
Hash Function Luffa

Supporting Document

Christophe De Cannière
ESAT-COSIC, Katholieke Universiteit Leuven

Hisayoshi Sato, Dai Watanabe
Systems Development Laboratory, Hitachi, Ltd.

15 September 2009

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
1

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Contents

1 Introduction 4
1.1 Updates of This Document . 4
1.2 Organization of This Document 4

2 Design Rationale 5
2.1 Chaining . 5
2.2 Non-Linear Permutation . 6

2.2.1 Sbox in SubCrumb . 6
2.2.2 MixWord . 7
2.2.3 Constants . 9
2.2.4 Number of Steps . 9
2.2.5 Tweaks . 9

3 Security Analysis of Permutation 10
3.1 Basic Properties . 10

3.1.1 Sbox S (Luffav2) . 10
3.1.2 Differential Propagation 11

3.2 Collision Attack Based on A Differential Path 13
3.2.1 General Discussion . 13
3.2.2 How to Find A Collision for 5 Steps without Tweaks . 14

3.3 Birthday Problem on The Unbalanced Function 15
3.4 Higher Order Differential Distinguisher 15

3.4.1 Higher Order Difference 16
3.4.2 Higher Order Differential Attack on Luffav1 16
3.4.3 Higher Order Differential Property of Qj of Luffav2 . . 17
3.4.4 Higher Order Differential Attack on Luffav2 18

4 Security Analysis of Chaining 18
4.1 Basic Properties of The Message Injection Functions 20
4.2 First Naive Attack . 21

4.2.1 Long Message Attack to Find An Inner Collision 21
4.2.2 How to Reduce The Message Length 21
4.2.3 Complexity of The Naive Attack 22

4.3 Meet-In-The-Middle Attack on Luffa 22
4.3.1 Attack Description . 22
4.3.2 Complexity of The MIM Attack 23

4.4 An Application of The Multicollision Attack on A Weakened
MI . 25
4.4.1 Attack Description for w = 3 25
4.4.2 Extension to w > 3 . 25

4.5 Collision, Second Preimage, And Preimage 26
4.6 Security Analysis of Finalization 26

4.6.1 Saturation Property of Luffav2 26
4.6.2 Slide Attack . 27

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
2

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

5 On The (Semi-)Free-start Setting 27

6 Implementation Aspects 29
6.1 Performance Figures for Software Implementations 29

6.1.1 8-bit Processors . 29
6.1.2 32-bit Processors . 30
6.1.3 64-bit Processor . 32

6.2 Performance Figures for Hardware Implementations 34
6.2.1 Throughput-Optimized Implementations 35
6.2.2 Area-Optimized Implementations 36
6.2.3 Pipelined Implementation 37
6.2.4 Summary of Hardware Implementations 37

6.3 Security against Side Channel Attacks 38

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
3

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

1 Introduction

This document provides the currently known results on the security and the

performances of a family of hash function Luffa. We refer to [28] for the

specification and the notations used throughout this document.

1.1 Updates of This Document

The algorithm of Luffa in Round 2 is modified from the algorithm submitted

to Round 1. We modified two functions; SubCrumb and the finalization.

Please refer to [29] for the modifications and their reasons. The Round 1

algorithm and the Round 2 algorithm of Luffa are denoted by Luffa v1 and

Luffa v2 respectively.

This document mainly deals with the evaluation results of Luffa v2 and

the version is omitted if it does not matter. In fact, most of the security

evaluation results are common between two algorithms because the modifi-

cations are minor. The significant update in the supporting document is that

the higher order differential attack on Luffa v2 is studied in Section 3.4. The

higher order differential attack on Luffa v1 is studied in the separate docu-

ment [30]. All implementation results are updated due to the modifications

of the algorithm. In addition, we mention the free-start attacks in Section 5.

1.2 Organization of This Document

The rest of this document is organized as follows: Firstly the design rationale

of Luffa is presented in Section 2 to clarify that there is no backdoor in our

design. Secondly the security issues of Luffa are discussed. The security of

some randomness properties, especially the differential characteristics, of the

non-linear permutation is discussed in Section 3. The security of the chaining

is discussed in Section 4 by assuming that the underlying permutations are

ideal function. We mention the free-start attacks in Section 5. After that

the implementation issues are discussed in Section 6. Also the performances

on some platforms are given in Section 6.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
4

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

2 Design Rationale

Luffa is a family of cryptographic hash functions suitable for multipurpose.

Besides NIST’s requirements, we would like to make the design as simple as

possible.

2.1 Chaining

The chaining method of Luffa hash function is a variant of a sponge func-

tion [7, 8] whose security is based only on the randomness of the underlying

permutation. Although the simple construction is very attractive, a sponge

function costs more than a traditional block cipher based hash construction

from the viewpoint of implementations. In the case of PGV construction,

the block length nb of the underlying block cipher is equal to the hash length

nh (A key scheduling function should be taken into account in practice). On

the other hand, a sponge function requires a permutation of nb ≥ 2 · nh + m

bits length, where m is the message block length. Generally speaking, the

calculation cost of a function increases if the input (and the output) length

get larger. In addition, constructing proper large permutations for each hash

length is far from a scalable design.

These undesirable properties of a naive sponge lead us to its variant such

that the underlying function is a family of sub-permutations with shorter

input/output. The resulting chaining method Luffa employs the message

injection function and one blank round.

The message injection functions of Luffa are linear functions. These func-

tions are designed to avoid the serious attack described in Section 4.4 caused

by the simple property of keeping the independency of input/output of each

sub-permutations. More precisely, the message injection functions are de-

signed to have the maximum branch number, thus the input of each round

is sufficiently mixed and the independency is kept to the minimum. Conse-

quently, it is conceivable that these components make the construction Luffa

sufficiently intractable to find a collision. Moreover we believe that these

components also provide sufficient resistance against the preimage/second

preimage attacks.

The finalization of Luffa consists of one blank round and an output func-

tion. One blank round is appended in order to be resistant against unknown

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
5

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

future attacks.

The block length of the sub-permutations is chosen to be suitable for

256, 384 and 512 bits hash length. It is possible to choose the shorter block

length, however all sub-permutations must be different each other so that

too small block length is not practical. In addition, a bit slice permutation

has more flexibility in the design if the block length is large. Therefore 256

bits is chosen as a block length of a sub-permutation.

2.2 Non-Linear Permutation

The sub-function of Luffa adopts a bit slice substitution permutation network

(SPN). The reasons to choose an SPN more than a look up table (LUT) based

function are as follows:

• If the CPU design is evolved, the throughput increases.

• A cipher consisting of logical operations is believed to be secure against

cash timing attacks.

• It seems easier to implement compared to LUTs.

The first is the main reason to adopt a bit slice permutation. For example,

four SubCrumb can be executed at once with the SSE instructions of Intel

Core2 processors and the throughput is much faster than the code with 32-

bit instructions only.

2.2.1 Sbox in SubCrumb

Serpent [4, 9] and Noekeon [12] are typical examples of a bit slice block cipher

and they adopt Sboxes of 4 bits input/output.

In the proposal of Serpent, the designers explained the eight Sboxes are

almost randomly generated and ones satisfying good differential/linear prop-

erties are chosen. In addition, those representation as Boolean functions

should have the highest degree, namely three. The efficiency of the imple-

mentations is not well considered. Osvik proposed an efficient method to find

a good sequence for a given Sbox on Intel 586 processors [24]. In his experi-

mental results, S2 of Serpent is the fastest, the number of instructions is 16

and it can be executed in 8 cycles. Note that his method is not exhaustive,

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
6

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

so that resultant sequence might not be optimal. In addition, how to choose

the optimal Sbox in software implementation is not clarified in his approach.

On the other hand, the Sbox of Noekeon is defined as a sequence of

instructions by nature. Noekeon is intended to have symmetric property,

i.e., the encryption and the decryption can be done by the same function.

The reason to design the Sbox in this manner might be that the Sbox and

the inverse must be equal. Unfortunately, the given set of instructions of

Noekeon’s Sbox is not suitable for software implementations.

Our approach to design the Sbox is similar to Noekeon. In other words,

it is defined by the sequence of instructions to have a desirable property such

that the implementation on Intel Core2 Duo processors is optimal. By simple

thought experiment, we believe that at least five cycles are needed in order to

achieve optimal differential/linear probability. In fact, we found a few Sboxes

satisfying those properties. The smallest Sbox consists of 9 instructions and

it is executable in 5 cycles.

The Sbox chosen for Luffa consists of 16 instructions and it is executable

in 6 cycles1. It seems to have some good properties as follows:

• The maximum differential probability is 1/4.

• The maximum linear probability is 1/4.

• It has no fixed point.

• The degree of the Boolean representation is 3 for all output bits.

2.2.2 MixWord

The linear diffusion layer of the sub-permutation of Luffa consists of XORings

and rotations in the same way as Serpent and Noekeon. Those Sboxes do

not mix bits at a different bit position in a word, but mix bits at a same bit

position in different words, so that the linear diffusions are intended to mix

the bits at different bit positions.

Different from those 128-bit block ciphers, the linear diffusion of Luffa is

required to mix the outputs of different SubCrumb. In order to achieve these

1 The Sbox of Luffa v2 is different from that of Luffa v1. Please refer to [29] for the
reason to change the Sbox

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
7

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

requirements, a traditional Feistel ladder with rotations is chosen, where

the inputs are xk and xk+4. The rotations are removed from the rundles

of the ladder to execute an XORing and a rotation in parallel in software

implementations. The number of iterations is chosen to be four because we

believe that the weight of the non-linear mixing should be nearly equal to

that of the linear diffusion.

Now we are going to explain how to choose the rotations σ1, σ2, σ3 and

σ4. Firstly, the linear code given by the iteration of MixWord is considered.

Let A be the representation matrix of MixWord and Gn = I||A|| · · · ||An be

the generator matrix of a code. We searched for the lowest weight code word

generated from low weight inputs. Most of the candidates seems to have the

same diffusion property for n ≤ 4, and the chosen parameter shows the best

property.

Next, the polynomial representation of MixWord is considered. An XOR-

ing and a rotation can be represented as the operations on a polynomial ring

GF(2)[t]. Let the two input words be a(t) and b(t), then the output is given

by

a′(t) = (1 + tσ1 + tσ2 + tσ3 + tσ1+σ3)a(t) + (1 + tσ2 + tσ3)b(t),

b′(t) = tσ4(1 + tσ1 + tσ2)a(t) + tσ4(1 + tσ2)b(t).

It is clear from the equations that the branch number of MixWord is upper-

bounded by six (In practice, it is five).

The notable input is (0, b) and the corresponding output becomes (a′, 0)

if b(x)(1 + xσ2) = 0, i.e. b should have a zero divisor. Such a differential

path with small number of active Sboxes is not desirable from the security

viewpoint. The lowest Hamming weight of such inputs b is given by 32/p,

where σ2 = 2p(2τ+1). In addition, the Hamming weight of the corresponding

output (a′, 0) is also 32/p. This fact indicates that the factor of 2 in σ2 should

be small.

On the other hand, we restricted the parameters σ1, σ2 and σ3 to be even

in order to make it feasible to search for the best (truncated) differential path

for 4 steps. Then a step of MixWord does not mix odd bits and even bits.

In other words, the transformation can be separated into two independent

functions. Note that the above choice might reduce the diffusion property in

general. σ4 should be odd in order to mix odd bits and even bits at the next

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
8

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

step.

Throughout the above process, a set of parameters σ1 = 2, σ2 = 14, σ3 =

10, σ4 = 1 is chosen for Luffa.

2.2.3 Constants

The step constants are used for several reasons as follows:

• The sub-permutation Qj MUST be different each other.

• The step function at each step SHOULD be different each other to

prevent slide attacks and to remove fixed points.

• There SHOULD not be a kind of symmetry in the input/output.

From the viewpoint of implementations, it is better to generate the con-

stants by a simple circuit with a fixed starting variable. Therefore we de-

signed a small constant generator with a linear update function for Luffa.

2.2.4 Number of Steps

In order to achieve good throughput comparable to SHA-256, the number of

steps is fixed to 8.

On the other hand, we found the differential path for 8 steps with prob-

ability 2−224, and proved that there is no differential path with probability

more than 2−124. We do not think it is necessary for the sub-permutation Qj

to achieve full security (namely, the maximum differential probability should

be not more than 2−256, etc.). The collision attack based on a differential

path is discussed in Section 3.2.

2.2.5 Tweaks

A tweak is applied in order to differentiate each permutation. And we also

expect that the tweak will break a nature of the message injection function

defined over a direct product ring. Especially, it will become hard to choose

same input differences for the different permutations. The operations are

chosen not to increase the implementation cost in terms of both the size and

the performance.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
9

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 1: The differential profile of the Sbox S
1 2 3 4 5 6 7 8 9 a b c d e f

1 4 0 2 0 2 2 2 2 0 0 0 0 0 0 2
2 0 4 0 0 0 0 0 0 0 0 0 4 4 0 4
3 0 0 2 0 0 0 2 0 0 4 2 2 2 2 0
4 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0
5 0 0 2 0 0 4 2 0 0 0 2 2 2 2 0
6 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0
7 4 0 2 2 0 0 0 0 2 2 2 0 0 0 2
8 0 4 0 0 2 2 0 0 2 2 0 0 4 0 0
9 0 0 2 2 4 0 0 2 0 0 0 2 2 2 0
a 0 4 0 2 0 0 2 2 0 0 2 0 0 4 0
b 4 0 2 0 0 0 2 2 2 2 0 0 0 0 2
c 0 4 0 0 2 2 0 0 2 2 0 0 0 4 0
d 4 0 2 2 2 2 0 0 0 0 2 0 0 0 2
e 0 0 0 0 2 2 0 0 2 2 0 4 0 0 4
f 0 0 2 2 0 0 0 2 4 0 0 2 2 2 0

3 Security Analysis of Permutation

This section shows some known properties of the non-linear permutation Qj.

3.1 Basic Properties

3.1.1 Sbox S (Luffav2)

Table 1 shows the differential probabilities corresponding to input and output

differences. The maximum differential probability of the Sbox S is 2−2.

Table 2 shows the biases of the linear approximation defined by corre-

sponding input and output masks. The maximum linear probability of the

Sbox S is 2−2.

Let x0, x1, x2, x3 and y0, y1, y2, y3 be the 4-bit input and output of the

Sbox. Then the algebraic normal form of the Sbox is given by

y0 = 1 + x0 + x1 + x1x2 + x0x3 + x1x3 + x0x1x3 + x0x2x3,

y1 = x0 + x0x1 + x1x2 + x3 + x0x3 + x1x3 + x0x1x3 + x0x2x3,

y2 = 1 + x1 + x0x2 + x1x2 + x0x1x2 + x3 + x1x3 + x0x1x3 + x2x3,

y3 = 1 + x1 + x2 + x0x2 + x1x2 + x0x1x2 + x0x3 + x1x3 + x0x1x3 + x2x3.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
10

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Note that the number of monomials which appear in the polynomial expres-

sion is smaller than that of a randomly generated Sbox. The polynomial

expression of the Sbox adopted to Luffa v2 has more monomials than the

Sbox for Luffa v1, but it should be noted that y0 + y1, y2 + y3 are still very

sparse. We have not found any practical attack on Luffa v2 using this prop-

erty. The higher order differential attack on Luffa v2 is studied in Section 3.4.

3.1.2 Differential Propagation

It is easy to see that the branch number of MixWord is 5. We confirmed that

the minimum number of active Sboxes of 4 steps is 31. Therefore the maxi-

mum differential characteristic probability (MDCP) of Qj is upper bounded

by 2−124. The MDCP of 4 steps is estimated by the exhaustive 4-bit-wise

truncated differential path search, but the direct path search for more than

4 steps is computationally infeasible.

We also searched for the good differential path for 8 steps to get close

to the real bound. We consider only the case that the output differences

of Sboxes at different positions in the same step are equal. Under this as-

sumption, the search for a good differential path of the permutation Qj is

equivalent to search for a low weight code word of the linear code defined by

Table 2: The linear profile of the Sbox S
1 2 3 4 5 6 7 8 9 a b c d e f

1 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0
2 2 2 0 0 2 2 4 4 2 2 0 0 2 2 0
3 2 2 0 4 2 2 0 0 2 2 4 0 2 2 0
4 2 2 0 2 4 0 2 2 0 0 2 4 2 2 0
5 2 2 0 2 0 0 2 2 4 0 2 4 2 2 0
6 0 4 0 2 2 2 2 2 2 2 2 0 0 0 4
7 0 0 0 2 2 2 2 2 2 2 2 0 0 4 4
8 0 0 4 2 2 2 2 2 2 2 2 0 0 4 0
9 0 4 4 2 2 2 2 2 2 2 2 0 0 0 0
a 2 2 4 2 0 4 2 2 0 0 2 0 2 2 0
b 2 2 4 2 0 0 2 2 0 4 2 0 2 2 0
c 2 2 0 0 2 2 0 0 2 2 0 4 2 2 4
d 2 2 0 0 2 2 0 0 2 2 0 4 2 2 4
e 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0
f 4 0 0 0 0 0 4 0 0 0 4 0 4 0 0

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
11

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

the iteration of MixWord (See Section 2.2.2 in detail for the definition of this

code). We applied Leon’s probabilistic algorithm [23] to find a low weight

code word and Table 3 shows the best differential path so for.

Table 3: The best known (truncated) differential path
0 00000000000100000000111101010100 00000100000101000100010100010100 16
1 00000111000010000011011000000000 00101101101010001110110000100010 22
2 00000000000000000000000001010000 00000000000100010001000100010100 8
3 00000000000000000000000000000000 10001000100000000010000000000000 4
4 10000000000000000000000000000010 00000001000000000000010001000001 6
5 10000000000000011100001000001101 00000000001000011100100000010011 16
6 00011110101010000000000000100000 00000101010000010100010001000001 16
7 00010101010000101000011110011110 01100000101000100000010000110110 24

The most left column in the table means the step so that r-th line (count-

ing from 0) means the 4-bit-wise truncated differences which is input to the

r + 1-th step function. The most right column means the number of ac-

tive Sboxes at each step. The above path has 112 active Sboxes in total so

that the differential characteristic probability of the path is 2−224. It should

be remarked that 8 step functions cannot be considered a perfect random

permutation.

Table 4: The best known differential probabilities
Number of steps Diff. probability

4 ≤ 2−62

5 2−100

6 2−144

7 2−176

8 2−224

The best known differential characteristic probabilities up to 8 steps are

summarized in Table 4. Note that the best known differential paths for more

than 4 steps is a part of the 8 steps differential path. The line 2-6, line 1-6,

0-6 in Table 3 correspond to the probability for 5, 6, 7 steps respectively in

Table 4.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
12

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

3.2 Collision Attack Based on A Differential Path

Here we discuss a differential based collision attack consisting of two mes-

sage blocks. In other word, how to find a message pair (M (i), M (i+1)) and

(M (i) ⊕ ∆(i),M (i+1) ⊕ ∆(i+1)) such that MI(Round(H(i−1),M (i)),M (i+1)) =

MI(Round(H(i−1),M (i) ⊕∆(i)), M (i+1) ⊕∆(i+1)) and the cost are discussed.

3.2.1 General Discussion

Let pj be the maximum differential characteristic probability of Qj and p =

maxj pj. If some input bits are chosen adequately, the differential probability

with the condition tends to be higher than p. This technique is well-known

as a message modification in general. In order to simplify the discussion, we

assume that a bit constraint of an input improves the differential probability

double, i.e., the differential characteristic probability under m bits constraints

is assumed to be 2m · p. Note that this is hard to happen in practice because

some of the constraints are often conflictive with the others.

The attack with messages of two rounds requires all the output differences

of Qj are not zero. Algorithm 1 describes the procedure of the attack.

Algorithm 1 Differential based collision attack

Step 1 Choose a good internal state H(i−1) (which can satisfy constraints
as many as possible) by moving M (i−1) randomly.
Step 2 Choose a part of the message block M (i) to satisfy constraints.
Step 3 Move the rest of the message block M (i) and check if the output
differences are equal. If not, go back to Step 1.

Let Hpre, Mpre and Monline be the numbers of messages to be used in

Step 1, 2 and 3 respectively. Let Honline be the number of iterations of

the whole procedure. The differential probability under the constraints is

roughly given by pw · Hpre · Mpre and the total number of trials is given

by Honline · Monline. Then an inner collision will be found if the following

inequality is satisfied:

pw · (Hpre ·Mpre)(Honline ·Monline) ≥ 1.

The calculation complexity of the attack is given by Honline(Hpre + Monline)

and it should be smaller than 2
w−1

4
nb for the attack being faster than a

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
13

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

birthday attack to find a collision of outputs. Therefore Hpre · Honline <

Honline(Hpre + Monline) ≤ 2
w−1

4
nb is the necessary condition. In addition,

Mpre · Monline is upper-bounded by 2nb . Therefore the lower bound of the

maximum differential characteristic probability of Qj (for a successful at-

tack) is given by

p ≥ 2−
nb
4

(1+ 3
w

).

For w = 3, 4, 5, p ≥ 2−128, 2−112, 2−102.4 are the necessary conditions respec-

tively.

Finding an inner collision should be also considered because an inner

collision can be used to find a second preimage and preimage as well as to

find a collision for sponge variants. The discussion for the inner collision can

be done in the same manner. In this case, the collision attack is successful if

the number of operations is less than 2nb(w−1)/2. Therefore p ≥ 2−170.7, 2−160,

2−153.6 are the necessary conditions for w = 3, 4, 5 respectively.

The currently known best differential characteristic probability of Qj is

2−224 and the tweaks will make it difficult to find a tuple of good differential

paths, therefore we believe that Luffa is secure against this attack.

3.2.2 How to Find A Collision for 5 Steps without Tweaks

As an example to find an inner collision in practice, we describe a naive

attack for 5 steps using the line 1-5 in Table 3. In order to simplify the

discussion, we ignore the influences of the multiplications in the message

injection function and the tweaks. In addition, we consider only Luffa-256,

i.e., w = 3.

Before starting the attack, the bit-wise differences should be chosen and

we can easily find an iterative sequence of differences (0x1 → 0x1) and

(0x2→ 0x2) from Table 1. A 4-bit data aj,3,l||aj,2,l||aj,1,l||aj,0,l (or aj,7,l||aj,6,l||aj,5,l||aj,4,l)

are called a crumble in the following. Let us consider the crumbles corre-

sponding to ones (we call them active crumbles) in the difference at the line 1.

If all the input bits to these Sboxes are chosen to be adequate, then the input

differences 0x1 are mapped to 0x1 with probability 1. Each input to a crum-

ble should hold two bits of constraints in order to satisfy the above condition.

In Step 1, the attacker tries to find a state H(i−1) whose active crumbles sat-

isfy constraints. The number of constraints here is 22 · 2 · 3 = 132. In Step 2,

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
14

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

the attacker chooses a message M (i) such that the above mentioned 4-bit

crumbles are all zero. The number of constraints in this step is 22 · 4 = 88.

Now the attacker has 256− 88 = 168 bits freedom in the message M (i). On

the other hand, there are still (8+4+6+16) ·3 = 102 active Sboxes, so that

2204 trials are needed to find an input pair which follows the differential path.

Therefore 2204−168 = 236 iterations of whole steps are needed. As a result,

the total complexity of the attack is estimated at 236(2132 + 2168) ≈ 2204.

We expect that more detailed analysis such as the message modification

at the next step certainly reduces the calculation complexity of the attack

on 5 steps without tweaks, and may allow to attack 5 steps with tweaks

or 6 steps. But the rough estimate in Section 3.2.1 tells that this kind of

approach never reach to more than 6 steps. A multiple differential path

search also helps to improve the attack, but we think the attack on 7 steps

is hard to expect.

3.3 Birthday Problem on The Unbalanced Function

The standard birthday problem assumes that the underlying set is uniformly

distributed. Bellare and Kohno discussed the birthday problem for unbal-

anced distributions and proved that the collision happens more often if the

underlying distribution is not uniform [6]. The “non-randomness” of the

permutation Qj may tempt to apply their result to Luffa. Though the dis-

tribution of the outputs of the differential of Qj is not uniform, to find a

collision is equivalent to find a preimage of zero in the differential of Qj.

Therefore we believe that the application of the result on the unbalanced

birthday problem is not possible.

3.4 Higher Order Differential Distinguisher

NIST requires the SHA-3 Candidates to support the random number gen-

eration defined in SP 800-90 [14]. Therefore the deterministic random bit

generator (DRBG) which adopts SHA-3 Candidates is necessary to indistin-

guishable from a random function.

On the other hand, a hash function does not have an additional input

other than a message so that it is not a pseudorandom function. The random

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
15

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

distribution of the output is not a necessary condition for a collision resis-

tance. However, non-random distribution of the output of the hash function

is considered an undesirable property for applications mentioned above.

In this section, we study the randomness property of Luffa and the un-

derlying permutation Qj. We use the terminology distinguisher for functions

which detect a kind of non-randomness according to [2]. Note that a dis-

tinguisher is usually a terminology for a function which distinguishes two

random variables.

3.4.1 Higher Order Difference

An application of a higher order difference to cryptanalysis is suggested by

Lai [22] and firstly applied to a block cipher by Knudsen [20]. Here we briefly

introduce the definition of higher order difference and its basic property.

Let Y = E(X; K) be a function where X ∈ GF(2)n, Y ∈ GF(2)m and

K ∈ GF(2)s. Let {A1, . . . , Ai} be a set of linearly independent vectors in

GF(2)n and V (i) be the sub-space spanned by these vectors. The i-th order

difference is defined by

∆V (i)E(X; K) =
∑

A∈V (i)

E(X + A; K).

In the following, ∆(i) denotes ∆V (i) if the choice of V (i) does not matter

in the discussion. The basic fact of the higher order difference is that

∆(D+1)E(X; K) = 0 if the algebraic degree of E with respect to X is D.

Therefore the higher order difference is uses as the tool to evaluate the alge-

braic property, especially the degree of the target function.

3.4.2 Higher Order Differential Attack on Luffav1

Here the higher order differential distinguishing attack on step-reduced vari-

ant of Luffa v1 is introduced. Please refer to [30] for the detailed attack.

First of all, we found that the algebraic degree of the underlying non-

linear permutation Qj grows slower than an ideal case. In addition, we

found that there are very efficient distinguishers for the step-reduced variant

of Luffa v1. According to our theoretical estimate, we can construct distin-

guishers for step-reduced variants of Luffa v1 up to 7 out of 8 steps by using

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
16

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

a block message. The expected degrees of the distinguishers are summarized

in Table 5.

Table 5: The summary of the algebraic degrees of distinguishers for Luffa v1
Number of steps 1 2 3 4 5 6 7 8

Degree – 2 5 13 33 84 214 545

Table 5 indicates that the algebraic degree of the distinguisher for 7 steps

is expected 214 and the distinguisher requires 2216 inputs. This distinguisher

can be extended to the step-reduced variant of the hash function by the

careful choice of the messages without an extra cost because the hash value

for a block message is just the XORing of the outputs of Qj in Luffa v1.

3.4.3 Higher Order Differential Property of Qj of Luffav2

Now we consider the resistance of Luffa v2 against the higher order differen-

tial attack. Table 6 shows that the theoretical estimates of algebraic degrees

of distinguishers for Qj. In the estimation we ignore the influence of the

shuffling of the order of the input words to SubCrumb because it make the

estimate very difficult. In other words, we estimated the weakened variant

of SubCrumb in which the order of the input words are the same as that of

Luffa v1, namely,

SubCrumb(a[0],a[1],a[2],a[3]);

SubCrumb(a[4],a[5],a[6],a[7]);

Table 6: Algebraic degrees of distinguishers for weakened Luffa v2
Number of steps 1 2 3 4 5 6 7 8

Degree – 2 5 13 35 94 252 675

Next we estimate the success probability of the distinguishing attack by

the computational experiments. We move only bits in a[0] so that a bit

per an Sbox is varying. In other words, we applied t-th order difference by

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
17

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

moving the most least t bits of the variable x
(0)
0 . The distinguisher can skip

the effect by the SubCrumb in the first step by this choice of varying bits.

As mentioned in Section 3.1.1, y0 + y1, y2 + y3 are of low degrees so that

it is expected that x
(r)
k + x

(r)
k+1 for k = 0, 2, 4, 6 are useful distinguishers.

Table 7 summarizes the experimental results for up to 5 steps. The nu-

merical values in the table shows the ratio such that one of the equations

x0 = x1, x2 = x3, x4 = x5, x6 = x7 holds. In other words, the values

means the ratio of the distinguishing attack being successful. We calculated

each higher order difference for 100 times by generating the initial states

randomly. Besides, the values in the parentheses shows the ratio for the

weakened variant of SubCrumb mentioned above.

3.4.4 Higher Order Differential Attack on Luffav2

Table 6 indicates that the distinguishing attack on 7 step functions is still

possible if only the Sbox is replaced. However, Luffa v2 always applies a

blank round in the finalization so that it has sufficient security margin. In

addition, Table 7 indicates that the shuffling of the order of input words to

SubCrumb make the attack more difficult. As a consequence, we believe that

the higher order differential attack does not threaten the security of Luffa v2.

4 Security Analysis of Chaining

In this section, the underlying permutations are assumed to be random and

the security of the chaining of Luffa is discussed. We found a generic attack

to find an inner collision which queries to the permutation Qj only 2
w−1
w+1

nb

times. Therefore we cannot claim that Luffa has sufficient security in terms

of the current stream of security proof concerning only the number of queries

to a random function. On the other hand, all of the attacks we considered

require not less than 2
w−1

2
nb calculations. We believe that none of the attacks

threatens the practical security of Luffa.

At the beginning of this section, the basic properties of the message in-

jection functions are given.

After that, three generic attacks to find an inner collision are presented.

Finding an inner collision of a sponge function yields a second preimage and

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
18

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 7: Experimental results
Number of steps

Order 1 2 3 4 5

1 1.00 (1.00) .05 (.10) .00 (.00) .00 (.00) .00 (.00)
2 1.00 (1.00) 1.00 (1.00) .00 (.02) .00 (.00) .00 (.00)
3 1.00 (1.00) 1.00 (1.00) .05 (.28) .00 (.00) .00 (.00)
4 1.00 (1.00) 1.00 (1.00) .23 (.56) .00 (.00) .00 (.00)
5 1.00 (1.00) 1.00 (1.00) .76 (.96) .00 (.00) .00 (.00)
6 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00) .00 (.00)
7 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.01) .00 (.00)
8 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.01) .00 (.00)
9 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.04) .00 (.00)
10 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.46) .00 (.00)
11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.78) .00 (.00)
12 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.91) .00 (.00)
13 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .01 (1.00) .00 (.00)
14 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .01 (1.00) .00 (.00)
15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .09 (1.00) .00 (.00)
16 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .18 (1.00) .00 (.00)
17 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .34 (1.00) .00 (.00)
18 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .53 (1.00) .00 (.00)
19 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .73 (1.00) .00 (.00)
20 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .86 (1.00) .00 (.00)
21 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .97 (1.00) .00 (.00)
22 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .99 (1.00) .00 (.00)
23 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)
24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)
25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)
26 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)
27 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.01)
28 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.00)
29 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.03)
30 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.05)
31 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.07)
32 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) .00 (.16)

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
19

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

preimage as well as a collision, same applies to Luffa. Therefore, Luffa is

not secure if there is an attack to find an inner collision whose calculation

complexity is less than 2
w−1

2
nb .

All attacks presented in this section concern an inner collision, but the

conditions assumed for the message injection functions MI are different. The

first attack does not require any property to the message injection function

more than a surjectivity. The second attack is adjusted to Luffa. The third

attack is applicable only to very simple message injection function, and does

not threaten the security of Luffa itself. However, this attack illuminate

the necessary condition for the message injection function so that we also

describe the attack. The expected number of queries and the computational

complexities required for the attacks are summarized in Table 8.

Table 8: The complexity of generic attacks

MI
Num. of queries
(exponent of 2a)

Calc. complexities
(exponent of 2a) Section

Any w−1
w

nb
w−1

2
nb 4.2

Luffa w−1
w+1

nb ≥ w−1
2

nb 4.3

XORings nb

2
nb

2
4.4

In the last of this section, the security of the finalization process is dis-

cussed.

4.1 Basic Properties of The Message Injection Func-
tions

The message injection functions of Luffa are defined over a direct product

ring GF(28)32. They have branch numbers 4, 5, 6 for w = 3, 4, 5 respectively.

On the other hand, they have a kind of “non-diffusing” property as follows.

Let a be any 32-bit data and n be a non-negative integer less than 32. A 32-

bit data concatenating 32−n bits consecutive zeros and the least significant

n bits of a is denoted by 0||a[n]. For a 256-bit data X = (x0, . . . , x7), 0||X[n]

is defined by (0||x0[n], . . . , 0||x7[n]). Then the message injection function

MI satisfies LHj(0||H(i−1)[n]) ⊕ LMj(0||M (i)[n]) = 0||X[n] for all j and n,

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
20

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

where X is an nb bit data. This property is used in the attack described in

Section 4.3.

4.2 First Naive Attack

The first attack does not require any special property to the message injection

function. The attack requires about 2
w−1

w
nb queries to each permutation Qj,

and also requires to estimate 2
w−1

2
nb intermediate states. Nevertheless the

number of required queries is small, the latter calculations seem dominant so

that we believe that this attack does not threaten the practical security of

Luffa.

4.2.1 Long Message Attack to Find An Inner Collision

Let us denote the transformation by the message injection function MI by

Xj = LHj(H
(i−1))⊕ LMj(M

(i)), 0 ≤ j < w.

If LMj are surjective, then there are subspaces Vj over GF(2) of dimension

dw−1
w

nbe such that for any state H(i−1) there is a message M (i) such that

Xj ∈ Vj for all j.

At the pre-computation phase, the attacker queries elements of Vj to Qj,

then the queries and the corresponding answers are stored. After that, he

chooses an adequate message block M (1) such that LHj(H
(0))⊕LMj(M

(1)) ∈
Vj for 0 ≤ j < w, then he accesses to the storage in order to get the next

state H(1). Iterations of this process generates amount of intermediate states

without an extra query to Qj. An inner collision will be found if the number

of intermediate states becomes more than (2d
w−1

w
nbe)

w
2 ≈ 2

w−1
2

nb because all

the outputs of the message injection function MI are included in
∏w−1

j=0 Vj.

In terms of the number of queries, the attack requires 2d
w−1

w
nbe queries to each

permutation Qj.

4.2.2 How to Reduce The Message Length

The attack in Section 4.2.1 requires a message of about 2
w−1

2
nb block length.

However, an attack applicable to shorter messages is more attractive in prac-

tice and the message length is upper bounded by 264 bits for Luffa-224 and

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
21

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

-256, and is upper bounded by 2128 bits for Luffa-384 and -512 respectively.

Here we show how to reduce the message length drastically with a negligibly

small additional cost.

Assume that the attacker allows V0 to be 1 dimension larger. Then it is

possible to find two messages such that LHj(H
(i−1)) ⊕HMj(M

(i)) ∈ Vj for

0 ≤ j < w. This approach allows the attacker to construct a binary tree

of intermediate states instead of a long sequence. If the depth of the tree

becomes larger than w−1
2

nb, i.e., the length of any chain in the tree is not less

than w−1
2

nb, then it includes 2
w−1

2
nb states.

Note that this idea is applicable without an additional cost in the case of

Luffa-256 and Luffa-512, because nb = 256 is not divisible by w = 3 nor 5.

4.2.3 Complexity of The Naive Attack

The presented attack requires a huge memory of size w·2w−1
w

nb and accesses to

the memory w ·2w−1
2

nb times. If a memory access is much faster than a query

to the permutation Qj, the attack can violate the security claimed for Luffa.

However, a memory access is very slow in general and a faster memory access

such as a cache memory is very expensive. In addition, the required time to

reach an objective memory address increases as the size of the memory gets

larger. On the other hand, only 500 instructions are necessary to calculate

the output of the permutation Qj. We believe an access to such a huge

memory is not less costly than a direct calculation of the permutation.

4.3 Meet-In-The-Middle Attack on Luffa

Next, a meet-in-the-middle (MIM) attack using a kind of non-diffusion prop-

erty of the message injection function of Luffa is presented. The attack

requires about 2
w−1
w+1

nb queries to each permutation Qj, and also requires to

apply the MIM (2
w−1
w+1

nb)
w−1

2 times. The total calculation complexity of the

second attack is considered not less than 2
w−1

2
nb .

4.3.1 Attack Description

Here we use the notations defined in Section 4.1. In addition, the concate-

nation of any 32 − n bits and the least significant n bits of a is denoted by

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
22

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

MI Q1

Qw - 1

Q0a0 [lw]

aw - 1 [lw]

a1 [lw]

*

*

**| |Vw - 1 [lw]

* | |V1 [lw]

* | |V0 [lw]

* | |0[lw]

MI

*

*| |Vw - 1 [lw]

* | |V1 [lw]

* | |V0 [lw]

Q1

Qw - 1

Q0
*

*

*

*

*

*

M (i) =

Step 1-1

Step 1-2 Step 1-3
Step 1-4
(MIM)

H (i - 1) H (i +1)

M (i +1) =

Figure 1: The first step of the meet-in-the-middle attack

∗||a[n] and ∗||X[n] is also defined in the similar manner.

Let lw be an integer nb − dw−1
w+1

nbe. Then the procedure of the attack is

given in Algorithm 2 and Figure 1 shows the step 1 of the attack. It describes

a long message attack, but a modification for the shorter message is possible

in the similar manner to the first attack.

4.3.2 Complexity of The MIM Attack

Let q be the maximum number of queries to Qj in Step 1-2 and 1-3. A inner

collision is found if q · qw · 2nb ≥ (2nb)
w
2 , so that q ≥ 2

w−1
w+1

nb is necessary.

Step 2 is almost same as the long message attack presented in Section 4.2.

Only the difference is to use the states generated in Step 2-3. The states are

of the form (V0, ∗||X1[lw], . . . , ∗||Xw−1[lw]), where Xj[lw] are constants, so

that (2d
w−1
w+1

nbe)
w−1

2 states are necessary to find an inner collision and it is still

smaller than 2
w−1

2
nb .

On the other hand, the total complexity of the attack becomes larger

because the calculation complexity of Step 1 is not negligible any more. Let

H be the set consisting of inputs to MI in Step 1, Xj be the set of the

j-th output blocks. The calculation complexity to find a collision such that

LHj(H
(i−1))⊕LMj(M

(i)) = Xj for 0 ≤ j < w is not less than the maximum

size of the sets H and Xj because H, Xj are random sets. Therefore the

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
23

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Algorithm 2 Meet-in-the-middle attack for Luffa

Step 1: MIM to find a connection
1-1 (Upper side): Fix a state H(i−1) = (∗||V0[lw], . . . , ∗||Vw−1[lw]).
1-2 (Upper side): Move M (i) = ∗||0[lw] and query M (i) to each Qj to
generate inputs of MI at i + 1-th round.
1-3 (Bottom): For 0 ≤ j < w, move ∗||Vj[lw] and query to Q−1

j to
generate outputs of MI at i + 1-th round.
1-4 (MIM): Move M (i+1) and find an inner collision such that
Qj(LHj(H

(i−1))⊕ LMj(M
(i))) = Yj for all j.

Step 2: Long message attack
2-1: Set i = 1.
2-2: Set H(0) = (V0, . . . , Vw−1).
repeat

2-3: Apply the MIM in Step 1 at round i. Let H(i+1) = (Y0, . . . , Yw−1)
be the resultant state.
2-3: Choose M̃ (i+2) = ∗||0[lw] such that LH0(H

(i+1))⊕ LM0(M̃
(i+2)) =

V0. Note that this state S(i+1) = MI(H(i+1), M̃ (i+2)) is a “sprig” in the
chain.
2-4: i = i + 2.

until An inner collision happens in {S(i+1)}i

complexity of Step 1 is at least 2
w−1
w+1

nb .

The following algorithm shows a natural approach to find an inner colli-

sion in Step 1 and it requires 2
2(w−1)

w+1
nb calculations.

Algorithm 3 How to find a inner collision in Step 1-4

1-4-1: Choose any H(i−1) ∈ H and X0 ∈ X0.
1-4-2: Choose a message M (i) ∈ M such that X0 = LH0(H

(i−1)) ⊕
LM0(M

(i)).
1-4-3: Check if LHj(H

(i−1)) ⊕ LMj(M
(i)) ∈ Xj for 1 ≤ j < w. If yes,

output H(i−1),M (i). Otherwise go back to Step 1-4-1.

The above discussion concludes that the total complexity of the second

attack is not less than 2
w−1
w+1

nb · (2dw−1
w+1

nbe)
w−1

2 ≈ 2
w−1

2
nb . Therefore this attack

does not threaten the practical security of Luffa.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
24

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

4.4 An Application of The Multicollision Attack on A
Weakened MI

In this section, an generic attack more effective than that described in Sec-

tion 4.2 and 4.3 is presented. The attack is applicable only to the chaining

with weak message injection function MI and it is not applicable to Luffa.

But this attack indicates the necessity of a strong mixing function for MI.

The message injection function MI of the variant is defined by

Xj = H
(i−1)
j ⊕M (i), 0 ≤ j < w.

A remarkable point of this variant is that each line is totally independent

from others until the finalization is applied. The basic idea of the attack is

finding a collision for each block independently.

4.4.1 Attack Description for w = 3

In order to simplify the explanation, the width w is fixed to three. The

applications in the case of the larger width are considered later.

The first step of the attack is finding a partial collision of first two blocks,

consisting of two round inputs M (i),M (i+1), where the second message block

M (i+1) is chosen to cancel the difference of M (i). After that a birthday attack

by randomly chosen M (i) is applied to the second block. The calculation

complexity of this step is approximately given by that of the birthday attack

at the second block, so that it is about 2
nb
2 queries to the permutation Qj.

The next step is constructing a partial collision chain of length nb

2
, i.e.,

the chain consists of nb rounds. Then the attacker gets 2
nb
2 states whose first

2 blocks are all equal so that there will be a collision at the third block. This

is an application of the multi-collision technique proposed by Joux [19].

4.4.2 Extension to w > 3

The vulnerability is caused by the fact that the intermediate values of each

block can be independently calculated. This property holds even for w > 3,

so that recursive application of the multi-collision technique is possible. For

example, the multi-collision chain consists of (nb

2
)2 partial collisions allows to

find a collision for w = 4. Both the number of queries to the permutation Qj

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
25

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Q1

Qw - 1

Q0H (i - 1)
0

H (i - 1)
1

M (i) M (i +1)

*

0

0

0

0

* *

birthday attack
of the differences

∆
2

∆
2∆

1

∆
1

∆
3

* *

∆
1

Q1

Qw - 1

Q0

*

H (i +1)
0

H (i +1)
1

0

0

*

H (0) H (1) H (2) H (i - 1) H (i +1)H (i)

Figure 2: Partial collision chain for the weakened message injection

and the computational complexity are nw
b · 2

nb
2 for any w. The complexity of

the attack increases if w becomes large, but very slowly.

4.5 Collision, Second Preimage, And Preimage

Bertoni et al. proved that the best attack on a sponge function is to find

an inner collision [8]. And to find a collision of outputs, a second preimage,

and a preimage all belong to the inner collision. We believe that it is also

the case for Luffa and we have not found any serious attack to find an inner

collision even though Luffa has no security proof so far. Therefore we think

Luffa has the sufficient collision resistance, second preimage resistance, and

preimage resistance.

4.6 Security Analysis of Finalization

4.6.1 Saturation Property of Luffav2

A saturation attack (or Square attack) was originally proposed by Daemen

et al. as the dedicated attack on a block cipher Square [11]. The basic idea

of the attack is similar to truncated differential attack, but it uses another

property preserved by a permutation mapping. Assume that the attacker

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
26

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

takes all possible inputs and gets the outputs of the permutation. Then the

sum of outputs becomes zero.

The message injection function MI and the consecutive permutations Qj

preserves this property. The output function OF also preserves the property.

If there is no blank round and the attacker can take all values of the last

message block, the sum of the outputs becomes zero. This is a kind of

distinguisher and requires 2nb calculations. However, a blank round is always

applied in Luffa v2 so that the saturation property does not hold after the

blank round.

4.6.2 Slide Attack

A slide attack was originally proposed by Biryukov and Wagner [10] for block

ciphers whose key scheduling is simple. Gorski et al. pointed out a slide

attack is applicable under the keyed hashing context [16] and showed that it

can break some sponge-like hash functions. Their attack is applicable if the

round function is very thin and the finalization is not well considered. In the

case of Luffa, the round function is much stronger than that of the broken

sponge variants. In addition, the message padding and the fixed message

inputs to a blank round are defined to avoid the sliding property. Therefore

we believe that a kind of slide attacks does not threaten the security of Luffa.

5 On The (Semi-)Free-start Setting

In this section, (semi-)free-start setting on sponge variants is discussed. A

free-start setting assumes that the attacker can choose the IVs which are

usually fixed and a semi-free-start setting assumes that the attacker can

choose only an IV in his attack. These settings relax the constraints for

the attacker so that they are considered a useful step to study the security

of a hash function. Especially, (semi-)free-start attacks on the underlying

primitive are taken seriously if the target hash function is a compression

function based design.

In this case, the security of the chaining usually depends on that of the

underlying compression function. And the free-start setting is natural in

terms of the security of a compression function because the constraints to

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
27

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

control the chaining value are derived from the usage of the compression

function.

In Round 1 of the SHA-3 competition, several (semi-)free start attack on

the compression functions were proposed. In addition, some reports discussed

the security of sponge based hash function under (semi-)free-start setting.

However, a sponge function and its variants are permutation-based designs,

so that they are not secure even if the underlying primitives are assumed

ideal. For example, a collision and a preimage can be easily found with

negligible calculation complexity for the ideal model of a sponge function.

From this natural property of the sponge function, we think that it is

not important to discuss the security of a sponge function and its variants

under (semi-)free-start setting. And it might be better to note that the IV

of sponge variants should not be variable in their applications.

In the case of Luffa, Jia proposed a free-start (second) preimage attacks

[18]. As claimed above, we consider his attacks do not threaten the practical

security of Luffa under the normal setting.

And it might be better to note that Luffa is not secure under semi-free-

start setting. In this case, the attacker can choose the inputs to the permuta-

tions Qj independently so that the generic semi-free-start collision attack on

Luffa is trivially reduced to search for a multi-collision of nb-bit data. There-

fore the computational complexity of the attack is upper-bounded by 2
w−1

w
nb

and it is smaller than the birthday bound in the case of w = 5. Namely, the

computational complexity in this case is 2(5−1)/5256 = 2204.8 < 2512/2.

In addition, the discussion in 3.2 assumes a normal setting, i.e., the IV is

fixed. Therefore the calculation complexities of the differential based collision

attacks and a kind of rebound attacks under semi-free-start setting could

be smaller than what we expect. However, we believe these semi-free-start

attacks does not threaten the security of Luffa under the normal setting,

which are required by NIST.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
28

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

6 Implementation Aspects

6.1 Performance Figures for Software Implementations

Here, we show the software performances of the Luffa v2 hash family. The

hash family was implemented on several processors; the Intel Core2 [17], the

Atmel AVR [1], Renesas H8 [25] and ARM ARM9 [5] processors. We have

evaluated the speed and memory usage of the hash family on the processors.

As for speed performance, we have measured two types of figures; exe-

cution time to hash a one-block message and execution time to hash a very

long message. For the former, “one-block” means that the padded message

consists only of a 256-bit block. That is, the length of the original message

is no more than 255 bits. For the latter, the length of the message is set to

be so large that a contribution of the finalization function to a throughput

speed is negligible. More precisely, the figure is the execution time of an

invocation of the round function divided by 32.

6.1.1 8-bit Processors

Luffa has been implemented for the Atmel AVR processor and the Renesas

H8 processor in assembly languages.

Atmel AVR Processor Our target processor model is ATmega8515. The

processor has 8192 bytes of flash memory and 512 bytes of SRAM. We used

Atmel’s AVR Studio as a development environment and measured execution

time on the AVR Simulator of ATmega8515 bundled with the AVR Studio.

The execution time and memory requirements of an assembly code are

shown in Table 9. In the table, the second column lists the execution time

to hash a one-block message. The third column lists the execution time to

hash a very long message. The fourth and fifth columns are for the sizes of

the implementation. There is no setup of the algorithm in Luffa, hence the

setup time is zero.

Renesas H8 Processor Our target processor model is H8 38024F (H8/300L

core). The processor has 32 kbytes of flash memory and 1 kbytes of SRAM.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
29

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 9: Execution time and memory requirements on AVR ATmega8515
Execution time Memory requirements

Bit length
of hash value

One-block msg.
(cycles/message)

Very long msg.
(cycles/byte)

Code size
+ constant data

(bytes)
RAM
(bytes)

224 46,243 732.1 688+120 134
256 46,243 732.1 688+120 134
384 98,285 1,055.4 774+160 166
512 133,673 1,427.0 840+200 198

Table 10: Execution time and memory requirements on Renesas H8/300L
Execution time Memory requirements

Bit length
of hash value

One-block msg.
(cycles/message)

Very long msg.
(cycles/byte)

Code size
+ constant data

(bytes)
RAM
(bytes)

224 101,990 1,624.8 856+120 144
256 101,990 1,624.8 856+160 144
384 215,618 2,296.8 976+160 176
512 284,930 3,028.8 1,112+200 208

We used Renesas’s High-performance Embedded Workshop (HEW) as a de-

velopment environment and measured execution time on the Simulator of

H8/300L bundled with HEW.

The execution time and memory requirements of an assembly code are

shown in Table 10. In the table, the second column lists the execution time

to hash a one-block message. The third column lists the execution time to

hash a very long message. The fourth and fifth columns are for the sizes of

the implementation. There is no setup of the algorithm in Luffa, hence the

setup time is zero.

6.1.2 32-bit Processors

Here, we will show some performance figures of Luffa for 32-bit processors.

The hash family has been implemented for the Intel Core2 Duo processor in

C and assembly languages and for the ARM ARM9 processor in C language.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
30

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Intel Core2 Duo Processor Our target processor model is the Intel

Core2 Duo E6600 2.4GHz processor in 32-bit mode, which will be used

by NIST. We have measured speed performances of three different types

of codes, a C code obeying the ANSI C grammar, a C code using Visual

C++ SSE intrinsics and an assembly code. Both of the C codes obey the

NIST API.

Table 11: 32-bit platforms used for measurement
Programming

language Processor Memory OS
Compiler or
assembler

C Core2 Duo
E6600 (2.4GHz) 2GBytes Windows Vista

32-bit Edition
Visual Studio
2005 C++

Assembly Core2 Duo
E6600 (2.4GHz) 2GBytes Ubuntu Linux 8.04

32-bit distribution
gnu as

In accordance with the test environment of NIST, we have used the Mi-

crosoft’s Visual Studio 2005 C++ compiler and Windows Vista Ultimate

32-bit operating system for the measurement of the C codes. The assembly

code was measured on a 32-bit Linux distribution. These environments are

shown on Table 11.

We measured two types of figures, the execution time to hash a very long

message and the execution time to hash a one-block message. The figures

are shown at Table 12 and 13. In Table 12, a throughput speed is also listed.

Note that the results of the C codes include overheads coming from the NIST

API, but that of the assembly code does not. Also note that there is no setup

of the algorithm in Luffa, hence the setup time is zero.

Since the fast implementation of Luffa does not use look-up tables, only

small size of memory is required to implement Luffa. Therefore, a relation

of time-memory trade-off in 32-bit implementation is relatively weak.

ARM ARM9 Processor Our target processor model is ARM ARM-

926EJ-S. We used ARM RealView Development Suite as a development en-

vironment and measured execution time on the Simulator of ARM926EJ-S.

The model ARM926EJ-S has an instruction cache and a data cache. The

size of each cache can be from 4 kbytes to 128 kbytes. In our measurement,

the simulator is set to have 4 kbytes for each.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
31

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 12: Throughput speed and execution time to hash a very long message
on Core2 Duo in 32-bit mode

ANSI C C using SSE intrinsics Assembly
Bit length

of hash value
Exec. time

(cycles/byte)
Speed
(Mbps)

Exec. time
(cycles/byte)

Speed
(Mbps)

Exec. time
(cycles/byte)

Speed
(Mbps)

224 31.1 617.2 19.8 970.7 13.8 1,391.3
256 31.2 614.6 19.8 970.7 13.8 1,391.3
384 46.7 410.8 22.3 862.2 15.5 1,238.7
512 64.9 295.9 36.0 533.3 26.8 716.4

Table 13: Execution time to hash a one-block message on Core2 Duo in 32-bit
mode

ANSI C C using SSE intrinsics Assembly
Bit length

of hash value
Execution time

(cycles/message)
Execution time

(cycles/message)
Execution time

(cycles/message)
224 2,162 1,509 886
256 2,157 1,513 886
384 4,622 2,439 1,497
512 6,457 3,799 2,573

The execution time of an ANSI C code is shown in Table 14. This code

is slightly different from the ANSI C code used on the Intel Core2 Duo

processor. In the table, the second column lists the execution time to hash a

one-block message. The third column lists the execution time to hash a very

long message. Note that the result of the C code includes overheads coming

from the NIST API. Also note that there is no setup of the algorithm in

Luffa, hence the setup time is zero.

6.1.3 64-bit Processor

Here, we show some performance figures of Luffa for a 64-bit processor. The

figures are for the Intel Core2 Duo processor, which will be used by NIST.

Intel Core2 Duo Processor Our target processor model is the Intel

Core2 Duo E6600 2.4GHz Processor in 64-bit mode. We have measured

speed performances of three different types of codes, an C code obeying the

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
32

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 14: Execution time on ARM ARM926EJ-S in C language
Execution time

Bit length
of hash value

One-block msg.
(cycles/message)

Very long msg.
(cycles/byte)

224 7,054 91.1
256 7,111 91.1
384 14,209 129.5
512 18,564 169.7

Table 15: 64-bit platforms used for measurement
Programming

language Processor Memory OS
Compiler or
assembler

C Core2 Duo
E6600 (2.4GHz) 2GBytes Windows Vista

64-bit Edition
Visual Studio
2005 C++

Assembly Core2 Duo
E6600 (2.4GHz) 2GBytes Ubuntu Linux 8.04

64-bit distribution
gnu as

ANSI C grammar, a C code using Visual C++ SSE intrinsics and an assembly

code. Both of the C codes obey the NIST API.

In accordance with the test environment of NIST, we have used the Mi-

crosoft’s Visual Studio 2005 C++ compiler and Windows Vista Ultimate

64-bit operating system for the measurement of the C codes. The assembly

code was measured on a 64-bit Linux distribution. These environments are

listed on Table 15.

We measured two types of figures, the execution time to hash a very long

message and the execution time to hash a one-block message. The figures

are shown at Table 16 and 17. In Table 16, a throughput speed is also listed.

Note that the results of the C codes include overheads coming from the NIST

API, but that of the assembly code does not. Also note that there is no setup

of the algorithm in Luffa, hence the setup time is zero.

Since the fast implementation of Luffa does not use look-up tables, only

small size of memory is required to implement Luffa. Therefore, a relation

of time-memory trade-off in 64-bit implementation is relatively weak.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
33

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 16: Throughput speed and execution time to hash a very long message
on Core2 Duo in 64-bit mode

ANSI C C using SSE intrinsics Assembly
Bit length

of hash value
Exec. time

(cycles/byte)
Speed
(Mbps)

Exec. time
(cycles/byte)

Speed
(Mbps)

Exec. time
(cycles/byte)

Speed
(Mbps)

224 26.0 738.2 16.3 1,175.8 13.3 1,443.6
256 26.2 731.7 16.3 1,175.8 13.3 1,443.6
384 40.2 478.2 18.5 1,036.2 15.0 1,280.0
512 55.6 345.4 31.7 604.9 23.8 806.7

Table 17: Execution time to hash a one-block message on Core2 Duo in 64-bit
mode

ANSI C C using SSE intrinsics Assembly
Bit length

of hash value
Execution time

(cycles/message)
Execution time

(cycles/message)
Execution time

(cycles/message)
224 1,815 1,225 854
256 1,830 1,236 854
384 3,990 1,973 1,446
512 5,600 3,265 2,289

6.2 Performance Figures for Hardware Implementa-
tions

Here, we show the software performances of the Luffa v2 hash family. A hard-

ware performance evaluation of the Luffa hash family was done by synthe-

sizing the proposed designs using UMC 0.13 µm CMOS standard cell library.

The code was first written in GEZEL [15] and tested for the functional-

ity using the test vectors provided by the software implementations. The

GEZEL code was then compiled to VHDL and synthesized using Synopsys

Design Compiler version Y-2006.06 [26]. Our goal was to show that the fam-

ily of cryptographic hash functions Luffa can be implemented efficiently in

hardware. We targeted both, the compact and the high-throughput imple-

mentations.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
34

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 18: Throughput optimized implementations of the Luffa hash family.
Design Area Frequency # of cycles Throughput [Mbps]

[GE] [MHz] per round OB LM

Luffa-224/256 30, 834 1, 124 9 15,980.0 31, 960.0
Luffa-384 50, 068 813 9 11,563.0 23, 126.0
Luffa-512 65, 102 690 9 9,808.5 19, 617.0

6.2.1 Throughput-Optimized Implementations

The synthesis results for the throughput optimized version of Luffa are given

in Table 18. The high-throughput designs are synthesized regardless of the

gate count and show that the Luffa hash algorithm achieves the throughput of

more than 31 Gbps. The throughput for ”one-block” message was calculated

according to the following equation:

ThroughputOB =
Frequency

of Cycles× 2
× 256 bit ,

while the throughput for the very long message was calculated as:

ThroughputLM =
Frequency

of Cycles
× 256 bit .

For the high-throughput implementations, the goal was to minimize the

critical path. We used w permutation blocks in parallel and each of them

contained 64 Sboxes and 4 MixWord blocks. The straightforward implemen-

tation resulted in the critical path of 1.21 ns (Luffa-224/256) and the cycle

count of 8. The critical path was placed from the input of the message in-

jection function to the output of the permutation block. As the message

injection function is performed only once at the beginning of every round,

we moved the state registers at the input of the permutation blocks. This

resulted in the faster design, shortening the critical path to only 0.89 ns

(Luffa-224/256). One more clock cycle had to be spent in order to perform

the complete round, but the final throughput got increased for about 20 %.

To show the possible trade-offs regarding the throughput-optimized im-

plementations we provide Figure 3. More details about the exact values are

given in appendix (Table 21).

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
35

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

�

� ���

� ����

� � ���

� ����

� � ���

� ����

� � ���

� � � � � � � � �

��
���

��
��

�	
�
��

�

��������	

�����������	

������� � �
������	 �

Figure 3: Throughput-optimized implementations.

Table 19: Area optimized implementations of the Luffa hash family.

Design Area Frequency # of cycles Throughput [Mbps]
[GE] [MHz] per round OB LM

Luffa-224/256 19, 646 344 891 49.3 98.7
Luffa-384 29, 466 344 1188 36.9 73.8
Luffa-512 39, 803 344 1485 17.6 35.2

6.2.2 Area-Optimized Implementations

The compact implementations were made using only one non-linear permu-

tation block. Inside the permutation we used a single Sbox and a single

MixWord block. This approach resulted in a large number of cycles, while on

the other hand it efficiently reduced the final gate count. We used w 256-bit

registers to maintain the internal state and to keep the results for the blank

round. Eight more 32-bit registers were used inside the permutation block.

The results are given in Table 19.

As can be seen from Table 19, the most compact implementation is ob-

tained for Luffa-224/256 algorithm and consumes approximately 19.6 kGE.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
36

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Note that our only goal for the compact implementation was to have a small

circuit size, regardless of the achieved speed. Hence, we fixed the frequency

to 344 MHz and synthesized our designs.

6.2.3 Pipelined Implementation

When hashing independent message blocks, one can benefit from using the

pipelined architecture. Multiple non-linear permutation blocks need to be

added (8w blocks) as well as w pipelined 256-bit register for each round (8w

in total). This approach can effectively increase the throughput for more

than 8 times at the cost of additional area overhead. As can be seen from

Table 20, a throughput of 115.6 Gbps2 is achieved for the Luffa-224/256

version at the cost of 156.6 kGE.

Table 20: Pipelined implementations of the Luffa hash family.

Design Area Frequency # of cycles Throughput* [Mbps]
[GE] [MHz] per round OB LM

Luffa-224/256 156, 613 508 9 57,799.0 115, 598.0
Luffa-384 217, 936 483 9 54,954.5 109, 909.0
Luffa-512 272, 413 478 9 54,385.5 108, 771.0

* Throughput for independent message blocks.

6.2.4 Summary of Hardware Implementations

The hardware implementations of the Luffa family of hash functions have

been evaluated in this report. We conclude that the design is very well

suited for both compact and high-throughput implementations. The most

compact size of 19,646 GE was achieved for the 224/256 version of Luffa.

The same version achieves the highest throughput of 31.96 Gbps, while the

pipelined design approaches the throughput of 115.6 Gbps. Due to the ample

of parallelism provided by Luffa hash family, it is possible to make a plenty of

trade-offs and choose the most appropriate design for the target application.

2This is true only for hashing independent message blocks in parallel.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
37

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

Table 21: Hardware performance of the Luffa hash family.

Design Area Frequency # of cycles Throughput [Mbps]
[GE] [MHz] per round OB LM

Luffa-224/256 30, 834 1, 124 9 15, 980.0 31,960.0
Luffa-224/256 24, 586 588 9 8, 366.0 16, 732.0
Luffa-224/256 24, 450 320 9 4, 558.5 9, 117.0
Luffa-224/256 24, 303 270 9 3, 844.0 7, 688.0
Luffa-224/256 19,646 344 891 49.3 98.7
Luffa-384 50, 068 813 9 11, 563.0 23,126.0
Luffa-384 46, 476 806 9 11, 469.5 22, 939.0
Luffa-384 40, 279 709 9 10, 086.5 20, 173.0
Luffa-384 37, 612 523 9 7, 446.0 14, 892.0
Luffa-384 29,466 344 1, 188 36.9 73.8
Luffa-512 65, 102 690 9 9, 808.5 19,617.0
Luffa-512 64, 155 676 9 9, 609.5 19, 219.0
Luffa-512 62, 433 671 9 9, 545.0 19, 090.0
Luffa-512 53, 734 523 9 4, 772.5 14, 892.0
Luffa-512 39,803 344 1, 485 17.6 35.2

Table 21 shows the detailed implementation results of different versions

of the Luffa hash family. The fastest and the most compact versions for each

version of the Luffa hash family are given in bold.

6.3 Security against Side Channel Attacks

A side channel attack observes physical information leakage in addition to the

input and the output of the cipher in order to recover the secret data. There

is no secret for a naive hash function so that it is not necessary to consider

the threat of side channel attacks. However, some applications such as the

HMAC use a secret information. In such applications, side channel attacks

also should be considered. Hereinafter, we discuss the abstract property of

the sub-permutations of Luffa against side channel attacks both in software

and hardware implementations.

Tsunoo et al. proposed a cache timing attack for a software implemen-

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
38

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

tation of DES [27]. The attack observes the delay of the operation caused

by the difference between cache hits and cache misses. This attack can be

widely applicable to ciphers in which Sboxes are implemented by reference

tables and amount of papers have been published to improve the attack and

the countermeasure. Besides, a bit slice permutation does not refer the cache

and implements the Sboxes by a set of logical instructions. This feature of a

bit slice permutation avoids any kind of attacks based on cache timing.

A differential power analysis (DPA) observes the power consumption of

certain part of operations depending on the secret information [21]. It is

hard to perfectly avoid the DPA, instead amount of techniques to increase

the cost to apply the attack have been proposed. The most likely approach

is obscuring the power consumption of each operation. We believe that the

cost to obscure the operations of Luffa is not costly in comparison to MD-like

hash functions.

Trademarks

• ARM and RealView are registered trademarks and ARM926EJ-S is the

name of products of ARM Limited in the United States and/or other

countries.

• Atmel, AVR, and AVR Studio are registered trademarks of Atmel Cor-

poration in the United States and/or other countries.

• Intel is a registered trademark and Core is the name of products of

Intel Corporation in the U.S. and other countries.

• Linux is a registered trademark of Linus Torvalds in the U.S. and other

countries.

• Microsoft, Windows Vista, and Visual Studio are registered trademarks

of Microsoft Corporation in the United States and/or other countries.

• Renesas and H8 are registered trademarks of Renesas Technology Cor-

poration in the United States and/or other countries.

• Synopsys is a registered trademark and Design Vision is the name of

products of Synopsys, Inc. in the United States and/or other countries.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
39

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

• Ubuntu is a registered trademark of Canonical Ltd. in the United

States and/or other countries.

References

[1] Atmel Corporation, “8-bit AVR Instruction Set,” available at http:

//www.atmel.com/dyn/resources/prod_documents/doc0856.pdf.

[2] J.P. Aumasson, I. Dinur, W. Meier and A. Shamir “Cube Testers and

Key Recovery Attacks On Reduced-Round MD6 and Trivium,” Fast

Software Encryption, FSE 2009, Lecture Notes in Computer Science,

vol. 5665, Springer-Verlag, pp. 1–22, 2009.

[3] J.P. Aumasson and W. Meier, “Zero-sum distinguishers for reduced

Keccak-f and for the core functions of Luffa and Hamsi,” 2009. Available

at http://www.131002.net/data/papers/AM09.pdf.

[4] R. Anderson, E. Biham and L. Knudsen, “Serpent: A Proposal for the

Advanced Encryption Standard,” available at http://www.cl.cam.ac.

uk/~rja14/serpent.html.

[5] “Reference Manuals of the ARM architectures and processors,” available

at http://infocenter.arm.com/help/index.jsp.

[6] M. Bellare and T. Kohno, “Hash function balance and its impact on

birthday attacks,” Advances in Cryptology - Eurocrypt’04, Lecture Notes

in Computer Science, Vol. 3027, Springer-Verlag, pp. 401–418, 2004.

[7] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Func-

tions,” Ecrypt Hash Workshop 2007.

[8] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On the In-

differentiability of the Sponge Construction,” Advances in Cryptology,

Eurocrypt’08, Lecture Notes in Computer Science, Vol. 4965, Springer-

Verlag, pp. 181–197, 2008.

[9] E. Biham, R. Anderson and L. Knudsen, “Serpent: A New Block Ci-

pher Proposal,” Fast Software Encryption, FSE’97, Lecture Notes in

Computer Science, Vol. 1372, Springer-Verlag, pp. 222–238, 1998.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
40

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.131002.net/data/papers/AM09.pdf
http://www.cl.cam.ac.uk/ ~rja14/serpent.html
http://www.cl.cam.ac.uk/ ~rja14/serpent.html
http://infocenter.arm.com/help/index.jsp

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

[10] A. Biryukov and D. Wagner, “Slide Attacks,” Fast Software Encryption,

FSE’99, Lecture Notes in Computer Science, Vol. 1636, Springer-Verlag,

pp. 245–259, 1999.

[11] J. Daemen, L. Knudsen, V. Rijmen, “The Block Cipher Square,” Fast

Software Encryption, FSE’97, Lecture Notes in Computer Science,

Vol. 1267, Springer-Verlag, pp. 149–165, 1997.

[12] J. Daemen, M. Peeters, G. Van Assche and V. Rijmen, “Nessie Proposal:

NOEKEON,” available at http://gro.noekeon.org/.

[13] National Institute of Standards and Technology, “Secure Hash Stan-

dard,” FIPS 180-2.

[14] National Institute of Standards and Technology, “Recommendation for

Random Number Generation Using Deterministic Random Bit Genera-

tors (Revised),” NIST Special Publication 800-90, March 2007.

[15] GEZEL, http://rijndael.ece.vt.edu/gezel2/index.php/Main_

Page.

[16] M. Gorski, S. Lucks and T. Peyrin, “Slide Attacks on Hash Functions,”

Cryptology ePrint Archive 2008/263, 2008.

[17] Intel Corporation, “Intel 64 and IA-32 Architectures Software De-

veloper’s Manual,” available at http://www.intel.com/products/

processor/manuals/index.htm.

[18] K. Jia, “Practical Pseudo-Cryptanalysis of Luffa,” Cryptology ePrint

Archive, Report 2009/224, 2009.

[19] A. Joux, “Multicollisions in iterated hash functions. Application to cas-

caded constructions,” Advances in Cryptology, CRYPTO’04, Lecture

Notes in Computer Science, Vol. 3152, Springer-Verlag, pp. 306–316,

2004.

[20] L. R. Knudsen, “Truncated and Higher Order Differentials,” Fast Soft-

ware Encryption, FSE ’94, Lecture Note in Computer Science vol. 1008,

pp. 196–211, Springer-Verlag, 1994.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
41

http://gro.noekeon.org/
http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm

Luffa Supporting Document NIST SHA3 Proposal (Round 2)

[21] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential

power analysis and related attacks,” 1998. Available at http://www.

cryptography.com/dpa/technical/index.html.

[22] X. Lai, “Higher order derivatives and differential cryptanalysis,” Proc.

Symposium on Communication, Coding and Cryptography, pp. 227–233,

Kluwer Academic Publishers, 1994.

[23] J. S. Leon, “A Probabilistic Algorithm for Computing Minimum Weights

of Large Error-Correcting Codes,” IEEE Trans. on Infomation Theory,

Vol. 34, No. 5, pp. 1354–1359, 1988.

[24] D. A. Osvik, “Speeding up Serpent,” The 3rd AES Conference, Proceed-

ings, pp. 317–329, 2000.

[25] Renesas Technology Corporation, “H8/300L Series Software Manual,”

available at http://documentation.renesas.com/eng/products/

mpumcu/rej09b0214_h8300l.pdf.

[26] Synopsis, http://www.synopsys.com/.

[27] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, H. Miyauchi, “Cryptanal-

ysis of DES Implemented on Computers with Cache,” Cryptographic

Hardware and Embedded Systems, CHES’03, Lecture Notes in Computer

Science, Vol. 2779, Springer-Verlag, pp. 62–76, 2003.

[28] C. De Cannière, H. Sato, and D. Watanabe, “Hash Function Luffa,

Specification, ” NIST SHA3 Competition, 2008.

[29] C. De Cannière, H. Sato, and D. Watanabe, “The Reasons for

The Change of Luffa, ” to be supplied with the Second Round

Package. Also available at http://www.sdl.hitachi.co.jp/crypto/

luffa/Reason4Mod.pdf.

[30] D. Watanabe and Y. Hatano, “Higher Order Differential Attack

on Reduced Round Luffa,” to be supplied with the Second Round

Package. Also available at http://www.sdl.hitachi.co.jp/crypto/

luffa/HigherOrderDifferentialAttackOnLuffa_v1.pdf.

Copyright c©2008-2009 Hitachi, Ltd. All rights reserved.
42

http://www.cryptography.com/dpa/technical/index.html
http://www.cryptography.com/dpa/technical/index.html
http://documentation.renesas.com/eng/products/mpumcu/rej09b0214_h8300l.pdf
http://documentation.renesas.com/eng/products/mpumcu/rej09b0214_h8300l.pdf
http://www.synopsys.com/
http://www.sdl.hitachi.co.jp/crypto/luffa/Reason4Mod.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Reason4Mod.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/HigherOrderDifferentialAttackOnLuffa_v1.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/HigherOrderDifferentialAttackOnLuffa_v1.pdf

	Introduction
	Updates of This Document
	Organization of This Document

	Design Rationale
	Chaining
	Non-Linear Permutation
	Sbox in SubCrumb
	MixWord
	Constants
	Number of Steps
	Tweaks

	Security Analysis of Permutation
	Basic Properties
	Sbox S (v2)
	Differential Propagation

	Collision Attack Based on A Differential Path
	General Discussion
	How to Find A Collision for 5 Steps without Tweaks

	Birthday Problem on The Unbalanced Function
	Higher Order Differential Distinguisher
	Higher Order Difference
	Higher Order Differential Attack on v1
	Higher Order Differential Property of Qj of v2
	Higher Order Differential Attack on v2

	Security Analysis of Chaining
	Basic Properties of The Message Injection Functions
	First Naive Attack
	Long Message Attack to Find An Inner Collision
	How to Reduce The Message Length
	Complexity of The Naive Attack

	Meet-In-The-Middle Attack on Luffa
	Attack Description
	Complexity of The MIM Attack

	An Application of The Multicollision Attack on A Weakened MI
	Attack Description for w=3
	Extension to w>3

	Collision, Second Preimage, And Preimage
	Security Analysis of Finalization
	Saturation Property of v2
	Slide Attack

	On The (Semi-)Free-start Setting
	Implementation Aspects
	Performance Figures for Software Implementations
	8-bit Processors
	32-bit Processors
	64-bit Processor

	Performance Figures for Hardware Implementations
	Throughput-Optimized Implementations
	Area-Optimized Implementations
	Pipelined Implementation
	Summary of Hardware Implementations

	Security against Side Channel Attacks

