Featured Articles III

Development of Liquid Cooling System with Integrated Traction Converters and Auxiliary Power Supplies for 200-km/h Commuter Trains

Masaru Katagiri
Yositaka Nishimura
Kentaro Mae
Yousuke Yasuda
Takahiro Yamauchi

OVERVIEW: Many commuter trains in the 200-km/h range use AC electric railcars. The need to outfit these railcars with traction transformers limits the availability of underfloor space compared to DC railcars. Miniaturization is essential for short train sets in particular where outfitting space is limited. Accordingly, with the aim of reducing equipment size, Hitachi has developed a system that uses liquid cooling to cool power semiconductor devices. This article introduces this system and describes the system’s integrated structure, which combines traction converters and auxiliary power supplies.

INTRODUCTION

WHEREAS the traction converter and auxiliary power supply in rolling stock usually constitute separate units in Japan, compact units that combine the traction converter and auxiliary power supply into one unit are more common in the European market. Recognizing this, Hitachi set about developing an integrated traction converter and auxiliary power supply unit that combines traction converters with auxiliary power supplies as a way to reduce size, weight, and cost.

A problem with forced air cooling is that it requires larger blowers to cope with the higher pressure losses due to the presence of the laminar ducts. Equipment volume is also larger due to the greater amount of unused space.

Fig. 1—Comparison of Configurations for Forced Air Cooling and Liquid Cooling.
This development included the adoption of a liquid cooling system, which is often used in Europe, in order to improve the cooling efficiency of the cooling system for the power semiconductor devices and to enable the equipment to be housed in a high-density package. Fig. 1 shows a comparison of the configurations for forced air cooling and liquid cooling. Because a liquid cooling system uses the circulation of coolant to efficiently carry heat away from the semiconductor devices, it provides more freedom for equipment layout than the forced air cooling used in the past and reduces unused space. The objective here was to improve cooling efficiency, to reduce the space occupied by cooling system components, and to make the equipment smaller. However, it is difficult to achieve an equipment volume and weight that have competitive power in the global marketplace by just adopting a liquid cooling system. To achieve this, Hitachi adopted a traction circuit configuration suitable for integrating traction converters and auxiliary power supplies, and went about reducing the number of components and making the unit smaller. Hitachi also looked at how the power unit for the liquid cooling system could be mounted to minimize the amount of space needed for inspection. The overall equipment size was also reduced by integrating the control logic units used for the traction converters and auxiliary power supplies (previously housed as separate units).

This article describes the benefits of the reduction in size made possible by adopting a liquid cooling system and the traction circuit configuration that enabled a reduction in the number of components.

CONFIGURATION OF THE LIQUID COOLING SYSTEM

Fig. 2 shows the specific configuration of the liquid cooling system. The system is made up of multiple cold plates that draw heat from the semiconductor devices and a cooling unit that supplies coolant to the cold plates and that dissipates the heat carried by the coolant to the outside air. Fig. 3 shows diagrams of these components.

The system must be able to support a configuration consisting of two control systems controlling two motors each in order to provide the redundancy to cope with equipment faults, even when operating on short train sets of only two or three cars. For this reason, the system for the traction circuit attaches four semiconductor modules to each side of the converter or inverter cold plates based on...
the number of semiconductor devices, with the semiconductor devices being mounted on both sides due to dimensional constraints. For the auxiliary power supply, meanwhile, because the amperage is lower than that in the converters and inverters, 2-in-1 semiconductor devices in modules containing upper and lower circuit arms are mounted on both sides, with three modules on each side. This means there are a total of five cold plates: two for the converters, two for the inverters, and one for the auxiliary power supply.

BENEFITS OF USING THE LIQUID COOLING SYSTEM

Fig. 4 shows the benefits of using the liquid cooling system. The cooling system volume in the graph represents the total volume of components used for semiconductor device cooling, including blowers and radiators. The graph is a plot of the cooling system volume required by each cooling method to deal with different levels of thermal losses, expressed as a proportion of the volume of the existing cooling system. The graph shows that the volume of the new liquid cooling system is approximately 70% of that required by a system that uses heat pipes and forced air cooling to deal with the same level of thermal losses, and that the new system’s cooling capacity is approximately 1.3 times that of a system that uses plate fins and forced air cooling.

Fig. 5 shows a breakdown of the reduction in cooling system volume. The new liquid cooling system reduces the volume of the blowers and radiators to 69% by integrating them into the liquid cooling unit. Similarly, replacing unused space with flexible hose has reduced the volume of this part to 78%. The result is a cooling system that is reduced to approximately 70% by volume.

HOUSING OF POWER UNIT FOR LIQUID COOLING SYSTEM

Fig. 6 shows a side view of the power unit housing. Push-to-connect liquid couplers are used for the liquid flow path interface, with a simple mechanism for plugging in and holding the couplers in place. Terminal blocks are used for the traction circuit connections. Because inserting or removing the power unit brings the liquid flow path with it, this design is easier to replace and provides space for inspection while also making the equipment smaller and reducing its cost.

TRACTION CIRCUIT SYSTEM

Fig. 7 shows the traction circuit system. The 25-kV/50-Hz alternating current (AC) power supply from the pantograph is input to the converter and inverter power units via the vacuum circuit-breaker, traction transformer, vacuum contactor, charging contactor,
and charging resistor. This system controls each bogie separately (two control systems that control two motors each) in order to provide the redundancy to cope with equipment faults, even when operating on short train sets of only two or three cars.

The semiconductor devices in the power units can be implemented with 3.3-kV/800-A or 3.3-kV/1,200-A insulated-gate bipolar transistors (IGBTs), using either type depending on the required control capacity. The units use two-level, snubber-less, single-phase voltage pulse width modulation (PWM) converters and two-level, snubber-less, three-phase voltage PWM inverters, and achieve enhanced reliability by reducing the number of components.

The system is equipped with a small-capacity brake chopper to ensure that braking continues without a discontinuity, even when the railcars pass from one section to another during regenerative braking. This absorbs the regenerative power and maintains the braking force by routing the power generated during braking to the brake resistor rather than the pantograph.

In the auxiliary power supply, the inverter circuit is connected to the direct current (DC) stage of each traction converter circuit to reduce inductance by minimizing the amount of wiring from the traction converter to the auxiliary power supply circuit, thereby eliminating the need for the smoothing reactor used in the past to suppress current fluctuations. The number of components has also been reduced by eliminating the charging resistor, unit switch, and discharging resistor, which were required when the circuit was implemented with separate units.

Connecting the inverter circuit of the auxiliary power supply to the DC stage means that the auxiliary power supply can avoid a temporary power outage by using the electric power generated by the brake if the pantograph voltage is lost when passing from one section to another.
units; a single auxiliary power supply unit that is used for both; a liquid cooling unit for each of the power units; and the control logic units that control these.

The transformer box contains an inverter transformer for the auxiliary power supply circuit, a battery charging circuit, and an electromagnetic contactor.

CONCLUSIONS

This article has presented an overview of the integrated traction converter and auxiliary power supply unit and described the liquid cooling and electrical systems developed by Hitachi.

The system has been fitted in Hitachi’s standard AT-200 commuter trains, the first of which were supplied to Scotland in the UK (as the Class 385) (see Fig. 10). In the future, Hitachi expects the system to satisfy diverse requirements for rolling stock in markets throughout the world.
ABOUT THE AUTHORS

Masaru Katagiri
Rolling Stock Electrical Systems Design Department, Mito Rail Systems Product Division, Railway Systems Business Unit, Hitachi, Ltd. He is currently engaged in the development of hardware for traction systems.

Yoshitaka Nishimura
Rolling Stock Electrical Systems Design Department, Mito Rail Systems Product Division, Railway Systems Business Unit, Hitachi, Ltd. He is currently engaged in the development of traction systems.

Kentaro Mae
Rolling Stock Electrical Systems Design Department, Mito Rail Systems Product Division, Railway Systems Business Unit, Hitachi, Ltd. He is currently engaged in the development of hardware for traction systems.

Yousuke Yasuda
Home Appliances Research Department, Center for Technology Innovation – Mechanical Engineering, Research & Development Group, Hitachi, Ltd. He is currently engaged in the research and development of cooling technology for semiconductor power devices. Mr. Yasuda is a member of The Japan Society of Mechanical Engineers (JSME), and is a certified P.E.Jp (Professional Engineer, Japan) of Mechanical Engineering.

Takahiro Yamauchi
Rolling Stock Electrical Systems Design Department, Mito Rail Systems Product Division, Railway Systems Business Unit, Hitachi, Ltd. He is currently engaged in the development of traction systems.