
Security Analysis of the Compression Function

of Lesamnta and its Impact

Shoichi Hirose
1, Hidenori Kuwakado

2, Hirotaka Yoshida
3,4

1 University of Fukui
hrs shch@u-fukui.ac.jp

2 Kobe University
kuwakado@kobe-u.ac.jp

3 Systems Development Laboratory, Hitachi, Ltd.,
hirotaka.yoshida.qv@hitachi.com

4 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,

1 Introduction

Lesamnta is a new family of hash functions submitted to NIST for their crypto-
graphic hash algorithm competition.

A security analysis of the compression function of Lesamnta has been re-
ported [1]. In this document, we give a short overview of how this analysis
affects the security of the full Lesamnta hash function. We divide our arguments
into three categories:

– A security analysis of the Lesamnta compression function
– The impact of the security analysis on the security of the full Lesamnta
– A plan for a minor change to the specification

2 A Security Analysis of the Compression Function

2.1 Observation on Lesamnta’s Block Cipher

This section describes a correlation among a key, a plaintext, and a ciphertext in
Lesamnta’s block cipher. The correlation was discovered by Bouillaguet et al. [1].
We only describe the observation on Lesamnta-256, but we can obtain similar
observation on Lesamnta-512; the difference is just word size.

We follow symbols and notations of [2] and consider Lesamnta-256’s block
cipher EncComp256. Let C[r][0] and C[r][1] be the left part and the right part of
the r-th round constant in the key schedule function (see Figure 18 of [2]). For
example, C[0][0] = 00000001 and C[0][1] = 00000000 according to p.14 of [2]. We
define a difference ∆r as

∆r = C[r][0]⊕ C[r][1] (1)

for r = 0, 1, . . . , 31. According to p.14 of [2], we see that the following equations
hold.

∆0 = ∆4 = ∆8 = ∆12 = . . . = ∆24 = ∆28,
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∆1 = ∆5 = ∆9 = ∆13 = . . . = ∆25 = ∆29, (2)

∆2 = ∆6 = ∆10 = ∆14 = . . . = ∆26 = ∆30,

∆3 = ∆7 = ∆11 = ∆15 = . . . = ∆27.

Precisely speaking, we also see ∆0 = ∆1 = ∆2 = ∆3 = 00000001 and ∆3 = ∆31,
but these properties are unnecessary for the following discussion. We will see
that the relation of Eq. (2) allows an adversary to attack Lesamnta.

A key chain, which corresponds to chain[8] in Figure 18 of [2], is denoted by
chain[0] ‖ chain[1] ‖ . . . ‖ chain[7] where chain[i] ∈ {0, 1}32. The key schedule
function produces 32 round keys K[0][0]||K[0][1], . . . , K[31][0]||K[31][1] from the key.

Proposition 1. Let chain0 be any key chain0[0] ‖ chain0[1] ‖ . . . ‖ chain0[7].
Suppose that another key chain1 is determined as

chain1 = (chain0[1]⊕∆2) ‖ (chain0[0]⊕∆2) ‖ (chain0[3]⊕∆1) ‖ (chain0[2]⊕∆1)

‖ (chain0[5]⊕∆0) ‖ (chain0[4]⊕∆0) ‖ (chain0[7]⊕∆3) ‖ (chain0[6]⊕∆3).

When round keys K0 generated from chain0 are denoted by

K0[0][0]||K0[0][1], K0[1][0]||K0[1][1], . . . , K0[31][0]||K0[31][1],

round keys K1 generated from chain1 are given by

K1[4i][0] = K0[4i][1]⊕∆2, K1[4i][1] = K0[4i][0]⊕∆2,
K1[4i + 1][0] = K0[4i + 1][1]⊕∆3, K1[4i + 1][1] = K0[4i + 1][0]⊕∆3,
K1[4i + 2][0] = K0[4i + 2][1]⊕∆0, K1[4i + 2][1] = K0[4i + 2][0]⊕∆0,
K1[4i + 3][0] = K0[4i + 3][1]⊕∆1, K1[4i + 3][1] = K0[4i + 3][0]⊕∆1,

for i = 0, 1, . . . , 7.

Next, consider the mixing function of the block cipher EncComp256 (see
Figure 11 of [2]). A message block mb is denoted by mb[0] ‖ mb[1] ‖ . . . ‖ mb[7]
where mb[i] ∈ {0, 1}32. Let K[0][0]||K[0][1], . . . , K[31][0]||K[31][1] be 32 round keys
generated by the key schedule function. The output x of EncComp256 (i.e., the
ciphertext) is denoted by x[0] ‖ x[1] ‖ . . . ‖ x[7].

Proposition 2. Let K0[0][0]||K0[0][1], . . . , K0[31][0]||K0[31][1] be 32 round keys K0,
and let mb0[0] ‖ mb0[1] ‖ . . . ‖ mb0[7] denote a message block mb0. Suppose that
round keys K1 and a message block mb1 satisfy the following equations.

K1[4i][0] = K0[4i][1]⊕ δ0, K1[4i][1] = K0[4i][0]⊕ δ0,
K1[4i + 1][0] = K0[4i + 1][1]⊕ δ1, K1[4i + 1][1] = K0[4i + 1][0]⊕ δ1,
K1[4i + 2][0] = K0[4i + 2][1]⊕ δ2, K1[4i + 2][1] = K0[4i + 2][0]⊕ δ2,
K1[4i + 3][0] = K0[4i + 3][1]⊕ δ3, K1[4i + 3][1] = K0[4i + 3][0]⊕ δ3,
mb1[0] = mb0[1]⊕ δ2, mb1[1] = mb0[0]⊕ δ2,
mb1[2] = mb0[3]⊕ δ1, mb1[3] = mb0[2]⊕ δ1,
mb1[4] = mb0[5]⊕ δ0, mb1[5] = mb0[4]⊕ δ0,
mb1[6] = mb0[7]⊕ δ3, mb1[7] = mb0[6]⊕ δ3,
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where i = 0, 1, . . . , 7 and δ0, . . . , δ3 are any 32-bit strings. Let x0[0] ‖ x0[1] ‖
. . . ‖ x0[7] be the output x0 of EncComp256(K0, mb0). Then, the output x1 of
EncComp256(K1, mb1) is given by

x1[0] = x0[1]⊕ δ2, x1[1] = x0[0]⊕ δ2,
x1[2] = x0[3]⊕ δ1, x1[3] = x0[2]⊕ δ1,
x1[4] = x0[5]⊕ δ0, x1[5] = x0[4]⊕ δ0,
x1[6] = x0[7]⊕ δ3, x1[7] = x0[6]⊕ δ3.

Proposition 1 and Proposition 2 are proved by using properties of internal
functions such as SubWord256. Assuming that

δ0 = ∆2, δ1 = ∆3, δ2 = ∆0, δ3 = ∆1,

we obtain the following proposition from Proposition 1 and Proposition 2.

Proposition 3. Let chain0 and mb0 be a key and a message block, respectively.

chain0 = chain0[0] ‖ chain0[1] ‖ chain0[2] ‖ chain0[3]

‖ chain0[4] ‖ chain0[5] ‖ chain0[6] ‖ chain0[7],

mb0 = mb0[0] ‖ mb0[1] ‖ mb0[2] ‖ mb0[3]

‖ mb0[4] ‖ mb0[5] ‖ mb0[6] ‖ mb0[7].

Suppose that a key chain1 and a message block mb1 are given as

chain1 = (chain0[1]⊕∆2) ‖ (chain0[0]⊕∆2)

‖ (chain0[3]⊕∆1) ‖ (chain0[2]⊕∆1) (3)

‖ (chain0[5]⊕∆0) ‖ (chain0[4]⊕∆0)

‖ (chain0[7]⊕∆3) ‖ (chain0[6]⊕∆3),

mb1 = (mb0[1]⊕∆0) ‖ (mb0[0]⊕∆0) ‖ (mb0[3]⊕∆3) ‖ (mb0[2]⊕∆3) (4)

‖ (mb0[5]⊕∆2) ‖ (mb0[4]⊕∆2) ‖ (mb0[7]⊕∆1) ‖ (mb0[6]⊕∆1).

When the output x0 of EncComp256(chain0, mb0) is denoted by x0[0] ‖ x0[1] ‖
. . . ‖ x0[7], the output x1 of EncComp256(chain1, mb1) is given by

x1 = (x0[1]⊕∆0) ‖ (x0[0]⊕∆0) ‖ (x0[3]⊕∆3) ‖ (x0[2]⊕∆3) (5)

‖ (x0[5]⊕∆2) ‖ (x0[4]⊕∆2) ‖ (x0[7]⊕∆1) ‖ (x0[6]⊕∆1).

2.2 Distinguisher for Lesamnta’s Block Cipher

Proposition 3 immediately gives an efficient related-key adversary A for distin-
guishing between Lesamnta-256’s block cipher EncComp256 and an ideal cipher
IC. The basic idea of this distinguisher was shown in [1].

The algorithm of the adversary A is described below. Suppose that a block
cipher BC to which A has access is promised to be either EncComp256 or IC
and A is allowed to have access to the related-key oracle such as Eq. (3). Namely,
A does not know keys chain0, chain1, but A can have access to BC(chain0, ·)
and BC(chain1, ·).
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1. Choose a message block mb0 at random and determine another message block
mb1 as Eq. (4).

2. Let xi be the output of BC(chaini, mbi) where i = 0, 1. If Eq. (5) holds,
then output 1, otherwise output 0.

We evaluate the probability that A outputs 1. If BC is EncComp256, then
A always outputs 1 because of Proposition 3. If BC is IC, then the probability
that A outputs 1 is 2−256. Thus, A can distinguish between Lesamnta-256’s block
cipher and the ideal cipher by making only two queries.

2.3 Pseudo-Collision of Lesamnta

The sophisticate use of Proposition 3 allows an adversary to produce a pseudo-
collision of Lesamnta-256 with O(264) computations of the compression function.
This attack was shown in [1].

Consider Lesamnta-256’s compression function Compression256 (Figure 11
of [2]). The algorithm of an adversary A that finds a pseudo-collision is described
below.

1. Let a set U = ∅.
2. For i = 1, 2, . . . , 264, do the following steps.

2.1 Choose chaini[j], mbi[j] where j = 0, 2, 4, 6 at random.
2.2 Determine chaini, mbi as follows:

chaini = chaini[0] ‖ (chaini[0]⊕∆2)

‖ chaini[2] ‖ (chaini[2]⊕∆1) (6)

‖ chaini[4] ‖ (chaini[4]⊕∆0)

‖ chaini[6] ‖ (chaini[6]⊕∆3)

mbi = mbi[0] ‖ (mbi[0]⊕∆0) ‖ mbi[2] ‖ (mbi[2]⊕∆3) (7)

‖ mbi[4] ‖ (mbi[4]⊕∆2) ‖ mbi[6] ‖ (mbi[6]⊕∆1)

2.3 Compute Compression256(chaini, mbi). The output is denoted by zi.
2.4 Let U ← U ∪ (chaini, mbi, zi).

3. Find (chainι, mbι) and (chainν , mbν) such that zι = zν from U . (i.e., a
pseudo-collision).

Recall that Lesamnta’s compression functions is the MMO mode. The output
zi of Compression256(chaini, mbi) always satisfies the following property due
to Proposition 3.

zi[0] = zi[1], zi[2] = zi[3], zi[4] = zi[5], zi[6] = zi[7].

Namely, the size of the output space of Compression256(chaini, mbi) is 2128.
Since U has 264 elements, there exists a pair satisfying step 3 with probability
1− 1/e due to the birthday paradox.
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3 The Impact of the Security Analysis of the Compression

Function on the Full Lesamnta

In this section, we discuss the impact of the security analysis described in 2
on the security of the full Lesamnta by firstly reviewing the expected strength
and security goals claimed in [2] and by secondly considering several attacking
scenarios.

3.1 Review of What Was Claimed in [2]

In the section of “Expected Strength and Security Goals” in [2], we described as
follows:

Table 1 shows the expected strength of Lesamnta for each of the security re-
quirements (i.e., the expected complexity of attacks). What values in Table 1
mean is explained below. The row indicated by “HMAC” lists the approximate
number of queries required by any distinguishing attack against HMAC using
Lesamnta. The row indicated by “PRF” lists the approximate number of queries
required by any distinguishing attack against the additional PRF modes described
in Sec. 13.1. The row indicated by “Randomized hashing” lists the approximate
complexity to find another pair of a message and a random value for a given pair
of a 2k-bit message and a random value. The fourth row lists the approximate
complexity of any collision attack. The fifth row lists the approximate complexity
of any preimage attack. The sixth row lists the approximate complexity of the
Kelsey-Schneier second-preimage attack with any first preimage shorter than 2k

bits. The seventh row lists the approximate number of queries required by any
length-extension attack against Lesamnta. A cryptanalytic attack may be a pro-
found threat to Lesamnta if its complexity is much less than the complexity in
Table 1.

Table 1. Expected strength of Lesamnta

Requirement Lesamnta

224 256 384 512

HMAC 2112 2128 2192 2256

PRF 2112 2128 2192 2256

Randomized hashing 2256−k 2256−k 2512−k 2512−k

Collision resistance 2112 2128 2192 2256

Preimage resistance 2224 2256 2384 2512

Second-preimage resistance 2256−k 2256−k 2512−k 2512−k

Length-extension attacks 2112 2128 2192 2256
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Table 1 includes proof-based strength and attack-based strength. The security
proof of Lesamnta is given as follows:

Proved security 1: Lesamnta is indifferentiable from a random oracle under the
assumption that block ciphers E,L are independent ideal ciphers.
This proof partially ensures the security of randomized hashing, collision re-
sistance, preimage resistance, second-preimage resistance, and length-extension
attacks.

Proved security 2: Lesamnta is collision resistant under the assumption that the
compression function h and the output function g are collision resistant.
This proof ensures the security of collision resistance, and in part, preimage
resistance and second-preimage resistance.

Proved security 3: Lesamnta is a pseudorandom function under the assumption
that block ciphers E,L are independent pseudorandom permutations.
This proof ensures the security of HMAC and PRF.

We claim that the impact of the security analysis of the compression function
on the security of Lesamnta described in 2 is limited to the following:

– Each of the assumption made in Proved Security 1 and the one in Proved
Security 2 no longer holds because the above attack means that Lesamnta’s
block cipher is a poor instantiation of an ideal cipher.

We claim that there is no problem regarding Proved Security 3 because their
proofs only assume the pseudo-randomness of the underlying block ciphers, that
is, the key is secret and chosen at random.

3.2 Collision Resistance, Second-preimage Resistance, and
Preimage Resistance

As for collision resistance, second-preimage resistance, and preimage resistance,
Lesamnta does not have proof-based strength but we still claim that, regarding
each of these security requirements, Lesamnta has attack-based strength which
is estimated in security analysis described in [2] together with the arguments we
describe below.

As for collision resistance and second-preimage resistance, we think that it
is difficult to transform the collision attack on the compression function given
in Section 2 into an attack on the full Lesamnta hash function because it is
not clear how to find the chaining variable Hi of the specific form described in
Section 2 for the full Lesamnta.

As for preimage resistance, we do not know any way to transform the pseudo-
collision attack given in Section 2 into a preimage attack on the full Lesamnta.

3.3 Security against a Collision Attack on the Full Lesamnta

Using Proposition 3, we can find a collision of Lesamnta hash function with the
same complexity of a generic attack.

Consider Lesamnta-256. The algorithm of an adversary that finds a collision
is described below.
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1. Let U (0) = ∅ and U (1) = ∅.
2. Choose message block blocks mb

(0)
i

, mb
(1)
i

at random. If mb
(1)
i

satisfies the

following equations (i.e., Eq. (7)), then choose mb
(1)
i

again.

mb
(1)
i

[1] = mb
(1)
i

[0]⊕∆0, mb
(1)
i

[3] = mb
(1)
i

[2]⊕∆3,

mb
(1)
i

[5] = mb
(1)
i

[4]⊕∆2, mb
(1)
i

[7] = mb
(1)
i

[6]⊕∆1,

where ∆i is given by Eq. (1).
3. Compute

chain
(0)
i

= Compression256(IV, mb
(0)
i

),

chain
(1)
i

= Compression256(chain
(0)
i

, mb
(1)
i

),

where IV is the standard initial value (Section 5.2.3.2 of [2]).

4. Let U (0) ← U (0) ∪ (chain
(0)
i

, mb
(0)
i

) and U (1) ← U (1) ∪ (chain
(1)
i

, mb
(1)
i

).
5. If all the following conditions hold, then go to the next step, otherwise go

back to step 2.
– There is an element in U (0) satisfying Eq. (6), that is, for some i

chain
(0)
i

[1] = chain
(0)
i

[0]⊕∆2, chain
(0)
i

[3] = chain
(0)
i

[2]⊕∆1,

chain
(0)
i

[5] = chain
(0)
i

[4]⊕∆0, chain
(0)
i

[7] = chain
(0)
i

[6]⊕∆2.

This index i is denoted by i0.
– There is an element in U (1) such that for some i

chain
(1)
i

[j] = chain
(1)
i

[j + 1]

for j = 0, 2, 4, 6. This index i is denoted by i1.
6. Choose a message block mb′(1) at random such that

mb′(1)[1] = mb′(1)[0]⊕∆0, mb′(1)[3] = mb′(1)[2]⊕∆3,
mb′(1)[5] = mb′(1)[4]⊕∆2, mb′(1)[7] = mb′(1)[6]⊕∆1.

7. Compute

chain′(1) = Compression256(chain
(0)
i0

, mb′(1)).

8. If the following equations hold, then output mb
(0)
i1
‖ mb

(1)
i1

and mb
(0)
i0
‖ mb′(1)

as a collision-message pair, that is,

chain′(1)[j] = chain
(1)
i1

[j],

for j = 0, 1, . . . , 7. Otherwise go back to step 6.

We evaluate the complexity of the above algorithm. In order to satisfy the
conditions in step 5 and the condition in step 8, O(2128) computations of the
compression function are required. As a result, we conclude that the above attack
is not better than the generic collision attack. This means that this attack does
not pose any threat on the full Lesamnta.
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4 A Plan for a Minor Change

We observe that the security analysis discussed here is based on some symmetry
in Lesamnta. To destroy the symmetry, we plan to make a minor change to
the specification of Lesamnta by changing the round constants. The important
design goals for the new round constants are security and hardware efficiency.

The possible ideas for new round constants are using the following techniques:
LFSR, publicly known random-looking numbers, pseudo-random generators, etc.
We also consider the possibility of using the on-the-fly technique and the adapt-
ability to the extension of Lesamnta specified in [2].

5 Concluding Remarks

In this paper, we have discussed the security analysis of the compression function
of Lesamnta that was pointed by Bouillaguet et al. As the result of examining
several attacking scenarios based on this analysis, we conclude that the expected
strength of Lesamnta described still remains the same despite of the loss of
proved security regarding preimage resistance, second preimage resistance, and
collision resistance.

In order for Lesamnta to get back proved security on each of these security
requirements, we will make a minor change to the specification by changing
round constants.
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