
A Compact Hardware Implementation of SHA-3
Candidate Luffa

Shugo Mikami1, Nagamasa Mizushima1, Setsuko Nakamura1, and Dai
Watanabe1

Systems Development Laboratory, Hitachi, Ltd.,
292 Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan

dai.watanabe.td@hitachi.com

Abstract. In this document, the hardware performances of Luffa-2561

are reported. Our implementations mainly target size optimized imple-
mentations in ASIC and the smallest architecture can be implemented
with only 10.3 KGE while it achieves about 500 Mbps.

Keywords. Hash function, Luffa, hardware implementation

1 Introduction

A cryptographic hash function has a lot of application such as a digital signature
and a message authentication code. Recently, several important breakthroughs
have been made in the cryptanalysis against hash functions and they imply that
most of the currently used standard hash functions are vulnerable against new
attacks. In these circumstances, National Institute of Standards and Technology
(NIST) decided to organize Cryptographic Hash Algorithm Competition (The
SHA-3 competition) [6] and started to call for algorithms.

Luffa [2] is a family of hash functions submitted to the SHA-3 competi-
tion and was selected as one of the second round candidates. Luffa modified its
algorithm at the beginning of the second round and the current algorithm is
called Luffa v2. Throughout this document, we discuss the modified algorithm
(Luffa v2) and denote it Luffa.

In this document, we discuss the hardware implementations of Luffa in ASIC.
There have been some reports on the hardware implementations of Luffa includ-
ing the self evaluation report [3]; The first implementation of Luffa was done
by Knežević and Verbauwhede [4], and their architecture followed those of [3].
Namin and Hasan [5] tried to implement a whole round processing. Recently,
Satoh et al. [7] covered four architecture. Two of them were new, but their
trade-off between the throughputs and the size were not so significant.

In this document, we propose two new architectures of Luffa-256 which are
fully functional architecture and they target size-optimized implementation. One
of them can be implemented with 10.3 KGE and achieves about 500 Mbps,
1 Luffa is a registered trademark of Hitachi, Ltd. in Japan.

2

while the other can be implemented with 14.0 KGE and achieves 3 Gbps. These
results indicate that Luffa is quite a flexible algorithm in terms of hardware
implementation.

The rest of this paper is organized as follows: The three hardware architec-
tures of Luffa-256 including two new ones are introduced in Section 3. Then the
evaluation results in ASIC and FPGA are given in Section 4 and 5 respectively.
We conclude this document in Section 6.

2 The Specification of Luffa-256

See [2].

3 Hardware Architectures

In this section, we explain two new architectures. They adopt the shift register
based architecture instead of the selector based architecture in order to save the
number of selectors. This technique was applied to AES by Shimizu et al. [8] and
also applied to SHA-3 2nd round candidates Shabal and CubeHash by Bernet
et al. [1].

3.1 Architecture 1: A Step Function

The architecture, which shares a step function by three 256-bit permutations
(See Figure 1), has been examined in [4, 7]. We implemented this architecture
just for the comparison to other two new architectures.

3.2 Architecture 2: A Half Step Function

The second architecture implements only a half of the step function.
Figure 2 shows the rough structure of the second architecture. A line rep-

resents 128-bit data flow. In this architecture, a half of the message injection
function MI and SubCrumb are implemented as well as MixWord and they pro-
cess even bits and odd bits of a 256-bit data in turn. When a 256 bits message
is input, the half is processed at the cycle, and the other half is stored to the
temporary register to be processed at the next cycle. The temporary register is
shared with that for the constant generator.

The way to cut a step function into two comes from the structure of MixWord.
It is a four-round Feistel ladder consisting of four XORs and four rotations. The
first three rotations rotate even bits to the left, while the last one rotates 1 bit
to the left. This choice of the rotations enables to separate a MixWord into two
functions (except the last rotation). Namely, one processes the even bits in the
words and the other processes the odd bits.

This architecture requires double as many cycles as Architecture 1 for pro-
cessing a round.

3

Step

Tweak

MI

Tweak

V0 V1 V2 Mi0..0

hash value

256 bits

Fig. 1. Architecture 1: a step function

SC1/2

Tweak1/2+Swap

MI 1/2

0..0

hash value

Tweak 1/2

V2 , oV2 , eV1 , oV1 , eV0 , oV0 , e

Mi , oMi , e

GenConstMW1/2

AC1/2
64 bits32 bits

128 bits

Fig. 2. Architecture 2: a half step function with a feedback shift register

4

3.3 Architecture 3: Six Sboxes and A MixWord

The third architecture implements only 6 Sboxes and a MixWord for the mixing
function.

f

g

m

n
H_in

H_out
H_in

V_in

V_in

V_out

Fig. 3. The basic behavior of the 2 dimensional feedback shift register

A two dimensional array with two feedback function is suitable for the ex-
planation of this architecture. Figure 3 shows the basic behavior of the two
dimensional feedback shift register. If the register receives the signal to “shift
to right”, the data Hout pushed out from the most right hand of the register
are processed by the function f , then the output of the function are feedback to
the most left hand of the register. If the register receives the signal to “shift to
bottom”, the data Vout pushed out from the most lower side of the register are
processed by the function g and feedback to the most upper side of the register
in the same manner.

In our implementation, two 32×4 bits array is uses to store a 256-bit data Hj

and they store two four words a0, a1, a2, a3 and a4, a5, a6, a7 respectively. The
data pushed out to down (3 × 8 bits) are input to 6 Sboxes and MI1/32. The
data pushed out to right (2 × 32 bits) are input to MixWord. Two tweaks are
applied on the way from a 256-bit register to the next.

This architecture requires 32 cycles for processing SubCrumb, 12 cycles for
MixWord. In addition, 32 cycles are spent for processing the message injection
function MI. Therefore 32 + (32 + 12)× 8 = 384 cycles are required for a round
processing.

4 Performances in ASIC

We wrote RTL codes in Verilog-HDL for the three architectures mentioned above
and synthesized them using Synopsys Design Compiler (Version C-2009.06.SP5)2.
2 Synopsys and Design Compiler are registered trademarks of Synopsys, Inc. in the

United States and/or other countries.

5

M
i
w
W
o
r
d

T
w
e
a
k

GenConst

MI

T
w
e
a
k

SubCrumb (6 Sboxes)

hash value

h_in1

v_in1

h_in2

v_in1

h_in1

h_in2

XOR of registers

v_in2

v_in2

V0 V1 V2

Mi

8 bits
32 bits

256 bits

Fig. 4. Architecture 3: 6 Sboxes + 1 MixWord with two dimensional feedback shift
register

Table 1. ASIC implementations of the Luffa-256

Reference Architecture # of cycles Frequency Area Throughput Process
per round (MHz) (GE) (Mbps)

This paper One-step 25 645 18,276 6,606 TSMC90nm
1,163 25,683 11,907

Half-step 50 629 13,981 3,220
1,099 17,145 5,626

6 Sbox + 384 806 10,338 538
1 MixWord 1,754 11,738 1,170

We used TSMC3 90 nm CMOS library for the synthesis. We set that the input
and output delays are 0.4 ns. In the estimation of the throughputs, we only
considered the very long message and ignored the delay due to the finalization.
The throughputs are calculated according to the following equation:

Throughput =
Frequency

of Cycles
× 256 bits.

Table 1 summarizes our implementation results and Figure 5 shows the trade-
off curves between the throughputs and the sizes. These three architecture covers
from 10 to 26 KGE, which achieve from 500 to 12,000 Mbps.

3 TSMC is a registered trademark of TSMC, Ltd. in Taiwan and other countries.

6

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 16 18 20 22 24 26 28

T
hr

ou
gh

pu
t (

M
bp

s)

Size (Kgate)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 13 14 15 16 17 18

T
hr

ou
gh

pu
t (

M
bp

s)

Size (Kgate)

 400

 600

 800

 1000

 1200

 1400

 10 10.5 11 11.5 12 12.5

T
hr

ou
gh

pu
t (

M
bp

s)

Size (Kgate)

Fig. 5. Trade-off curves for three architectures: One-step (Upper-left), A Half-step
(Upper-right), 6 Sboxes + 1 MixWord (Lower-left).

5 Performances in FPGA

The same codes are also synthesized by Xilinx ISE11.14. The target device is
Xilinx Virtex-5 (xc5vlx30-1ff324). The estimation of the throughputs are done
in the same manner as that in ASIC. Table 2 summarizes our implementation
results in FPGA.

6 Conclusion

In this document, we proposed two new architectures of Luffa-256 which target
size-optimized implementations in ASIC. We also implemented a known archi-
tecture which shares a step function by the three permutations. These three
architectures cover from 10 to 25 KGE, which achieve from 500 to 15,000 Mbps.
These results indicate that Luffa is quite a flexible algorithm in terms of hard-
ware implementation.

4 Xilinx, Virtex, and ISE are registered trademarks of Xilinx in the United States and
other countries.

7

Table 2. FPGA implementations of the Luffa-256

Reference Architecture # of cycles Frequency Area Throughput Technology
per round (MHz) slice reg LUT (Mbps)

This paper One-step 25 50.0 536 842 2,038 512 Virtex-5
162.13 548 842 2,034 1,660

Half-step 50 50.0 491 930 1,883 256
218.72 503 1,368 1,860 1,120

6 Sbox + 384 50.0 355 1,044 1,077 33
1 MixWord 301.84 715 1,920 1,081 201

References

1. Markus Bernet, Luca Henzen, Hubert Kaeslin, Norbert Felber, and Wolfgang Ficht-
ner, “Hardware Implementations of the SHA-3 Candidates Shabal and Cube-
Hash,” 52nd IEEE International Midwest Symposium on Circuits and Systems,
2009. Available on-line at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=5236043.
2. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Specification,”

Submission to NIST SHA-3 Competition, 2008. Available at http://www.sdl.

hitachi.co.jp/crypto/luffa/.
3. C. De Cannière, H. Sato, D. Watanabe, “Hash Function Luffa: Supporting Docu-

ment,” Submission to NIST SHA-3 Competition, 2008. Available at http://www.

sdl.hitachi.co.jp/crypto/luffa/.
4. Miroslav Knezěvić and Ingrid Verbauwhede, “Hardware Evaluation of the Luffa

Hash Family,” COSIC internal report, 2009. Also presented at WESS 2009.
5. A. H. Namin and M. A. Hasan, “Hardware implementation of the compression

function for selected SHA-3 candidates,” CACR 2009-28, July 2009.
6. National Institute of Standards and Technology, cryptographic hash project, http:

//csrc.nist.gov/groups/ST/hash/index.html.
7. A. Satoh, T. Katashita, T. Sugawara, T. Aoki and N. Homma, “Hardware Im-

plementations of Hash Function Luffa, ” Hardware-Oriented Security and Trust,
HOST 2010, June 2010.

8. Hideo Shimizu and Masahiko Motoyama, “Compact hardware implementation of
AES,” IEICE Technical Report, ISEC 2001-149, 2001.

9. Stefan Tillich, Martin Feldhofer, Mario Kirschbaum, Thomas Plos, Jörn-
Marc Schmidt and Alexander Szekely, “High-Speed Hardware Implementations
of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH,
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein,” Cryptology ePrint Archive:
Report 2009/510, 2009.

