120-126
(1978)

[36] V. Shoup. : OAEP reconsidered, Advances in Cryptology – Crypto2001, LNCS 2139,
Springer-Verlag, pp.239-259 (2001)

[37] V. Shoup. : A proposal for an ISO standard for public key encryption (version 2.1),
manuscript, Available from http:/www.shoup.net/, December 20 (2001)

[38] T. Takagi. : Fast RSA-type Cryptosystem Modulo pkq, Advances in Cryptology –
Crypto’98, LNCS 1462, Springer-Verlag, pp.318-326 (1998)

[39] H.C.Williams. : A modification of the RSA public key encryption procedure, IEEE
Trans. on Information Theory, IT-26, 6, pp.726-729 (1980)

[40] H. Woll. : Reductions among number theoretic problems, Information and Computa-
tion, 72, 3, pp.167-179 (1987)

[41] Y. Zheng and J. Seberry. : Practical approaches to attaining security against adaptive
chosen Ciphertext Attacks, Advances in Cryptology – Crypto’92, LNCS 740, Springer-
Verlag, pp.292-304 (1992)

33


